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2 ALEXANDRU BUIUM

1. Introduction

This is an introduction to graduate algebraic geometry. The only prerequisite is
an introductory one year graduate (or even undergraduate) course in Algebra such
as Hungerford’s or Lang’s graduate (or even undergraduate) Algebra books. The
course provides a shortcut through the following textbooks:

R.Hartshorne, Algebraic Geometry,
S.Lang, Introduction to Algebraic and Abelian Functions,
D.Mumford: Algebraic Geometry, I: Complex Algebraic Varieties,
J.-P. Serre, Algebraic Groups and Class Fields,
I.R. Shafarevich, Basic Algebraic Geometry, Vol I.

that starts from scratch and ends with the proof of the Riemann-Roch Theorem for
curves and its first applications. In the process the basic topics of algebraic geom-
etry are covered such as: projections, blow up, normalization, divisors, differential
forms, cohomology, duality.

Geometry comes in essentially two flavors: synthetic geometry and analytic ge-
ometry. These two branches closely interact. Synthetic geometry is geometry with-
out coordinates; analytic geometry is geometry with coordinates. Analytic geom-
etry comes in essentially two flavors which, again, interact: differential geometry
and algebraic geometry. Differential geometry studies shapes using smooth real
functions and its main concepts are metrics and curvature. Algebraic geometry is
concerned with the geometry of solution sets of systems of polynomial equations in
several variables with coefficients in an arbitrary algebraically closed field k. The
simplest non-trivial examples of such objects are ‘plane curves’

{(a, b) ∈ k2 | f(a, b) = 0}
where f ∈ k[x, y] is a polynomial. This study was initiated by Descartes and Fer-
mat (17th century) and enhanced by the introduction of calculus by Leibniz and
Newton, by the work of Euler (especially on elliptic integrals), and by the intro-
duction of projective geometry (18th century). Abel and Riemann made important
advances in the 19th century leading to the Riemann-Roch Theorem about spaces
of functions on curves with given sets of poles. Futher developments and higher
dimensional generalizations of all of this were worked out by the British algebraists
(Cayley, Macauley) and by the Italian school (Castelnuovo, Enriques, Severi) in
late 19th century. The whole subject was greatly clarified and put on solid alge-
braic foundations by Dedekind, Hilbert and Emmy Noether around the beginning
of the 20th century. By mid 20th century algebraic geometry received a signifi-
cant impetus from the analytic work of Hodge on harmonic forms which involved
the study of certain partial differential equations. All this work was in the case
k = C. During the first half of the century (through work of Artin, Hasse, Weil,
Zariski, Chevalley, Serre) algebraic geometry was developed over arbitrary fields k,
in particular fields of characteristic p; this setting is crucial for applications to the
study of congruences in number theory. Over arbitrary fields calculus had to be
reinvented; no integration is then available but differentials have an analogue which
is sufficient to reconstruct the calculus part of algebraic geometry in this setting
(this was seen already in Dedekind). The above algebraic (yet not analytic) devel-
opments are reflected in this course at least in the case of curves. A new stage in the
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development of algebraic geometry (which is not reflected, however, in this course)
is Grothendieck’s introduction of schemes in mid 20th century which amounts to
replacing the field k by an arbitrary ring and ‘allowing functions to be nilpotent’.
Further paradigms for algebraic geometry were introduced after that including the
rigid analytic geometry of Tate (where k is a ‘p-adic’ field), Arakelov geometry (that
combines Grothendieck’s framework with complex differential geometry and par-
tial differential equations), and derived algebraic geometry (with its homotopical
flavor). Classical algebraic geometry (i.e. the one before Grothendieck) remains,
however, the source of most interesting problems in the field.

2. Algebraic preliminaries

We begin by reviewing some basic algebraic notation, terminology, and facts
that will be freely used in our course; they are our algebraic prerequisites and are
all usually covered by a one year graduate course in Algebra. Here they are:

1) Rings will be usually denoted by A,B,R, S, ...; they are commutative with
1. The ring of polynomials in n variables with coefficients in A is denoted by
A[x1, ..., xn].

2) Ring homomorphisms f : A→ B are assumed to satisfy f(1) = 1. Given such
a homomorphism we say that B is an A-algebra.

3) The group of invertible elements (units) in a ring A is denoted by A×.
4) Rings without nilpotents are called reduced.
5) Rings without zero divisors are called integral domains. Rings in which all

non-zero elements are invertible are called fields. The characteristic of a field is 0
if the field contains Q and p is the field contains Fp := Z/pZ.

6) Ideals in a ring A are usually denoted by a, b, .... Write a1 ≡ a2 mod a if
a1 − a2 ∈ a. There is a bijection between the set of ideals in the factor ring A/a
and the set of ideals in A containing a.

7) The radical of an ideal a ⊂ A is defined as
√
a = {x ∈ A | ∃n, xn ∈ a}.

8) Prime ideals in a ring A are usually denoted by p, q,... The radical
√
a is the

intersection of all prime ideals containing a. An ideal is called radical if it is equal
to its radical. An element π ∈ A is prime if the ideal (π) is prime.

9) Maximal ideals in a ring A are usually denoted by m, n,...
10) A principal ideal domain is an integral domain all of whose ideals are prin-

cipal.
11) Factorial (unique factorization) domains are integral domains in which every

non-zero non-invertible element is a product of prime elements. The polynomial
ring k[x1, ..., xn] over a field k is factorial. Principal ideal domains are factorial.

12) The ring of fractions S−1A of a ring A with respect to a multiplicative subset
S ⊂ A is defined as S−1A := (A×S)/ ∼, where (a, s) ∼ (a′, s′)⇔ ∃s′′ ∈ S, s′′sa′ =
s′′s′a. If S = {fn | n ≥ 0} we write Af = S−1A. There is a bijection between the
set of prime ideals in S−1A and the set of prime ideals in A disjoint from S.

13) A ring is local if it has a unique maximal ideal. The localization of a ring A at
a prime ideal p is the ring Ap := (A\p)−1A. The fraction field of an integral domain
A is the field Frac(A) := A(0). For k a field we let k(x1, ..., xb) = Frac(k[x1, ..., xn]).
For f ∈ A there is an isomorphism A[x]/(fx − 1) ' Af for f ∈ A. Every integral
domain is the intersection of all its localizations at the maximal ideals. For a field
k we let k((x)) = Frac(k[[x]]) = k[[x]]x the field of Laurent power series, fraction
field of the local ring k[[x]] of power series in one variable x.
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14) The Krull dimension of a ring A is the suppremum dim(A) of all n ≥ 0 such
that there exists a chain p0 ⊂ ... ⊂ pn of distinct prime ideals.

15) A-modules are usually denoted by M,N, ... Their module of homomorphisms
are denoted by HomA(M,N). We assume familiarity with finitely generated mod-
ules, submodules, factor modules, kernels, images, and exact sequences of modules.
Every A-algebra has a structure of A-module.

16) Modules over a field are called vector spaces. The dual Homk(V, k) of a
vector space V over a field k is denoted by V ◦. The (vector space) dimension of V
is denoted by dimk(V ).

17) We assume familiarity with modules of fractions S−1M and localization of
modules Mp, product of an ideal with a module aM , direct sums ⊕Mi, direct
products

∏
Mi of modules and tensor products M ⊗A N . For every A-algebra B,

every A-module M and every B-module N one has HomA(M,N) ' HomB(M ⊗A
B,N). One has the formula a(M/N) = (aM+N)/N for a ⊂ A an ideal and N ⊂M
a submodule of a module. Also M⊗A (A/a) 'M/aM and M⊗A (S−1A) ' S−1M .
Also S−1(M/N) ' S−1M/S−1N for every submodule N of a module M .

18) The degree of a field extension K ⊂ L is denoted by [L : K]. We assume
familiarity with the concept of transcendence basis of a field extension and with
the concept of a finitely generated field extension. Every finitely generated field
extension L of an algebraically closed field k has a separable transcendence basis,
i.e., a transcendence basis x1, ..., xn such that L is separable over k(x1, ..., xn). The
transcendence degree (cardinality of a transcendence basis) of an extension K ⊂ L
is denoted by tr.deg(L/K).

19) We assume the definition of Galois groups and the Galois correspondence
are known. We assume the definitions of trace and norm in a field extension are
known. We assume the Theorem of the Primitive Element which says that every
finite separable field extension is simple (generated by one element).

20) We assume familiarity with the definition of category, initial elements, final
elements, functors, and equivalence of categories. We also assume familiarity with
universal properties of various constructions (direct sums, direct products, factors,
fractions) and the interpretation of the latter as initial/final objects in appropriate
categories.

In what follows we present algebra material that goes beyond our prerequisites
described above and will be used in the sequel. We start with the following basic:

Lemma 2.1. (Nakayama’s Lemma) Let A be a local ring with maximal ideal m
and let M be a finitely generated A-module. Assume mM = M . Then M = 0.

Proof. Let x1, ..., xn ∈ M generate M . Write xi =
∑
jmijxj with mij ∈ m.

Let x be the column vector with entries x1, ..., xn and A the matrix with entries
δij −mij where δij is the Kronecker symbol, i.e. the identity matrix I = (δij). So
Ax = 0. Let A∗ be the adjugate matrix, i.e. A∗A = det(A) · I. We get A∗Ax = 0
so det(A) · xi = 0 for all i. But det(A) ∈ 1 + m ⊂ A×. So xi = 0 for all i. �

Exercise 2.2. Let A be a local ring with maximal ideal m and let N be a finitely
generated A-module. Let x1, ..., xn ∈ N be such that their images x1, ..., xn in
N/mN span the k-linear spaceN/mN . Then x1, ..., xn ∈ N generated the A-module
N . Hint: Apply Nakayama to N/N ′ where N ′ is a submodule of N generated by
x1, ..., xn.
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Lemma 2.3. (Chinese Remainder Theorem) Let a1, ..., an be ideals in a ring A
such that ai + aj = A for i 6= j. Then the map

A/a1...an → A/a1 × ...×A/an, x+ a1...an 7→ (x+ a1, ..., x+ an)

is an isomorphism.

Proof. Left to the reader.

Exercise 2.4. Prove the above Lemma.

Definition 2.5.
a) An A-algebra B is called finite if B is a finitely generated A-module if there

exist b1, ..., bn ∈ B generating B as an A-module B = Ab1 + . . .+Abn
b) An A-algebra B is called finitely generated if there exist b1, ..., bn ∈ B such that

B is a generated as an A-module by all monomials bi11 ...b
in
n ; write B = A[b1, ..., bn].

c) For an A-algebra B element b ∈ B is called integral over A if it is a root of a
monic polynomial with coefficients in A. B is called integral over A if all elements
of B are integral over A.

Proposition 2.6.
1) An A-algebra B is finite iff if it is finitely generated and integral over A.
2) If B is integral over A and C is integral over B then C integral over A. Same

with ‘finitely generated’ and ‘finite’ in place of ‘integral’.
3) For an A-algebra B the set A′B of all elements of B that are integral over A

is a ring and is called the integral closure of A in B.

Proof. For 1 the only non-obvious fact is that a finite A-algebra B is integral. Let
b1, ..., bn generate B as an A-module. Let b ∈ B. Write bbi =

∑
j aijbj , aij ∈ A,

D = (bδij − aij). By the argument in the proof of Nakayama’s Lemma we get
det(D) = 0. But det(D) = bn + c1b

n−1 + ... + cn, ci ∈ A. So b is integral over A.
Then 2 and 3 follow using 1.

�

Definition 2.7. For an integral domain A its integral closure in Frac(A) is denoted
by Anor; A is called integrally closed (or normal) if A = Anor.

Exercise 2.8. Every factorial ring is normal.

Exercise 2.9. If A ⊂ B is an integral extension of integral domains then A is a
field if and only if B is a field.

Exercise 2.10. If A → B is integral so are S−1A → S−1B (for S ⊂ A) and
A/b ∩A→ B/b (for b ⊂ B).

Exercise 2.11. Let A ⊂ B be integral.
1) If P is a prime ideal in B then P is maximal iff P ∩A is maximal in A.
2) If P1 ⊂ P2 and P1 ∩A = P2 ∩A then P1 = P2.
Hint: use the fact that A/P ∩A is a field if and only if B/P is a field.

Lemma 2.12. Let A ⊂ B be an integral extension of rings and p a prime ideal in
A. Then there exists a prime ideal P in B lying over p (i.e. P ∩A = p).

Proof. Consider integral extension

Ap ⊂ Bp := (A \ p)−1B.
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Take a maximal ideal M in Bp. Then P := M∩Ap is a maximal ideal by an exercise
above. But Ap is local with maximal ideal pAp. So P = pAp. Then the preimage
P of M in B lies over p. The finiteness claim follows from the fact that a finite
algebra over a field has only finitely many prime ideals (check!). �

Theorem 2.13. (Going Up Theorem) Let A ⊂ B be an integral extension of rings,
p1 ⊂ p2 prime ideals in A and P1 a prime ideal in B lying over p1. Then there
exists a prime ideal P2 in B with P1 ⊂ P2 and P2 lying over p2.

Proof. Follows from Lemma 2.12 applied to A/p1 ⊂ B/P1. �

Exercise 2.14. If A ⊂ B is integral then dim(A) = dim(B).

Exercise 2.15. A is normal if and only if Am is normal for all maximal ideals.

Theorem 2.16. (Noether normalization). Let k be a field and k ⊂ A a finitely
generated k-algebra. Then there exists a subring k ⊂ R ⊂ A such that A if finite
over R and R is k-isomorphic to the ring of polynomials k[x1, ..., xn] for some
n ≥ 0.

Proof We only give the proof in case k is infinite; the case k is finite needs an
adjustment of the argument. Induction on the minimum number n of generators.
Assume the statement true for at most n − 1 generators. Let B = A[b1, ..., bn]. If
b1, ..., bn are algebraically independent we are done. If not upon renumbering we
may assume bn is algebraic over A[b1, ..., bn−1], hence bn is a root of f(b1, ..., bn−1, x)
for some polynomial f in n variables. Let F be the form of highest degree d in f
and set bi = b′i + λibn for i = 1, ..., n − 1 where F (λ1, ..., λn−1, 1) 6= 0. (For the
existence of the λi’s we use k is infinite.) Then bn is integral over k[b′1, ..., b

′
n−1].

We conclude by induction. �

Corollary 2.17. For a finitely generated k-algebra A that is an integral domain
we have

dim(A) = tr.deg(Frac(A)/k).

Exercise 2.18. One has

dim(k[x1, ..., xn]) = n and dim(k[x1, ..., xn])/(f) = n− 1

for all irreducible polynomial f . Hint: use the statement (and proof) of Noether
normalization.

Theorem 2.19. (Hilbert Nullstellensatz) Let k be an algebraically closed field and
a ⊂ A := k[x1, ..., xn] a radical ideal. Let f ∈ A \ a. Then there exists (a1, ..., an) ∈
kn such that f(a1, ..., an) 6= 0 and g(a1, ..., an) = 0 for all g ∈ a.

Proof. Consider the finitely generated k-algebra

B = (k[x1, ..., xn]/a)f

which is 6= 0 so it has a maximal ideal m. Then B/m is a field which by Noether
normalization is integral over a polynomial ring C in n variables. So C is a field,
so n = 0. So B is a finite extension of k so it is equal to k. So there exist ai ∈ k
whose image in B are the classes of xi. One checks a1, ..., an have the desired
properties. �
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Definition 2.20. An A-module is Noetherian if every submodule is finitely gener-
ated; equivalently if every ascending sequence of submodules M1 ⊂M2 ⊂M3 ⊂ ...
is stationary, i.e., there exists n ≥ 1 such that for every N ≥ n we have Mn = MN .
A ring A is Noetherian if it is Noetherian as an A-module, i.e. if every ideal is finitely
generated, equivalently if every ascending sequence of ideals a1 ⊂ a2 ⊂ a3 ⊂ ... is
stationary.

Exercise 2.21. If M ′ ⊂ M is a submodule then M is Noetherian if and only if
M ′ and M/M ′ are Noetherian. In particular if R is Noetherian then every finitely
generated A-module is Noetherian.

Theorem 2.22. (Hilbert Basis Theorem) If A is Noetherian then the polynomial
ring A[x] is Noetherian. Hence every finitely generated A-algebra is Noetherian.

Proof. Let b ⊂ B = A[x] be an ideal. Let a be the set of all a ∈ A such that
there exist c1, ..., cn ∈ A with

axn + c1x
n−1 + ...+ cn ∈ b.

Then a is an ideal in A hence is finitely generated by some elements a1, ..., am ∈ a.
So there exist polynomials fi ∈ b such that fi(x) = aix

ni + .... Let N be the
maximum of n1, ..., nm. Let b′ ⊂ b be the ideal in B generated by f1, ..., fm and
consider the A-submodule of B generated by 1, x, ..., xN−1. We claim that

b = b′ + (b ∩M).

This will end the proof because b ∩M is an A-submodule of a finitely generated
A-module hence is finitely generated by some elements g1, ..., gs; but then the ideal
b is generated by f1, ..., fm, g1, ..., gs. To check the claim one checks by induction
on d that every polynomial of degree d in b belongs to b′ + (b ∩ M). Indeed
assuming this holds for polynomials of degree at most d − 1, if f has degree d
(which may be assumed to be ≥ N) then write f = axd + ... (so a ∈ a), express
a = α1a1 + ...+ αmam, αi ∈ A, and note that the polynomial

g = f −
m∑
i=1

αix
d−nifi

belongs to b and has degree ≤ d−1. We conclude by the induction hypothesis. �

Theorem 2.23. (Finiteness of integral closure, I) Let A be a Noetherian normal
integral domain, let K = Frac(A), let K ⊂ L be a finite separable field extension
and let B = A′L be the integral closure of A in L. Then B is a finite A-algebra.

Proof. We may assume L is Galois over K. Consider the Galois group G, the
trace

Tr =
∑
σ∈G

σ : L→ K,

and K-bilinear map L× L→ K defined by

(x, y) 7→ Tr(xy).

Recall that, by separability, this bilinear map is non-degenerate. Also σ(B) ⊂ B
for σ ∈ G so Tr(B) ⊂ A. Let β1, ..., βn ∈ L be a basis of L over K. We may
assume βi =: bi ∈ B (check!). Let b∗1, ..., b

∗ ∈ L be the dual basis with respect
to our bilinear form; hence Tr(bib

∗
j ) = δij . Let b be any element in B and write

b =
∑
i cib

∗
i with ci ∈ K. We have Tr(bbj) =

∑
i ciTr(b

∗
i bj) = cj . So cj ∈ A. So
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B is an A-submodule of the module
∑
iAb

∗
i which is Noetherian. So B is a finitely

generated module over A. �

Theorem 2.24. (Transitivity of Galois groups on fibers) Let A ⊂ B be an integral
extension of integral domains with A normal and assume their extension of fraction
fields K ⊂ L is Galois with Galois group G. Then for each prime ideal p in A the
group G acts transitively on the set of prime ideals P in B lying over p.

Proof. Localizing at p we may assume p is maximal. Let P1 and P2 be prime
(hence maximal) ideals in B lying over p. Let G = {σ1, ..., σn}, σ1 = id, and assume
σjP1 6= P2 for all j = 1, ..., n. Then P1 + σ−1

j P2 = B for all j = 1, ..., n. By the
Chinese Remainder Theorem there exists b ∈ B such that b ≡ 0 mod P1 and b ≡ 1
mod σ−1

j P2 for all j = 1, ..., n. Let β =
∏n
j=1 σj(b). Since β in G-invariant, by

Galois theory, it belongs to K. Since β is integral over A and A is normal we get
β ∈ A. But σ1b = b ∈ P1 hence β ∈ P1 ∩ A = p. On the other hand σj(b) ≡ 1
mod P2 so β ≡ 1 mod P2 i.e. β − 1 ∈ P2 so β − 1 ∈ P2 ∩ A = p. So 1 ∈ p, a
contradiction. �

Theorem 2.25. (Going Down Theorem). Let A ⊂ B be an integral extension of
rings with A normal, p1 ⊂ p2 prime ideals in A and P2 a prime ideal in B lying
over p2. Then there exists a prime ideal P1 in B with P1 ⊂ P2 and P1 lying over
p1.

Proof. We only give the proof in case the extension K ⊂ L of the fraction fields
of A and B is Galois. (The proof can be modified to deal with the general case.)
There is a prime ideal Q1 in B lying over p1. By the Going Up Theorem there is a
prime ideal Q2 in B containing Q1 and lying over p2. By the Transitivity of Galois
on fibers there exists σ in the Galois group of L over K such that σ(Q2) = P2. Set
P1 = σ(Q1). Then P1 has the desired properties. �

Corollary 2.26. Let A be a finitely generated algebra over an algebraically closed
field k and assume A is an integral domain. Then for all maximal ideals m of A
we have

dim(Am) = dim(A).

Proof. For A = k[x1, ..., xn] a polynomial ring the statement follows from
Hilbert’s Nullstellensatz because all maximal ideals are of the form (x1−a1, ..., xn−
an). In general, by Noether Normalization there is an integral extension k[x1, ..., xn] ⊂
A and we conclude by the Going Down Theorem. �

Theorem 2.27. (Finiteness of integral closure, II). Let k be a field, A a finitely
generated k-algebra which is an integral domain. Then the integral closure Anor of
A in Frac(A) is a finite A-algebra.

Proof. We only give the proof in case k has characteristic zero; for arbitrary
characteristic the proof needs an adjustment. By Noether normalization A is finite
over a subring C which is a polynomial ring. Since C is factorial it is normal. Let
K = Frac(C) and L = Frac(A). The extension K ⊂ L is finite and separable. By
Theorem 2.23 the integral closure D of C in L is a finite C-algebra. But Anor ⊂ D.
So Anor is a finite C-algebra, in particular a finite A-algebra. �

Definition 2.28. A local Noetherian ring A with maximal ideal m and residue
field k = A/m is called regular if

dimk(m/m2) = dim(A).
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Theorem 2.29. Let A be a local Noetherian integral domain with dim(A) = 1.
The following are equivalent.

1) A is principal.
2) A is factorial.
3) A is normal.
4) A is regular.

Proof. The implications 1 implies 2 implies 3 are true for every ring. Let m
be the maximal ideal of A. To check 3 implies 4 we need to show m/m2 is one
dimensional (which by Nakayama is the same as m principal). Let 0 6= a ∈ m.

Then
√

(a) = m (recall that the radical of an ideal in any ring is the intersection of
all prime ideals containing the ideal). There exists n such that mn ⊂ (a) ⊂ mn−1

(because m is finitely generated). Choose b ∈ (a)\mn−1 and let x = a/b ∈ Frac(A).
Since b 6∈ (a) we have x−1 6∈ A. Hence x−1 is not integral over A. We claim that
x−1m 6⊂ m; indeed if the contrary is true then writing x−1mi =

∑
j aijmj for a set

of generators mj of m, aij ∈ A, and using an argument similar to the one in the
proof of Nakayama’s Lemma would imply x−1 is integral over A. But x−1m ⊂ A
(because x−1m = (b/a)m and bm ⊂ mn ⊂ (a)) so x−1m = A so m = xA. The
implication 4 implies 1 easily follows using Nakayama and is left to the reader. �

Definition 2.30. An A satisfying the conditions in Theorem 2.29 is called a discrete
valuation ring (DVR). Any generator t of m is called a parameter.

Any prime element of A is a unit times t (otherwise A would not be local). Since
A is factorial every non-zero element of A is a unit times a power of t. Given such
an A one can define the ‘discrete valuation’

v : A \ {0} → N ∪ {0}
by the formula v(a) = e where e is such that a = ute, u a unit. For K = Frac(A)
one extends v to a group homomorphism

v : K× → Z, v(a/b) := v(a)− v(b).

Corollary 2.31. For a Noetherian domain A of dimension 1, A is integrally closed
if and only if Am is a DVR for every maximal ideal m.

Definition 2.32. A Noetherian integrally closed domain A of dimension 1 is called
a Dedekind ring.

Exercise 2.33. Every non-zero ideal I in a Dedekind ring A can be written
uniquely as a finite product of maximal ideals. Hint: show I is contained in
only finitely maximal ideals P1, . . . , Pn. Write IAPi

= (PiAPi
)ei . Prove that

I = P e11 . . . P enn by showing that this holds after localization at every maximal
ideal.

Example 2.34. Let f ∈ k[x, y] be an irreducible polynomial with f(0, 0) = 0.
Then the ring

A =

(
k[x, y]

(f)

)
(x,y)/(f)

is a DVR if and only if not both

∂f

∂x
(0, 0) and

∂f

∂y
(0, 0)
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are zero. Indeed these two elements of k are α and β where

f ∈ αx+ βy + (x, y)2.

Now if m is the maximal ideal of A then we have

m/m2 'M/M2

where M = (x, y)/(f). We have M2 = ((x, y)2 + (f))/(f) hence

M/M2 = (x,y)
(x,y)2+(f)

= (x,y)
(x,y)2+(αx+βy)

= (x,y)/(x,y)2

((x,y)2+(αx+βy))/(x,y)2

= kx+ky
k(αx+βy) .

The latter has dimension 6= 1 if and only if α = β = 0 and we are done by Theorem
2.29.

Exercise 2.35. Let A = k[x, y]/(f) with f irreducible vanishing at (0, 0) and let
M = (x, y)/(f). Assume AM is a DVR.

1) The class of x in AM is a parameter of A if and only if

∂f

∂y
(0, 0) 6= 0.

2) The class of y in AM is a parameter of A if and only if

∂f

∂x
(0, 0) 6= 0.

Hint: By Nakayama an element in the maximal ideal of a DVR is a parameter
if and only if its image modulo the square of the maximal ideal is non-zero.

Lemma 2.36. Assume A is a DVR, containing a field k, with maximal ideal m
such that A/m ' k. Then for all n ≥ 1,

dimk(A/mn) = n.

In particular for a ∈ A we have v(a) = dimk(A/(a)).

Proof. Induction on n. Let t be a parameter. For the induction step one uses
the exact sequence

0→ (tn)/(tn+1)→ A/(tn+1)→ A/(tn)→ 0

and the isomorphism A/(t) ' (tn)/(tn+1) given by multiplication by tn.
�

3. Topological preliminaries

In this section we “review” some basic notions of topology relevant to algebraic
geometry (such as irreducibility, Noetherianity, topological dimension). More topo-
logical concepts (such as sheaves and cohomology) will be introduced later.
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Definition 3.1. A topological space is a set X equipped with a set U of subsets
satisfying the following properties:

1) ∅, X ∈ U;
2) If U, V ∈ U then U ∩ V ∈ U;
3) If (Ui)i∈I is a family of subsets of X with Ui ∈ U for all i ∈ I then⋃

i∈I
Ui ∈ U.

The members of U are called open. A subset of X is closed if its complement is
open. The closure of a subset Y of X is the intersection of all closed sets containing
Y . A map f : X → Y between two topological spaces is continuous if for every open
set V ⊂ Y the set f−1(V ) is open in X. For every subset Y of a topological space
X one may consider the topology on Y whose open sets are intersections Y ∩ U
with U open in X; this topology on Y is called the induced topology. A subset Y of
a topological space X is dense if every non-empty open set of X has a non-empty
intersection with Y , equivalently if the closure of Y in X is X.

Exercise 3.2.
1) If Y is a subset of a topological space then the closed sets of Y in the induced

topology are the intersections Z ∩ Y where Z is closed in X. Hence if T is closed
in Y in the induced topology and if T is the closure of T in X then T ∩ Y = T .

2) If Y is open in X the open sets of Y in the induced topology are exactly the
open sets of X contained in Y .

3) If Y is closed in X the closed sets of Y in the induced topology are exactly
the closed sets of X contained in Y .

Definition 3.3. A closed set X in a topological space is called irreducible if it
cannot be written as a union of two closed sets both strictly contained in X. The
dimension of a topological space X is the supremum dim(X) of all n ≥ 0 such that
there exists a sequence Y0 ⊂ Y1 ⊂ ... ⊂ Yn of distinct irreducible closed subsets. A
topological space is called a curve if it is a finite union of irreducible closed sets of
dimension 1; it is called a surface if it is a finite union of irreducible closed sets of
dimension 2. If f : X → Y is a continuous map and P ∈ Y then the fiber of f at
P is the set f−1(P ); it is closed if P is closed.

Exercise 3.4.
1) A topological space is irreducible if and only if the intersection of any two

non-empty open sets is non-empty. So every non-empty open set of an irreducible
space is dense.

2) If X is an irreducible topological space and U is a non-empty open set then
dim(U) = dim(X).

Definition 3.5. A toplogical space is called Noetherian if every descending se-
quence Y0 ⊃ Y1 ⊃ Y2 ⊃ ... of closed sets is stationary (i.e. there exists n such for
every m ≥ n we have Ym = Yn.)

Exercise 3.6.
1) In a Noetherian topological space every non-empty set of closed sets has a

minimum element.
2) In a Noetherian topological space every closed set is a finite union of irreducible

closed sets. Hint: consider the set Σ of all closed sets that are not finite unions of
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irreducible closed sets, assume Σ is non-empty, take a minimal element in Σ, and
derive a contradiction.

3) Call a decomposition X = X1 ∪ ... ∪Xc of a closed set into irreducible closed
sets non-redundant if Xi 6⊂ Xj for i 6= j. In a Noetherian topological space every
two non-redundant decompositions of a closed set into finite unions of irreducible
closed sets must coincide. (The irreducible closed sets in a decomposition of X are
called the irreducible components of X).

4. Algebraic sets in An

For the remainder of this course, k denotes an algebraically closed field of arbi-
trary characteristic.

Definition 4.1. The affine space n-space is the set An = kn.

Consider the polynomial ring. A = k[y1, ..., yn]. For every subset X ⊂ An let
I(X) ⊂ A be the ideal of all polynomials f ∈ A such that f(P ) = 0 for all P ∈ X;
it is a radical ideal. For every subset T ⊂ A let Z(T ) ⊂ An be the set of all
P ∈ An such that f(P ) = 0 for all f ∈ T ; so if a is the ideal generated by T
then Z(T ) = Z(a) = Z(

√
a). The set Z(T ) is referred to as the set of zeroes of

T . We refer to y1, ..., yn as (affine) coordinates of An; note that yi define functions
yi : An → k.

Definition 4.2. A subset of An is called algebraic if it is of the form Z(T ) for some
T ⊂ A.

Exercise 4.3. The algebraic sets in An are the closed sets of a topology on An
(called the Zariski topology). Hint: Z(∪Ti) = ∩Z(Ti), Z(T1T2) = Z(T1) ∪ Z(T2).

Exercise 4.4. (For the reader familiar with topology)
1) The above topology is not Hausdorff. However all points are closed sets.
2) The Zariski topology on A2 = A1 × A1 is not the product of the Zariski

topologies on the two factors.

For X ⊂ An a closed set the ring A(X) = A/I(X) is called the affine coordinate
ring of X. It is a reduced finitely generated k-algebra. The Hilbert Nullstellensatz
implies:

Corollary 4.5. The maps X 7→ I(X) and a 7→ Z(a) between the set of all closed
sets of An and the set of all radical ideals of A are inverse to each other. We have
X irreducible if and only if I(X) is a prime ideal. We have dim(X) = dim(A(X)).

Remark 4.6. By the above Corollary the map from X to the set of maximal ideals
of A(X) given by P 7→ m(P ) = I(P )/I(X) is a bijection.

Remark 4.7. By Nullstellensatz An with the Zariski topology is Noetherian.
Hence so is every closed subset of An.

Definition 4.8. For f ∈ A = k[y1, ..., yn] and P = (a1, ..., an) ∈ Z(f) we define
the linear part of f at P to be

`P (f) :=

n∑
i=1

∂f

∂xi
(P )(xi − ai) ∈ A.
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For an algebraic set X ⊂ An write I(X) = (f1, ..., fn) and define the (affine) tangent
space to X at P to be the algebraic set

(4.1) TPX := Z(`P (f1), ..., `P (fn)) ⊂ An.
Note (check!) that the affine tangent space depends only on X (and not on the
choice of the equations fi) and is the translation of a linear subspace of An by the
vector P . On the other hand let

m = m(P ) =
I(P )

I(X)
=

(x1 − a1, ..., xn − an)

(f1, ..., fn)

and define the (abstract) tangent space to X at P to be the k-linear space dual to
m/m2, i.e.,

(4.2) T ′PX =
(
m/m2

)◦
:= Homk(m/m2, k)

Exercise 4.9. We have a natural k-linear isomorophism

m/m2 ' k(x1 − a1) + ...+ k(xn − an)

k`P (f1) + ...+ k`P (fn)

and an induced bijection

T ′PX → TPX, ϕ 7→ (ϕ(x1 − a1) + a1, ..., ϕ(xn − an) + an), ϕ : m/m2 → k.

We will identify, whenever useful, the spaces TPX and T ′PX above via the above
bijection and we refer to either of them as the tangent space to X at P .

Definition 4.10. A linear algebraic set in An is a set of the form Z(h1, ..., hm)
where hi are polynomials of degree 1. A linear algebraic set of dimension 1 is called
a line; one of dimension 2 is called a plane. We say 3 points are collinear if they lie
on a line.

Exercise 4.11. Prove that for every two distinct points P,Q ∈ An there is exactly
one line passing through them (usually denoted by LPQ). Prove that two distinct
lines in A2 either meet in one point or they do not meet (in which case we say they
are parallel). Prove that through any 3 non-collinear points in An there is exactly
one plane containing them. Prove that if two planes in An meet and don’t coincide
then they meet in a line.

Exercise 4.12. (Desargues’ Theorem) Let A1, A2, A3, A
′
1, A

′
2, A

′
3 be distinct points

in the affine plane A2. Also for all i 6= j assume AiAj and A′iA
′
j are not parallel

and let Pij be their intersection. Assume the 3 lines LA1A′1
, LA2A′2

, LA3A′3
have a

point in common. Then prove that the points P12, P13, P23 are collinear.

Hint: Consider the projection A3 → A2, (x, y, z) 7→ (x, y) and show that lines
project onto lines or points. Next show that configuration of points Ai, A

′
i ∈ A2 can

be realized as the projection of a similar configuration of points Bi, B
′
i ∈ A3 not

contained in a plane. (Identifying A2 with the set of points in space with zero third
coordinate we take Bi = Ai, B

′
i = A′i for i = 1, 2, we let B3 have a nonzero third

coordinate, and then we choose B′3 such that the lines LB1B′1
, LB2B′2

, LB3B′3
have

a point in common.) Then prove “Desargues’ Theorem in Space” (by noting that
if Qij is the intersection of LBiBj

with LB′iB′j then Qij is in the plane containing

B1, B2, B3 and also in the plane containing B′1, B
′
2, B

′
3; hence Qij is in the intersec-

tion of these planes which is a line). Finally deduce the original plane Desargues
by projection.
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5. Algebraic sets in Pn

Definition 5.1. The projective n-space is the set

Pn :=
kn+1 \ {0}
∼

where v ∼ w if ∃λ ∈ k× such that w = λv. The class in Pn of a point (a1, ..., an) ∈
kn+1 is denoted by

(a1 : ... : an) ∈ Pn.

Exercise 5.2. Prove that Pn is in a natural bijection with the set of all 1-dimensional
vector subspaces of kn+1.

Consider the ring of polynomials

S = k[x0, ..., xn] =
⊕

Sd

where Sd is the k-vector space of homogeneous polynomials of degree d (i.e. poly-
nomials all of whose monomials have degree d). For F ∈ Sd we have

f(λa1, ..., λan) = λdf(a1, ..., an)

hence if two points of kn+1 \{0} are equivalent then F vanishes at one of the points
if and only F vanishes at the other point. For P = (a1 : ... : an) we write F (P ) = 0
if and only if F (a1, .., an) = 0. Set

Sh :=
⋃
d≥0

Sd

the set of homogeneous polynomials. For every subset X ⊂ Pn let I(X) ⊂ S be
the ideal generated by all polynomials F ∈ Sh such that F (P ) = 0 for all P ∈ X;
it is a radical homogeneous ideal. (An ideal in S is called homogeneous if it is
generated by homogeneous polynomials.) For every subset T ⊂ Sh let Z(T ) ⊂ Pn
be the set of all P ∈ Pn such that F (P ) = 0 for all F ∈ T . We refer to x0, ..., xn as
(projective) coordinates of Pn; note that xi do not define functions Pn → k.

Definition 5.3. A subset of Pn is called algebraic if it is of the form Z(T ) for some
T ⊂ Sh.

Exercise 5.4. The algebraic sets in Pn are the closed sets of a topology on Pn
(called the Zariski topology).

For X ⊂ Pn closed set S(X) = A/I(X) (called the homogeneous coordinate
ring of X). The ideal (x0, ..., xn) ⊂ S is called the irrelevant ideal. The Hilbert
Nullstellensatz implies:

Corollary 5.5. The maps X 7→ I(X) and a 7→ Z(a) between the set of all closed
sets of Pn and the set of all non-irrelevant radical homogeneous ideals of S are
inverse to each other. We have X irreducible if and only if I(X) is a prime ideal.

Definition 5.6. A linear subspace in Pn is a closed set of the form Z(L1, ..., Ls)
where Li ∈ S1 are linearly independent linear forms. If s = 1 the linear subspace
is called a hyperplane. If s = n the linear subspace is called a line. If s = n− 1 the
linear subspace is called a plane. A hypersurface in Pn of degree d is a closed set
of the form H = Z(F ) with F ∈ Sd, F without multiple factors. A hypersurface
of degree 2 is called a quadric. (In case n = 2 quadrics are called conics.) A
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hypersurface of degree 3 is called a cubic. Similarly one defines quartics, quintics,
sextics, etc. One says 3 points in Pn are collinear if they lie on a line.

Consider the following maps (called homogenizing and dehomogenizing maps)

A→ Sh \ x0S
h, f(y1, ..., yn) 7→ fh := x

deg(f)
0 f(

x1

x0
, ...

xn
x0

),

Sh \ x0S
h → A, F (x0, ..., xn) 7→ Fh

−1

:= F (1, y1, ..., yn).

Exercise 5.7. The above maps are inverse to each other:

(fh)h
−1

= f, (Fh
−1

)h = F.

Exercise 5.8. The map ϕ0 : Pn \ Z(x0)→ An given by

ϕ0(a0 : ... : an) = (a1/a0, ..., an/a0)

is a homeomorphism. Hint: ϕ−1(Z(T )) = Z(Th) \ Z(x0) and ϕ(Z(T) \ Z(x0)) =

Z(Th
−1

). More generally a similar result holds for the maps

ϕi : Pn \ Z(xi)→ An

given by

ϕi(a0 : ... : an) = (a0/ai, ..., âi/ai, ...an/ai).

We usually identify ϕ−1(An) with Pn \ Z(xi).

Exercise 5.9. If f ∈ A = k[y1, ..., yn] is an irreducible polynomial then the Zariski
closure of Z(f) in Pn is Z(fh). Hint: Z(fh) is irreducible (because f irreducible
implies fh irreducible) and it contains Z(h) as an open set; but every open set in
an irreducible topological space is dense.

We identify in what follows A = k[y1, ..., yn] with the subring k[x1/x0, ..., xn/x0]
of the fraction field of S via the map yi 7→ xi/x0; under this identification if f ∈ A
has degree d then

f = fh/xd0.

We identify An with a subset of Pn via ϕ0. For every ideal I ⊂ S we define

I(x0) = {F/xd0 | d ≥ 0, F ∈ Sd}.

In particular S(x0) = k[x1/x0, ..., xn/x0].

Proposition 5.10. For every closed subset X ⊂ Pn we have

I(X ∩ An) = I(X)(x0).

Proof. The inclusion ⊃ is clear. For ⊂ let f ∈ I(X ∩ An) have degree d. Then
f vanishes on X. Hence F := fh vanishes on X ∩ An. Hence x0F vanishes on X.
Now

f = F/xd0 = x0F/x
d+1
0 ∈ I(X)(x0).

�

Exercise 5.11. (Desargues Theorem in P2). Let A1, A2, A3, A
′
1, A

′
2, A

′
3 be distinct

points in P2. For all i 6= j assume AiAj and A′iA
′
j intersect in one point Pij .

Assume the 3 lines LA1A′1
, LA2A′2

, LA3A′3
have a point in common. Prove that the

points P12, P13, P23 are collinear.
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Exercise 5.12. (Conic through 5 points). Prove that if 5 points are given in P2

such that no 4 of them are collinear then there exists a unique conic passing through
these given 5 points. If no 3 of the 5 points are collinear then the unique conic is
irreducible.

Hint: Consider the vector space of all homogeneous polynomials of degree 2
that vanish on a set S of points. Next note that if one adds a point to S the
dimension of this space either stays the same or drops by one. Since the space of
all polynomials of degree 2 has dimension 6 it is enough to show that for r ≤ 5 the
space of polynomials that vanish at r− 1 of the r points is strictly bigger than the
space of polynomials that vanish at all r points. For r = 5, for instance, this is done
as follows. Let P1, ..., P5 be our points and let Lij be the line that passes through Pi
and Pj . If neither L12 nor L34 passes through P5 the quadric L12∪L34 will not pass
through P5. Assume now that one of the lines L12 or L34, for instance L12 passes
through P5. Then one checks that none of the lines L13 or L24 passes through P5.
(Indeed if L13 passes through P5 then L12 and L13 have 2 points P1, P5 in common
so they coincide, so P1, P2, P3, P5 lie on a line, a contradiction; on the other hand
if L24 passes through P5 then L12 and L24 have 2 points P2, P5 in common, hence
they coincide, hence P1, P2, P4, P5 line on a line, a contradiction.) So the quadric
L13 ∪ L24 does not pass through P5. The irreducibility part is easy.

Exercise 5.13. (Three Cubics Theorem) Prove that if two distinct cubics in P2

meet in 9 distinct points such that no 4 of the 9 points lie on a line and no 7 of the
9 points lie on a conic then every cubic that passes through 8 of the 9 points must
pass through the 9th point as well.

Hint: First show that if r ≤ 8 and r points are given then the vector space of
homogeneous polynomials of degree 3 vanishing at these points is strictly smaller
than the vector space of homogeneous polynomials of degree 3 vanishing at r − 1
of the r points. (In order to find, for instance, a cubic passing through P1, ..., P7

but not through P8 one considers the cubics Ci = Q1234i ∪Ljk, {i, j, k} = {5, 6, 7},
where Q1234i is the unique conic passing through P1, P2, P3, P4, Pi and Ljk is the
unique line through Pj and Pk. Assume C5, C6, C7 all pass through P8 and derive
a contradiction as follows. Note that P8 cannot lie on 2 of the 3 lines Ljk because
this would force us to have 4 collinear points. So we may assume P8 does not lie
on either of the lines L57, L67. Hence P8 lies on both Q12345 and Q12346. So these
conics have 5 points in common so they coincide. So this conic contains 7 points,
a contradiction.) Once this is proved let P1, ..., P9 be the points of intersection
of the cubics with equations F and G. We know that the space of homogeneous
polynomials of degree 3 vanishing at P1, ..., P8 has dimension 2 and contains F and
G. So every polynomial in this space is a linear combination of F and G, hence
will vanish at P9.

Exercise 5.14. (Pascal’s Theorem) Let P1, P2, P3, Q1, Q2, Q3 be distinct points on
a conic C in P2. Let A1 be the intersection of the lines LP2Q3

with LP3Q2
, and

define A2, A3 similarly. Prove that A1, A2, A3 are collinear.

Hint: The cubics

LQ1P2
∪ LQ2P3

∪ LQ3P1
and LP1Q2

∪ LP2Q3
∪ LP3Q1

pass through all of the following 9 points:

P1, P2, P3, Q1, Q2, Q3, A1, A2, A3.
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On the other hand the cubic C ∪ LA2A3
passes through all these points except

possibly A1. Then by the Three Cubics Theorem C ∪ LA2A3 passes through A1.
Hence LA2A3 passes through A1.

Exercise 5.15. (Pappus’ Theorem) Let L and M be two distinct lines in P2, let
P1, P2, P3 be distinct points on L and let Q1, Q2, Q3 be distinct points on M . Let
A1 be the intersection of the lines LP2Q3

and LP3Q2
and define A2, A3 similarly.

Prove that A1, A2, A3 are collinear.

Hint: Use Pascal’s Theorem.

6. Algebraic sets in products

Consider the ring

R = k[y1, ..., ym, x0, ..., xn] =
⊕
d≥0

Rd

where Rd are the A-modules generated by all monomials in y1, ..., ym of degree d
and set Rh = ∪Rd. For every subset T ⊂ Rh let Z(T ) ⊂ Am × Pn be the set of all
(P,Q) ∈ Am × Pn such that F (P,Q) = 0 for all F ∈ T .

Definition 6.1. A subset of Am × Pn is called algebraic if it is of the form Z(T )
for some T ⊂ Rh.

Exercise 6.2. The algebraic sets in Pn are the closed sets of a topology on Am×Pn
(called the Zariski topology). The maps id × ϕi : Am × (Pn \ Z(xi)) → Am+n are
homeomeorphisms.

Remark 6.3. (For the reader familiar with topology) The above topology on Am×
Pn is not the product topology!

Exercise 6.4. Let A2 have coordinates y1 and y2 and consider Y = Z(y1y2− 1) ⊂
A2 and the first projection f : A2 → A1. Prove that f(Y ) = A1 \ {0}. In particular
f(Y ) is not closed.

By contrast we have:

Theorem 6.5. (Elimination Theorem) Let Y ⊂ Am × Pn be a closed set and let
f : Am × Pn → An be the first projection. Then f(Y ) is closed.

Proof. Let I = I(X) ⊂ S := k[y, x], A = k[y], Ui = Pn \ Z(xi). Then, as in the
case m = 0,

I(Y ∩ (Am × Ui)) = I(Y )(xi) ⊂ R(xi).

Let P ∈ Am \ f(Y ). We will show that there is an open set V ⊂ Am containing
P and disjoint from f(Y ). Let m = mP ⊂ A be the maximal ideal corresponding
to P , so m = I(P ). Hence no maximal ideal of R(xi) containing I(xi) contains m
(because otherwise there would be a point in Y lying over P ). Hence

mR(xi) + I(xi) = R(xi)

One easily gets that there exists Ni such that for all i we have

xNi
i =

∑
j

mijFij +Gi

with mij ∈ m, Fij ∈ RNi , Gi ∈ INi . Taking N =
∑
Ni we get

RN ⊂ mRN + IN ⊂ RN
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hence mRN + IN = RN hence

m(RN/IN ) = RN/IN

hence

m(RN/IN )m = (RN/IN )m

hence by Nakayama

(RN/IN )m = 0

so there exists g ∈ A \ m such that gRN ⊂ IN so xNi g ∈ IN so g ∈ I(xi) so every
maximal ideal of R(xi) containing I(xi) must contain g so every point of Y ∩(Am×Ui)
lies over a point in Z(g) hence f(Y ) ⊂ Z(g). Also since g ∈ A\m we have P 6∈ Z(g).
Hence

P ∈ An \ Z(g) ⊂ An \ f(Y ).

�

Example 6.6. A “familiar” example of the above theorem is the following. Con-

sider An2

with coordinates (yij)i,j∈{1,...,n} and let Pn−1 have coordinates x1, ..., xn.
Let

Y := Z(
∑
j

y1jxj , ...,
∑
j

ynjxj) ⊂ An
2

× Pn−1

and let

f : An
2

× Pn−1 → An
2

be the first projection. Then

f(Y ) = Z(det(yij)).

Consider now the ring

B = k[u0, ..., um, v0, ..., vn] =
⊕
d,e≥0

Bd,e

where Bd,e is the k-linear span of all monomials that degree d in the u’s and degree
e in the v’s. Let Bh = ∪Bd,e. For every subset T ⊂ Bh let Z(T ) ⊂ Pm×Pn be the
set of all (P,Q) ∈ Pm × Pn such that F (P,Q) = 0 for all F ∈ T .

Definition 6.7. A subset of Pm × Pn is called algebraic if it is of the form Z(T )
for some T ⊂ Bh.

Exercise 6.8. The algebraic sets in Pm × Pn are the closed sets of a topology on
Pm × Pn (called the Zariski topology). The maps

ϕj × ϕi : (Pm \ Z(xj))× (Pn \ Z(xi))→ Am+n

are homeomeorphisms. (Again, the above topology on Pm × Pn is not the product
topology!)

Exercise 6.9. If X ⊂ Pm and Y ⊂ Pn are closed then X ×Y is closed in Pm×Pn.
Same if one or boith projective spaces are replaced by affine spaces.

Exercise 6.10. Let X ⊂ Pn be closed. Then the ‘diagonal’

{(P,Q) ∈ X ×X | P = Q}

is closed in X ×X. Same for the projective space replaced by an affine space.
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Exercise 6.11. View PN = P(m+1)(n+1)−1 with projective coordinates (wij) where
i = 0, ...,m, j = 0, ..., n. Consider the Segre map

s : Pm × Pn → PN ,

((a0 : ... : am), (b0 : ... : bn)) 7→ (..., aibj , ...)

Prove that this map is injective, its image is closed, and the map is a homeomor-
phism onto its image. Hint: the image is Z({wijwkl − wilwkj}).

Exercise 6.12. Let n = m = 1 in the previous exercise. Then the image of the
Segre map is a quadric in P3 and for all P ∈ P1 the images of {P}×P1 and P1×{P}
are lines in P3.

Exercise 6.13. Consider the Veronese map

vm,d : Pm → PN , (a0 : ... : am) 7→ (... : ai00 ...a
in
n : ...)

where i0, ..., in range through the set of all tuples of non-negative numbers such
that i0 + ...+ in = d. Prove that this map is injective, its image is closed, and the
map is a homeomorphism onto its image.

Exercise 6.14. The image of v1,2 is a quadric in P2.

Exercise 6.15. Identify Pn with set of all 1-dimensional linear subspaces L ⊂
An+1. Then the set

X := {(P,L) ∈ An+1 × Pn | P ∈ L}
is closed in An+1. Show that the fibers of the projection X → Pn are homeomorphic
to A1. Show that the fibers of the projection X → An+1 at points 6= 0 consist of
one point. Show that the fiber of the projection X → An+1 at 0 is homeomorphic
to Pn. X is called the blow up of An+1 at 0. Hint: X = Z({xiyj − xjyi}).

Exercise 6.16. Let P̌n be the set of all hyperplanes Z(
∑n
i=0 aixi) in Pn. Identify

P̌n with Pn by

Z(

n∑
i=0

aixi) 7→ (a0 : ... : an).

Then the ‘incidence’ set

X = {(P,H) ∈ Pn × P̌n | P ∈ H}
is closed in Pn × P̌n. Show that the fibers of both projections

X → Pn, X → P̌n

are homeomorphic to Pn−1. Hint: X = Z(
∑n
i=0 uixi) where ui are the projective

coordinates in P̌n.

7. Varieties

Definition 7.1. Let X be a topological space and k a field. For every open set
U ⊂ X denote by Fun(U, k) the ring of all functions U → k. A sheaf of (k-
valued) functions on X is a rule O that attaches to each open set U ⊂ X a subring
k ⊂ O(U) ⊂ Fun(U, k) with the following properties

1) for every open sets V ⊂ U if f ∈ O(U) then f|V ∈ O(V );
2) for every open set U and every open cover U = ∪iUi if f ∈ Fun(U, k) has the

property that f|Ui
∈ O(Ui) for all i then f ∈ O(U).
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Here if f : U → k is a function and V ⊂ U we denote by f|V : V → k the
restriction of f to V .

Later we will need a more general notion of sheaf.

Definition 7.2. For a sheaf of functions O on X one defines the stalk of O (or the
ring of germs) at a point P ∈ X to be the ring

OP := {(U, f) | P ∈ U, f ∈ O(U)}/ ∼
where (U, f) ∼ (V, g) if and only if there exists an open set P ∈ W ⊂ U ∩ V such
that f|W = g|W . If in addition X is irreducible one defines the ring

K(X) = {(U, f) | U 6= ∅, f ∈ O(U)}/ ∼
where (U, f) ∼ (V, g) if and only if there exists a non-empty open set W ⊂ U ∩ V
such that f|W = g|W .

Definition 7.3. One defines a classical ringed space over a field k to be a pair
(X,OX) consisting of a topological space X and sheaf of functions OX on it. A
morphism of classical ringed spaces (X,OX) → (Y,OY ) is a continuous map f :
X → Y such that for every open set V ⊂ Y and every g ∈ O(V ) the composition
f∗(g) := g ◦ f : f−1(V ) → V → k belongs to O(f−1(V )). We obtain a category
called the category of classical ringed spaces.

Remark 7.4. The terminology of “classical ringed space” is not standard! There
is a standard notion of “ringed space,” not to be discussed here, and our “classical
ringed spaces” are examples of “ringed spaces.” Topological manifolds, smooth
manifolds, complex analytic manifolds, and the algebraic varieties of “classical”
algebraic geometry can all be introduced as special cases of “classical ringed spaces.”
On the other hand Grothendieck’s schemes (which are the main objects of “non-
classical” algebraic geometry) do not fit into the paradigm of “classical ringed
spaces” but rather require the more general paradigm of “ringed spaces.”

Remark 7.5. For a morphism f : X → Y of classical ringed spaces we have ring
homomorphisms

f∗ : O(V )→ O(f−1(V )), f∗ : Of(P ) → OP , P ∈ X.
If X,Y are irreducible and f(X) is dense in Y we have an induced morphism

f∗ : K(Y )→ K(X).

An open set U of a classical ringed space (X,OX) has a naturally induced struc-
ture of classical ringed space (U,OU ): one sets OU (V ) = OX(V ) for every open set
V ⊂ U .

Definition 7.6. Let X be a closed set in An (or Pn or Am×Pn or Pm×Pn). Define
a sheaf of functions on X as follows. Let V ⊂ X be open. A function f : V → k is
regular at P if there exists an open set P ∈ W ⊂ V and g, h ∈ A (or Sd or Rd or
Bd,e) such that g(Q) 6= 0 for all Q ∈ W and such that f(Q) = g(Q)/h(Q) for all
Q ∈ W . Let OY (V ) be the ring of all functions f : V → k that are regular at all
points P ∈ V . Clearly this defines a sheaf of functions, OX on X hence a structure
of classical ringed space on X, and hence on every open set of X.

Definition 7.7. A variety (over k) is a classical ringed space X such that every
point P ∈ X has an open neighborhood U which is isomorphic as a classical ringed
space to a closed set in An for some n.
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Remark 7.8. Note that, in the above definition, one requires that that every point
P ∈ X has an open neighborhood U which is isomorphic to a closed (rather then
open!) set in An. This is in deep contrast with the definitions of topological,
smooth or analytic manifolds based on classical ringed spaces! We will not further
comment of this discrepancy here.

Exercise 7.9. The maps ϕ : Pn \Z(xi)→ An are isomorophism of classical ringed
spaces. So every closed set in Pn is a variety. Same for Am × Pn or Pm × Pn.

Exercise 7.10.
1) Let X = Z(f1, ..., fm) ⊂ An and f ∈ A = k[y1, ..., yn]. Then

Xf := X \ Z(f)

is isomorphic as a classical ringed space to

Z(f1, ..., fn, yn+1f − 1) ⊂ An+1.

2) Xf above is a variety.
3) Every open set of a variety is a variety (which we call an open subvariety).
4) Every closed set of a variety is a variety (which we call an closed subvariety)

Definition 7.11. The category of varieties has as its objects the varieties and as
its morphisms the morphisms of classical ringed spaces. A morphism of varieties is
also called a regular map. A variety is called affine if it is isomorphic to a closed
set in An. A variety is called projective if it is isomorphic to a closed set in Pn. A
variety is called quasi-affine (resp. quasi-projective) if it is isomorphic to an open
subset of an affine (or projective) variety.

So every affine variety is quasi-projective, every quasi-affine variety is quasi-
projective and every projective variety is quasi-projective. Every quasi-affine variety
is affine. Clearly every quasi-projective variety is a Noetherian topological space.

Exercise 7.12.
1) Let f1, ..., fm ∈ k[x1, ..., xn] be arbitrary polynomials. Then the map

An → Am,

(a1, ..., an) 7→ (f1(a1, ..., an), ..., fm(a1, ..., an))

is regular.
2) Let F0, ..., Fm ∈ k[x0, ..., xn] be arbitrary homogeneous polynomials of the

same degree. Then the map

Pn \ Z(F0, ..., Fm)→ Pm,

(a0 : ... : an) 7→ (F0(a0 : ... : an) : ... : Fm(a0 : ... : an))

is regular.

Remark 7.13.
1) Every regular function f ∈ O(X) induces (and is induced by) a morphism

(still denoted by) f : X → A1.
2) The stalks OP = OX,P of a variety are local rings with maximal ideals

mP = {f ∈ OP | f(P ) = 0}.

3) One has OP /mP ' k.
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4) If X is irreducible then K(X) is a field (called the field of rational functions)
and

dim(X) = dim(OP ) = tr.deg(K(X)/k), ∀P ∈ X.

Definition 7.14. For a variety X and P ∈ X the tangent space to X at P is the
k-linear space

TPX = (mP /m
2
P )◦ := Homk(mP /m

2
P , k).

If X is a closed set in An this definition agrees with the definition of the (abstract)
tangent space given previously; this follows from assertion 2 in Theorem 7.19 below.

Note that if f : X → Y is a morphism of varieties then for all P ∈ X we have
an induced k-linear map

TP f : TPX → Tf(P )Y

called the tangent map at P .

Definition 7.15. A point P of a variety X is called non-singular if OP is regular,
i.e.,

dimk(mP /m
2
P ) = dim(OP ).

Equivalently

dimk TPX = dim(X).

A variety is non-singular if all points are non-singular.

Remark 7.16. A curve is non-singular if and only if all local rings OP are DVR’s.

Exercise 7.17. A plane curve Z(f) ⊂ A2 (where f = f(x, y) is irreducible) is
non-singular if and only if the ideal(

f,
∂f

∂x
,
∂f

∂y

)
is the whole ring k[x, y].

Remark 7.18.
1) The Segre maps are morphisms of varieties that are isomorphisms onto their

images and so are the Veronese maps.
2) The product of two varieties has a natural structure of variety.
3) Projection maps from products of varieties to their factors are morphisms of

varieties.
4) Products of affine varieties are affine. Products of projective varieties are pro-

jective (use Segre maps). Products of quasi-projective varieties are quasi-projective.
5) The complement of a hypersurface in projective space is affine (use the

Veronese map).

Theorem 7.19. Let X ⊂ An be a closed subvariety. Then the following hold:
1) OP = A(X)m(P ) for m(P ) = I(P )/I(X).

2) mP = m(P )Am(P ) hence mP /m
2
P = m(P )/m(P )2.

3) O(X) = A(X).
4) K(X) ' Frac(A(X)).

Proof. The natural map A(X)→ O(X) is clearly injective; we view this map as
an inclusion. By the definition of regular functions the maps A(X)m(P ) → OP are
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correctly defined and bijective. We proved assertion 1. Also, in K(X), we have the
following ionclusions of subsets of K(X):

A(X) ⊂ O(X) ⊂
⋂
P∈X

OP =
⋂

m maximal

A(X)m = A(X).

This proves assertion 3. The rest of the assertions are trivial. �

Assertions 1-3 also hold without the assumption that X is irreducible.

Exercise 7.20. With the notation in Exercise 7.10 we have O(Xf ) = O(X)f . Hint:
use the isomorphism A[y]/(fy − 1) ' Af valid for every ring A and every f ∈ A.

Theorem 7.21. The functor X 7→ O(X) is an equivalence between the category of
affine varieties and the category of reduced finitely generated k-algebras.

Proof. One needs a functor in the opposite direction such that the composition
of the two functors in each direction are isomorphic to the identity. The functor in
the opposite direction is defined by taking any reduced finitely generated k-algebra
A, choosing an arbitrary surjective homomorphism k[y1, ..., yn] → A, letting a be
the kernel of this homomorphism and attaching to A the affine variety Z(a). For
an morphism u : A→ B one gets an induced homomorphism

u′ : k[y1, ..., yn]/a ' A u→ B ' k[z1, ..., zm]/b

which can be lifted (non-uniquely) to a homomorphism

u′′ : k[y1, ..., yn]→ k[z1, ..., zm], yi 7→ fi(z1, ..., zm).

Then the map

Am → An, P = (a1, ..., am) 7→ (f1(P ), ..., fn(P ))

induces a morphism of varieties Z(a)→ Z(b) which is independent of the lifting u′′

of u′. One checks that this functor has the desired property. �

Exercise 7.22. Let f : X → Y be a morphism of closed subvarieties of affine some
affine spaces.

1) If P ∈ Y then O(f−1(P )) = A(X)/
√

m(P )A(X).
2) If Z ⊂ Y is the Zariski closure of f(X) then O(Z) = A(Y )/a, where a is the

kernel of the homomorphism A(Y )→ A(X).

Example 7.23. The quasi-affine variety A2 \ {0} is not affine. Indeed assume it
is and we will get a contradiction. Consider the inclusion A2 \ {0} → A2 and the
induced homomorphism

k[x, y] = A(A2) = O(A2) ⊂ O(A2 \ {0}) ⊂ O(A2 \ Z(x)) ∩ O(A2 \ Z(y)) =

= k[x, y]x ∩ k[x, y]y = k[x, y]

hence

O(A2) ⊂ O(A2 \ {0})

is an isomorphism hence, by the equivalence of categories, A2 \ {0} → A2 is an
isomorophism; but the latter is not surjective, contradiction.
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8. Morphisms

Definition 8.1. A morphism of irreducible varieties is called dominant if it has
dense image.

Theorem 8.2. (Chevalley’s Theorem) For every dominant morphism of irreducible
varieties f : X → Y the image f(X) contains a non-empty open set of Y .

Proof. We may assume X and Y are affine (check!). Set A = O(Y ) and B =
O(X). So A and B are integral domains. From the fact that f(X) is dense in
Y it follows that the induced homomorphism A → B is injective (check!). We
view the latter as an inclusion. Since B is a finitely generated A-algebra there
exist a surjective homomorphism A[x1, ..., xn] → B, xi 7→ bi. We may assume
there exists m such that b1, ..., bm are algebraically independent (i.e. the induced
homomorphism A[x1, ..., xm]→ B is an isomorphism which we view as an equality)
and that bm+1, ..., bn are algebraic over A[x1, ..., xm] (check!). Then for each i =
m+ 1, ..., n the element bi is a root of a polynomial

Φi(t) = Fi0(x1, ..., xm)tni + Fi1(x1, ..., xm)tni−1 + ...+ Fini
(x1, ..., xm)

with Fij ∈ A[x1, ..., xm]. Let

F =

m∏
i=1

Fi0.

Then the extension

A[x1, ..., xm]F ⊂ BF
is finite because each bi with i = m+1, ..., n is integral over A[x1, ..., xm]F (check!).
By Lemma 2.12 every maximal ideal of A[x1, ..., xm]F has a maximal ideal in BF
lying above. On the other hand if s is a non-zero coefficient of F then every maximal
ideal m in A not containing s has the maximal ideal m[x1, ..., xm]F of A[x1, ..., xm]F
lying above it. This shows that the open set Y \ Z(s) is contained in f(X). �

Definition 8.3. A morphism of varieties f : X → Y is called finite if for every
point P ∈ Y there is an affine open set P ∈ V ⊂ Y such that f−1(V ) is affine and
the algebra

O(V )→ O(f−1(V ))

is finite.

Remark 8.4. Let us say that a morphism of varieties f : X → Y is finite in the
strong sense if for every affine open set V ⊂ Y we have that f−1(V ) is affine and
the algebra

O(V )→ O(f−1(V ))

is finite. Clearly a composition of finite morphisms in the strong sense is finite in
the strong sense. It is actually a theorem that every finite morphism is finite in the
strong sense. We omit the proof of this theorem. Note that, by the theorem just
referred to, a composition of finite morphisms is finite. We will not need this in
what follows; the compositions of finite morphisms to be considered in what follows
can be checked directly to be finite.

Definition 8.5. A morphism is quasi-finite if all fibers are finite.

By Lemma 2.12 we get
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Corollary 8.6. If f : X → Y is a finite morphism then it is quasi-finite and has
a closed image. In particular a finite dominant morphism is surjective.

Definition 8.7. The degree deg(f) of a finite dominant morphism of irreducible
varieties f : X → Y is the degree of the field extension [K(X) : K(Y )] where K(Y )
is viewed as a subfield of K(X) via the embedding f∗ : K(Y )→ K(X).

Definition 8.8. Let Z = Z(L0, ..., Ls) be a linear subspace of Pn where L0, ..., Ls
are linear forms. The morphism

π : Pn \ Z → Ps, π(P ) = (L0(P ) : ... : Ls(P ))

is called the projection from Z.

Remark 8.9. Every projection as above is a composition of projection from points.
For the projection from a point the inverse image of the complement of a hyperplane
is the complement of a hyperplane.

Theorem 8.10. Assume the situation in the above Definition and let X ⊂ Pn be
a closed subvariety such that X ∩ Z = ∅. Then the induced morphism π : X → Ps
(called again the projection from Z) is finite.

Proof. It is enough to check that if Z is a point and V is the complement of a
hyperplane then π−1(V ) (which is X minus a hyperplane) has the property that

O(V )→ O(π−1(V ))

is finite. We may assume Z = Z(x1, ..., xn) hence

π(a0 : a1 : ... : an) = (a1 : ... : an).

Let x1, ..., xn be the projective coordinates on Pn−1 and let Vi = Pn−1 \ Z(xi) for
i = 1, ..., n. Then π−1(Vi) = X \ Z(xi) which is affine. We are left to prove that
the algebra map

A(Vi) = k[x1, ..., xn](xi) → A(X \ Z(xi)) = k[x0, ..., xn](xi)/I(X)(xi)

is finite. But since (1 : 0... : 0) 6∈ X there exists a homogeneous F ∈ I(X) of some
degree d such that xd0 appears in F . Hence I(X)(xi) contains a monic polynomial
in x0/xi with coefficients in k[x1, ..., xn](xi) and the finiteness of the algebra map
above follows. �

Corollary 8.11. (Projective Noether Normalization) For every projective irre-
ducible variety X of dimension d there is a finite surjective morphism X → Pd.

Proof. If X ⊂ Pn is not the whole of Pn let Y ⊂ Pn−1 be the image of X under
the projection from a point in Pn \ X. If Y is not the whole of Pn−1 consider a
further projection, etc. This process will stop. �

Exercise 8.12. Let Z = {P} where O = (1 : 0 : ... : 0) ∈ Pn and identify Pn−1 with
Z(x0) ⊂ Pn. Also take L0 = x1, ..., Ln−1 = xn. Show that under this identification
the projection π : Pn \ {O} → Pn−1 = Z(x0) can be described as follows: for all
Q ∈ Pn \ {O} the point π(Q) ∈ Z(x0) is the unique point of intersection of Z(x0)
with the line LOQ passing through O and Q. Hint: the points O, Q and π(Q) lie
on a line because the 3× (n+ 1) matrix whose rows are their coordinates has rank
2.
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Exercise 8.13. Let v1,3 : P1 → P3 be the Veronese map and X = v1,3(P1).
1) Find the equation of π(X) in P2 where π : X → P2 is the projection from the

point (0 : 1 : 0 : 0).
2) Find the equation of the Zariski closure of π(X) in P2 where π : X \{O} → P2

is the projection from the point (1 : 0 : 0 : 0) ∈ X.

Definition 8.14. A variety X is separated if its diagonal {(P, P ) ∈ X×X | P ∈ X}
is closed in X ×X.

Exercise 8.15. Every quasi-projective variety is separated. Hint: use the fact that
the diagonal of Pn is closed.

Definition 8.16. A variety X is complete if for every variety Y and every closed
set Z ⊂ Y ×X if π : Y ×X → Y denotes the first projection then π(Z) is closed
in Y .

Exercise 8.17. Every projective variety is complete. Hint: use the Elimination
Theorem.

Exercise 8.18. Every closed subvariety of a complete variety is complete.

Exercise 8.19. If f : X → Y is a morphism of varieties with X complete then for
all closed subsets Z of X the set f(Z) is closed in Y . Hint: f is the composition
of the morphism f × id : X → Y ×X with the second projection. Then note that
f × id induces an isomorphism between its source and its image.

We have the following analogue of Liouville’s Theorem in complex analysis saying
that any holomorphic map on the Riemann sphere is a constant.

Theorem 8.20. (Analogue of Liouville’s Theorem) If X is complete and irreducible
then O(X) = k.

Proof. Let f ∈ O(X) and view it as a morphism f : X → A1. Consider the
composition

g : X
f−→ A1 ⊂ P1.

Since X is complete and irreducible g(X) is closed and irreducible in P1. So g(X)
is either a point or the whole of P1. The second alternative cannot occur because
g(X) ⊂ A1. �

Corollary 8.21. If X is both complete and affine and if X is connected then X is
a point.

Proof. By Liouville O(X) = k. If P is a point O(P ) = k. Since X and P are
affine with isomorphic rings of regular functions we get X ' P . �

Exercise 8.22. Let X be a closed subvariety of Pn of dimension ≥ 1 and let H
be a hypersurface in Pn. Then X ∩H 6= ∅. Hint: If the intersection is empty then
the connected components of the intersection are affine and projective so they are
points, a contradiction.

Definition 8.23. Let X and Y be irreducible varieties. A rational map is an
element of the set

Rat(X,Y ) := {(U, f) | ∅ 6= U ⊂ X open, f : U → Y a morphism}/ ∼
where (U, f) ∼ (V, g) if there exists an open ∅ 6= W ⊂ U ∩ V such that f|W = g|W .
The class of a pair (U, f) is denoted by f : X · · → Y . (In particular K(X) =
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Rat(X,A1) = Rat(X,P1).) A morphism f : X → Y will be identified with the
rational map defined by (X, f). (If (X, g) ∼ (X, g) then f = g; check!) A rational
map is dominant if it represented by some (U, f) with f dominant. One can define
naturally (check!) the composition of two dominant rational maps which is again
a dominant rational map. A rational map f : X · · → Y is called birational if
it dominant and there exists a dominant rational map g : Y · · → X such that
f ◦ g = id, g ◦ f = id.

Exercise 8.24. If X is the blow up of An+1 at 0 (cf. Exercise 6.15) then the
morphism X → An+1 in loc.cit. is a birational morphism.

Exercise 8.25. The category C whose objects are irreducible varieties and whose
morphisms are dominant rational maps is equivalent to the category of fields that
are finitely generated over k. (An isomorphism in C is called a birational isomor-
phism.) In particular X and Y are birationally isomorphic if and only if the fields
K(X) and K(Y ) are k-isomorphic.

Exercise 8.26. Every irreducible variety is birationally isomorphic to a hypersur-
face in some projective space. Hint: Every finitely generated field extension of k is
a separable finite extension of a field of rational functions in several variables; then
use the Theorem of the primitive element (which says that every separable finite
extension of fields can be generated by one element).

We have the following deep result (which we will not need and we will not prove):

Theorem 8.27. (Hironaka Desingularization Theorem) Let Y be an irreducible
projective variety over a field k of characteristic zero. Then there exists a non-
singular projective variety X and a morphism X → Y which is birational and
dominant.

The above is not known for k of positive characteristic.

9. Normalization

Definition 9.1. An irreducible variety X is normal if all local rings OX,P are
normal. By a normalization of a variety Y we understand a normal variety X
equipped with a finite birational morphism X → Y .

Remark 9.2. A curve is normal if and only if it is non-singular.

Theorem 9.3. Every affine variety has a normalization which is affine.

Proof. Let Y be an affine variety and A = O(Y ). Let Anor be the normalization
of A which is known to be finite over A, in particular finitely generated over k. By
the equivalence of categories between affine varieties and finitely generated reduced
k-algebras Anor corresponds to a variety X (which is then normal) and the inclusion
A ⊂ Anor corresponds to a morphism X → Y (which is finite and birational). �

Theorem 9.4. Every projective variety has a normalization which is projective.

Sketch of proof. Consider the projective coordinate ring C = S(Y ) of a projective
variety Y ⊂ Pn. One has a decomposition (grading)

C =

∞⊕
d=0

Cd, CdCe ⊂ Cd+e
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induced by that of the ring of polynomials. Let Ch =
⋃∞
d=0 Cd. Let Σ = Ch \ {0}

and consider the ring of fractions D = Σ−1C. One checks that one has an induced
decomposition (grading)

D =

∞⊕
d=−∞

Dd, DdDe ⊂ Dd+e.

Let

D≥0 :=

∞⊕
d=0

Dd

and let E be the integral closure of C in D≥0. Then E is finite over C, hence finitely
generated over k. One checks that one has an induced decomposition (grading)

E =

∞⊕
d=0

Ed, EdEe ⊂ Ed+e.

Then one checks that there exists an integer s such that

F :=

∞⊕
d=0

Eds

is generated as a k-algebra by finitely many elements f0, ..., fm ∈ Es. Consider the
surjective ring homomorphism

k[x0, ..., xm]→ F, xi 7→ fi.

Then the kernel a of this homomorphism is generated by homogeneous polynomials.
We let X = Z(a) ⊂ Pm. One checks that X is a normal variety equipped with a
finite birational morphism to Y . �

Theorem 9.5. If X is a non-sigular curve then every rational map from X to a
projective variety Y extends to a regular map X → Y .

Proof. We may assume Y = Pn. Then the rational map is given on an open say
U of X by

P 7→ f(P ) = (f0(P ) : . . . : fn(P ))

where fi ∈ K(X). Let Q ∈ X. Since OQ is a discrete valuation ring with maximal
mQ = (tQ) there exists e ∈ Z such that gi := teQfi are all in OQ and not all are in
mQ. Then f can be extended on a neighborhood of Q by the formula

P 7→ (g0(P ) : ... : gn(P )).

�

Exercise 9.6. Show by an example that in the above Theorem one cannot drop
the assumption that Y be projective.

Theorem 9.7. Every non-constant morphism of non-singular projective curves is
finite.

Proof. We will prove an a priori stronger result namely that every non-constant
morphism of non-singular projective curves is finite in the strong sense. Consider
such a morphism f : X → Y . Let V ⊂ Y be affine and A = O(V ). Let B be the
integral closure of A in K(X) and let U be an affine variety with O(U) = B. Since
K(U) = K(X) there is a birational map ϕ : U · · → X. By Theorem 9.5 ϕ is a
regular map. It is sufficient to check that f−1(V ) = ϕ(U). Assume this is false
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and let Q0 ∈ f−1(V )\ϕ(U), P0 = f(Q0) ∈ V , f−1(P0) = {Q0, ..., Qr, Qr+1, ..., Qn}
with Q0, ..., Qr 6∈ U and Qr+1, ..., Qn ∈ U . There exists w ∈ K(X) such that

w 6∈ OQ0
, w ∈ OQr+1

∩ ... ∩ OQn
.

(Indeed one can choose hyperplanes in the projective space where X sits, given by
linear forms H0, ...,Hn such that each of them passes exactly through one of the
points Q0, ..., Qn respectively. Then one can take w to be the restriction to X of
the function H1...Hn

Hn
0

.) Let R0, ..., Rs ∈ U be the points where w : U · · → k is not

defined; so f(Ri) 6= P0 for all i. Then, by an argument using hyperplanes as above,
one can find v ∈ O(V ) such that

v ∈ O×P0
, u := vw ∈ O(U) = B.

Since B is integral over A one has

un + a1u
n−1 + ...+ an = 0

for some a1, ..., an ∈ A. So

u = −a1 − a2u
−1 − ...− anu−n+1.

But u 6∈ OQ0
while −a1 − a2u

−1 − ... − anu
−n+1 ∈ OQ0

because u−1 ∈ OQ0
, a

contradiction. �

Exercise 9.8. Show by an example that in the above Theorem one cannot replace
the word ‘projective’ by the word ‘affine’.

Corollary 9.9. Every birational morphism of non-singular projective curves is an
isomorphism.

Proof. Every such morphism is finite hence a normalization hence an isomor-
phism. �

Exercise 9.10. Find an isomorphism between the projective line P1 and the
quadric Z(x2

0 + x2
1 + x2

2) ⊂ P2.

Corollary 9.11. Every two birationally equivalent non-singular projective curves
are isomorphic.

Proof. Clear from the above corollary. �

10. Divisors on curves

Definition 10.1. By a divisor on a curve X we mean an element

D =
∑
P∈X

nPP

of the free abelian group generated by X. (So nP ∈ Z and nP = 0 for all except
finitely many P ∈ X.) Set deg(D) =

∑
nP and let Div(X) be the group of divisors.

Write D ≥ 0 if all nP ≥ 0. Define the support of D to be the finite set

Supp(D) = {P ∈ X | nP 6= 0} ⊂ X.

Write D = D+ −D− where D+, D− ≥ 0 and D+, D− have disjoint supports.



30 ALEXANDRU BUIUM

Recall that for X a non-singular curve and P ∈ X we have a discrete valuation
homomorphism vP : K(X) → Z defined by vP (uteP ) = e for u ∈ O×P and tP a
parameter at P , i.e., generator of the maximal ideal mP of OP .

Let X ⊂ Pn and H = Z(F ) be a hypersurface of degree N , F without multiple
factors, hence F has degree N . Assume X 6⊂ H. We define a divisor X ·H ∈ Div(X)
as follows. If P 6∈ X ∩H set (X ·H)P = 0. Otherwise let i be such that the i-th
coordinate of P is 6= 0, consider the restriction to X, f = (F/xNi )|X ∈ OP , of

F/xNi , and let
(X ·H)P = vP (f) = dimk(OP /(f)).

Then set
X ·H =

∑
(X ·H)PP.

Clearly Supp(X · H) = X ∩ H. If H is a hyperplane call X · H the hyperplane
section corresponding to X.

Example 10.2. Let X = Z(Φ) ⊂ P2 be a curve with Φ irreducible of degree d and
write

Φ(x0, x1, x2) = x0N(x0, x1, x2) +M(x1, x2)

with N and M homogeneous of degrees d − 1 and d respectively. Let P = (0 :
0 : 1) ∈ X and m(y) = M(y, 1); hence m(0) = 0. Let H = Z(x0). We claim
that (X · H)P equals the multiplicity e of 0 as a root of m i.e. s is such that
h(y) = yem1(y) with m1(0) 6= 0. Indeed let

ϕ(y0, y1) = Φ(y0, y1, 1) = y0n(y0, y1) +m(y1).

Then we have

OP /(y0) =

(
k[y0, y1]

(ϕ, y0)

)
(y0,y1)

=

(
k[y0, y1]

(m(y1), y0)

)
(y0,y1)

=

(
k[y1]

(m(y1))

)
(y1)

=
k[y1]

(ye1)
.

The latter has dimension e which proves our claim.

Remark 10.3. A computation similar to the one in the above example shows that
if X,H are both non-singular curves in P2 then

(X ·H)P = (H ·X)P .

If in addition H = Z(L) is a line (hence L =
∑2
i=0 aixi is a linear form) and

X = Z(Φ) then in order to compute the divisor X ·H one considers the system

Φ(x0, x1, x2) = L(x0, x1, x2) = 0.

One solves the system by solving L = 0 for one of the variables, say x0, and
substituting the value of x0 into Φ. One gets an equation

Ψ(x1, x2) = 0.

One solves the latter by writing

Ψ(x1, x2) =
∏
i

(cix1 − bix2)ni

where the factors are relatively prime. Then one finds ai from the equation

L(ai, bi, ci) = 0

Setting Pi = (ai : bi : ci) one concludes that

X ·H =
∑
i

niPi.
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Exercise 10.4. Prove that if X = Z(Φ) ⊂ P2 is a curve with Φ irreducible of
degree d then every hyperplane section of X has degree d.

Exercise 10.5. Compute the divisor X · H for X = Z(x3
0 + x3

1 + x3
2) ⊂ P2 and

H = Z(x0) ⊂ P2.

Exercise 10.6. Compute the divisor X ·H for X = Z(x0x
2
2 − x3

1 + x3
0) ⊂ P2 and

H = Z(x0) ⊂ P2.

If f : X → Y is a non-constant morphism of non-singular projective curves one
can define a morphism of abelian groups f∗ : Div(Y ) → Div(X) as follows. Let
Q ∈ Y . Then set

f∗Q =
∑

f(P )=Q

vP (f∗tQ)P

and extend this definition by linearity. Here f∗ : OQ → OP is induced by f .
For X a non-singular projective curve define the group homomorphism div :

K(X)× → Div(X),

div(f) :=
∑
P∈X

vP (f)P.

We have Ker(div) = k×. Set P (X) = Im(div) and Cl(X) = Div(X)/P (X).
The elements of P (X) are called principal divisors. The group Cl(X) is called the
divisor class group. For D ∈ Cl(X) we denote by cl(D) the class of D in Cl(X).
For D1, D2 ∈ Div(X) we write D1 ∼ D2 if D1 − D2 ∈ P (X) and we say D1 and
D2 are linearly equivalent.

Exercise 10.7. For f : X → Y a non-constant morphism of non-singular projective
curves and all g ∈ Div(Y ) we have

f∗(div(g)) = div(f∗(g)).

As a consequence we have an induced homomorphism f∗ : Cl(Y )→ Cl(X).

Proposition 10.8. For X ⊂ Pn a nonsingular curve and H1, H2 two hypersurfaces
of the same degree, not containing X we have X ·H1 ∼ X ·H2.

Proof. One checks that if Hi = Z(Fi) then X ·H1−X ·H2 = div((F1/F2)|X). �

Proposition 10.9. For f : X → Y a non-constant morphism of non-singular
projective curves and all D ∈ Div(Y ) we have

deg(f∗D) = (deg f)(degD).

Proof. We may assume D is one point Q and we need to show that

deg(f∗Q) = deg(f).

We may replace X,Y by affine curves with a finite morphism f between them. Let
A = O(Y ) and B = O(X) and f−1(Q) = {P1, ..., Pr}. Let m ⊂ A and ni ⊂ B be
the maximal ideals corresponding to Q and Pi. Let tQ and tPi be parameters at
the corresponding points. Let vPi(tQ) = ei so f∗Q =

∑
i eiPi. Then the inclusion

mB ⊂ ne11 ...n
er
r is an equality because it is an equality after localization at every

maximal ideal of B. Since Am is a DVR hence principal it follows that Bm :=
(A \m)−1B is a free Am-module and its rank is clearly equal to the degree deg(f).
Hence Bm/mBm is a free k = Am/m-vector space of dimension equal to the degree
deg(f). Also we have

B/neii = Bni
/neii Bni

= OPi
/(teiPi

).
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Using the Chinese Remainder Theorem and Lemma 2.36 we have

deg(f) = dimk(Bm/mBm)

= dimk(B/mB)

= dimk(
∏
iB/n

ei
i )

=
∑
i ei

= deg(f∗Q).

�

Proposition 10.10. If X is a non-singular projective curve and D1 ∼ D2 are two
linearly equivalent divisors. The deg(D1) = deg(D2).

Hence we have an induced homomorphism deg : Cl(X) → Z. We denote by
Cl0(X) the kernel of this homomorphism. This group is referred to as the group of
divisor classes of degree 0.

Proof. Let D1 −D2 = div(g). View g as a rational map g : X · · → k = A1. By
Theorem 9.5 g extends to a morphism g : X → P1 and one checks that

div(g) = g∗(0−∞)

By Proposition 10.9 we get

deg(div(g)) = (deg g)(deg(0−∞)) = 0.

�
By Propositions 10.8 and 10.10 we get

Corollary 10.11. For X ⊂ Pn a nonsingular curve and H1, H2 two hypersurfaces
of the same degree, not containing X we have deg(X ·H1) = deg(X ·H2).

Definition 10.12. For X ⊂ Pn a nonsingular curve define the degree of X in Pn
as

deg(X) = deg(X ·H)

where H is any hyperplane not containing X. (The definition is correct due to
Corollary 10.11 and coincides with the usual definition of degree of a curve in the
plane due to Exercise 10.4.)

Note that if two curves in two projective spaces are isomorphic their respective
degrees are not necessarily equal.

Exercise 10.13. Give an example when this happens. Hint: Think of a line and
a quadric.

Theorem 10.14. (Bezout) For X ⊂ Pn a nonsingular curve of degree d1 and H
hypersurface of degree d2 not containing X we have

deg(X ·H) = d1d2.
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Proof. If H ′ is a union of d2 distinct hyperplanes Hi we have X ·H ∼ X ·H ′ so
the degrees of the two divisors are equal. But one can check using the definitions
that

deg(X ·H ′) =
∑

deg(X ·Hi)

which concludes the proof. �

Exercise 10.15. Let f : P1 → Pn+1 be the Veronese embedding given by all the
monomials of degree n in 2 variables. Find the degree of f(P1) ⊂ Pn.

Theorem 10.16. The following are equivalent for a non-singular projective curve:
1) X ' P1.
2) X ∼ P1.
3) Cl0(X) = 0.
4) For all points P and Q in X we have P ∼ Q.
5) There exist two distinct points P and Q in X such that P ∼ Q.

If the above hold we say X is rational.

Proof. 1 is equivalent to 2 by Theorem 9.9. 2 implies 3 imples 4 implies 5 are
trivial. Assume 5. Let P − Q = div(f) and view f as a morphism X → P1. It is
sufficient to show deg(f) = 1; cf. Theorem 9.9. But

1 = deg f∗0 = (deg(f))(deg 0) = deg(f).

�

11. Plane curves

Let F ∈ k[x0, x1, x2] be irreducible, homogeneous, of degree d; call X = Z(F ) ⊂
P2 a (projective) irreducible plane curve of degree d. By a plane curve of degree d
we mean the union of distinct irreducible curves whose degrees sum up to d. Lines
are curves of degree 1. Conics are curves of degree 2; so they are either irreducible
or unions of 2 lines. Cubics are curves of degree 3; so they are either irreducible or
unions of an irreducible conic and a line or unions of 3 lines.

If P,Q are two distinct points in the projective plane we usually denote by LPQ
the unique line that passes through P and Q.

Recall a point P on an irreducible curve X is called non-singular if OP is a
DVR, equivalently dimk mP /m

2
P = 1. If this is so let tP be a parameter of OP i.e.,

a generator of mP . Call Sing(X) the set of singular points of X.

Exercise 11.1.
1) Prove the following formula of Euler for a homogeneous polynomial F of

degree d:

d · F = x0
∂F

∂x0
+ x1

∂F

∂x1
+ x2

∂F

∂x2

2) Prove that

Sing(X) = Z(F,
∂F

∂x0
,
∂F

∂x1
,
∂F

∂x2
).

So if the degree of F is not divisible by the characteristic of k then

Sing(X) = Z(
∂F

∂x0
,
∂F

∂x1
,
∂F

∂x2
).
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In particular a conic is irreducible if and only if it is non-singular.
Let PGLn+1(k) = GLn+1(k)/Center. This group acts on Pn by linear transfor-

mations. Two curves X and Y in Pn are called projectively equivalent if there is
a σ ∈ PGLn+1(k) such that σ(X) = Y ; two such curves are then isomorphic as
varieties.

Exercise 11.2. The automorphism group of P1 is PGL2(k).

One can show that the automorphism group of Pn is PGLn+1(k). We will not
need this.

Exercise 11.3. Prove that:
1) Every two lines in P2 are projectively equivalent.
2) Every two non-singular conics in P2 are projectively equivalent (Sylvester’s

Theorem).
3) Every non-singular conic is isomorphic to a line but not projectively equivalent

to a line.

Definition 11.4. For a plane curve X ⊂ P2 and P ∈ X \Sing(X) the (projective)
tangent line to X at P is the line

TPX := Z

(
∂F

∂x0
(P )x0 +

∂F

∂x1
(P )x1 +

∂F

∂x2
(P )x2

)
⊂ P2

(Then TPX passes through P by Euler’s formula!) A line in P2 is tangent to X at
P if it is the tangent line to X at P .

Exercise 11.5.
1) For i = 0, 1, 2, upon identifying P2 \ Z(xi) ' A2 we have

TPX ∩ A2 = TP (X ∩ A2)

for P ∈ X ∩ A2. Equivalently, the Zariski closure of TP (X ∩ A2) in P2 is TPX.
2) A line L in P2 is tangent to X at a non-singular point P ∈ X if and only if

(X · L)P ≥ 2.

Exercise 11.6. Let k have characteristic 6= 2, 3 and let a, b ∈ k with 4a3+27b2 6= 0.
The cubic

Ea,b := Z(x0x
2
2 − x3

1 − ax2
0x1 − bx3

0) ⊂ P2

is non-singular. Hint: Set ϕ(x) = x3 + ax+ b and use the fact that 4a3 + 27b2 is in
the ideal (ϕ, dϕ/dx) ⊂ k[x]; to check the latter use the Euclid division algorithm
to compute the gcd of ϕ and dϕ/dx.

Proposition 11.7. The cubic Ea,b is not rational.

Proof. Assume the cubic is rational. Then the cubic minus its intersection with
Z(x0) is easily seen to be isomorophic to P1 minus a finite set. The latter has a
ring of regular functions which is factorial (UFD). So it is enough to show that the
ring

A :=
k[x, y]

(y2 − x3 − ax− b)
is not factorial. This is an easy exercise in algebra; one can use the natural norm
map N : A→ k[x] induced by the norm N : Frac(A)→ k(x) in the corresponding
field extension. �
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Theorem 11.8. Consider the cubic X = Ea,b and a point P0 ∈ X. Then the map

X → Cl0(X), P 7→ cl(P − P0)

is a bijection.

Proof. The map is injective because if not we would get P ∼ Q for two distinct
P,Q in X. By Theorem 10.16 X would be rational which contradicts Proposition
11.7. To prove surjectivity we proceed in several steps.

Step 1. Given P,Q ∈ X there exists S ∈ X such that P +Q ∼ P0 + S.

Indeed let LPQ be either the line through P and Q (if they are distinct) or the
tangent line to X at P (if P = Q) and write

X · LPQ = P +Q+R

Similarly let LP0R be the line through P0 and R or the tangent respectively and
write

X · LP0R = P0 +R+ S.

We conclude by the fact that X · LPQ ∼ X · LP0R.

Step 2. For every divisor D ≥ 0 there exist k ≥ 0 and P ∈ X such that
D ∼ kP0 + P .

This follows from Step 1 by induction

Step 3. For every divisor D with deg(D) = 0 there exist P,Q ∈ X such that
D ∼ P −Q.

This follows directly from Step 2.

Step 4. For every P,Q ∈ X there exists R ∈ X such that P −Q ∼ R− P0.

This follows from Step 1 applied to P, P0, Q in place of P,Q, P0.

The Theorem follows now from Steps 3 and 4. �

Remark 11.9. It is useful to draw pictures illustrating Steps 1 and 4.

By an algebraic group we mean a variety G which is also a group such that the
multiplication map G×G→ G and the inverse map G→ G are regular maps.

Exercise 11.10. Check that the following are algebraic groups:
1) A1 with the addition.
2) Gm := A1 \ {0} with multiplication.
3) GLn := GLn(k) with multiplication of matrices.

Theorem 11.11. Consider on the cubic X = Ea,b the group structure induced
from that on Cl0(X) via the bijection X → Cl0(X) in Theorem 11.8, where {P0} =
Ea,b ∩ Z(x0). Then X is an algebraic group.

Proof. One computes the group law using ‘analytic geometry’ and one discovers
that the formulae giving addition and inversion on X are regular functions. See
Exercise 11.12 below for details. �

A deep theorem in algebraic geometry, generalizing Theorem 11.11, states that
for every non-singular projective curve X and every point P0 ∈ X there exists
a projective variety Jac(X) (unique up to isomorphism, called the Jacobian of
X) and a bijection σ : Cl0(X) ' Jac(X) such that Jac(X) equipped with the
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group structure induced from Cl0(X) via σ is an algebraic group and such that the
composition of σ with the map of sets

X → Cl0(X), P 7→ cl(P − P0)

is a morphism of varieties

α := αP0 : X → Jac(X).

The morphism α is called the Abel-Jacobi map. If k is complex field the map α is
related to the theory of ‘Abelian integrals’ due to Abel, Riemann, and Jacobi. The
above will not be discussed in this course.

Going back to the context of Theorem 11.11, in order to avoid confusion between
addition in the group Div(X) and addition in the group X we denote by P [+]Q ∈ X
the result of the addition of the points P,Q ∈ X in the group structure of X and
by P +Q ∈ Div(X) the result of the addition of the points P and Q in the group
Div(X). Therefore we have

P [+]Q = S ⇔ P − P0 +Q− P0 ∼ S − P0 ⇔ P +Q ∼ S + P0.

We claim that to find S one lets R to be the third point of intersection of LPQ with
X, i.e.,

X · LPQ = P +Q+R

and then S will be the third point of intersection of LP0S with X, i.e.

X · LP0R = P0 +R+ S;

for from the last 2 equations one gets

P +Q+R ∼ P0 +R+ S

from which one gets

P +Q ∼ P0 + S.

Exercise 11.12. Let A2 = P2 \Z(x0) and for every x1, y1 ∈ k let us call (x1,−y1)
the symmetric of (x1, y1) with respect to the x-axis. Let X = Ea,b and let

U := X ∩ A2 = Z(y2 − (x3 + ax+ b))

and let P1[+]P2 = S for points P1, P2 ∈ U .
1) If P1 and P2 are symmetric with respect to the x-axis then S = P0. Hint:

show that X · LP1P2
= P1 + P2 + P0 and X · LP0P0

= 3P0.
2) Assume P1 and P2 are not symmetric with respect to the x-axis. Let L12 be

the line through P1 and P2 (or the tangent line at P1 if P1 = P2) and let P3 be
the third point of intersection of L12 with X. Then P1[+]P2 is the symmetric of P3

with respect to the x-axis. Hint: this follows directly from 1).
3) For the situation in 2) find the affine coordinates of P1[+]P2 above as regular

functions of the coordinates of P1 and P2. (This plus a similar computation in
P2 \ Z(x1) and P2 \ Z(x2) proves Theorem 11.11.)

Here is a hint (essentially a solution) for Part 3. By Part 2, for P1 = (x1, y1), P2 =
(x2, y2) ∈ U with (x2, y2) 6= (x1,−y1), we have

(x1, y1)[+](x2, y2) = (x3,−y3)
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where P3 = (x3, y3) is the third point of intersection of E with the line L12 passing
through (x1, y1) and (x2, y2) (or tangent to at P1 if P1 = P2). If (x1, y1) 6= (x2, y2)
then L12 is by definition the set

L12 = Z(y − y1 −m(x− x1))

where
m = (y2 − y1)(x2 − x1)−1.

If (x1, y1) = (x2, y2) then y1 6= 0 and one needs to replace m in the above definition
of L12 by the ‘slope of the tangent’

m = (3x2
1 + a)(2y1)−1.

We find (x3, y3) by solving the system consisting of the equations defining U and
L12: replacing y in y2 = x3 + ax+ b by y1 +m(x− x1) we get a cubic equation in
x:

(y1 +m(x− x1))2 = x3 + ax+ b

which can be rewritten as
x3 −m2x2 + ... = 0.

But x1, x2 are known to be roots of this equation. So x3 is the third root hence

x3 = m2 − x1 − x2, y3 = y1 +m(x3 − x1).

The expressions of x3 and y3 are rational functions of x1, y1, x2, y2. They are in fact
regular functions. To check this it is enough to check m is a regular function of these
coordinates. But the rational function m is regular at every point (x1, y1, x2, y2)
for which y1 6= −y2 (and its value is given by the expression of m as a slope of a
tangent if x1 = x2) because

m = y1−y2
x1−x2

=
y21−y

2
2

(x1−x2)(y1+y2)

=
x3
1+ax1+b−x3

2−ax2−b
(x1−x2)(y1+y2)

=
x2
1+x1x2+x2

2+a
y1+y2

.

Exercise 11.13. Use the Three Cubics Theorem to give an alternative proof of
the associativity of the chord-tangent operation on a cubic.

Hint: Let E be the elliptic curve and Q,P,R points on it different from P0. Let

LPQ ∩ E = {P,Q,U}
LP0U ∩ E = {P0, U, V }
LV R ∩ E = {V,R,W}
LPR ∩ E = {P,R,X}
LP0X ∩ E = {P0, X, Y }.

Note that
Q[+]P = V, V [+]R = W ′, P [+]R = Y.

We want to show that

(Q[+]P )[+]R = Q[+](P [+]R).
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This is equivalent to

V [+]R = Q[+]Y

i.e., that

W ′ = Q[+]Y

i.e., that Q,Y,W are collinear. Now the two cubics

E and LPQ ∪ LWR ∪ LY X
both pass through the 9 points

P,Q,R,U, V,W,X, Y, P0.

On the other hand the cubic

Γ = LUV ∪ LPR ∪ LQY
passes through all 9 points except W . By the Three Cubics Theorem we get that Γ
passes through W hence LQY passes through W . The above argument only applies
when one avoids the corresponding “degeneracies,” e.g., tangencies or cases where
4 of the 8 points in question (the 9 points above except W ) lie on a line or 7 of
the points in question lie on a conic. To conclude that associativity holds in the
“degenerate” cases as well one needs to use the fact that two morphisms of algebraic
varieties that coincide on an open set must coincide.

12. Space curves

Generalizing the case n = 2, the projective tangent space TPX ⊂ Pn to a closed
subvariety X ⊂ Pn at a point P ∈ X is defined as follows. If I(X) = (F1, ..., Fm)
then one defines the linear subspace

TPX = Z(LP (F1), ..., LP (Fm)) ⊂ Pn,

where

LP (Fj) :=

n∑
i=1

∂Fj
∂xi

(P ) · xi, j = 1, ...,m.

As in Exercise 11.5, upon identifying Pn \ Z(xi) ' An, we have

TPX ∩ An = TP (X ∩ An)

for all P ∈ X ∩An. Equivalently, the Zariski closure of TP (X ∩An) in Pn is TPX.

In particular if X is a non-singular curve then TPX is a line in Pn.

Proposition 12.1. Let X ⊂ Pn be a non-singular projective curve and O ∈ X. By
Theorem 9.5 the projection π : X \ {O} → Pn−1 extends to a morphism π : X →
Pn−1. Say O = (1 : 0 : ...0), π(a0 : ... : an) = (a1 : ... : an) and identify Pn−1 with
Z(x0). Then π(O) is the unique intersection of Z(x0) with the tangent line TOX.

Proof. For simplicity we give the proof only in case n = 2; the general case is
proved similarly. Let U := X \Z(x0) = Z(f) ⊂ A2 with f ∈ k[x, y] irreducible (x =
y1, y = y2). The morphism π : X \ {O} → P1 induces an algebra homomophisms

k[x1/x2]→ (k[x, y]/(f))y, x1/x2 7→ x/y,

k[x2/x1]→ (k[x, y]/(f))x, x2/x1 7→ y/x.
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Since A = (k[x, y]/(f))(x,y) is a DVR either x/y or y/x is in A. Assume x/y ∈ A
and write x = gy with g ∈ A. Also write f = αx + βy + h with α, β ∈ k and
h ∈ (x, y)2. Hence TOX = Z(αx+ βy) and therefore TOX = Z(αx1 + βx2) so

TOX ∩ Z(x0) = {(0 : −β : α)}.
We have x/y ∈ (k[x, y]/(f))s for some s ∈ k[x, y] \ (x, y). The ring homomorphism

k[x1/x2]→ (k[x, y]/(f))s, x1/x2 7→ g

induces a morphism
π′ : U \ Z(s)→ A1 ⊂ P1

which extends the projection π. We claim α 6= 0 and π′(O) = −β/α; this easily
implies the conclusion of the Proposition. To check the claim note that, denoting
by hats the classes of polynomials in A we have

0 = f̂ = αx̂+ βŷ + ĥ = ŷ(αĝ + β̂) + ĥ.

We have vO(ĥ) ≥ 2 and vO(ŷ) = 1 which implies vO(αĝ + β̂) ≥ 1, hence α 6= 0 and
g(0, 0) = −β/α. This ends the proof of the claim. �

Proposition 12.2. Let π : Pn \ {O} → Pn−1 be the projection from a point O. Let
X ⊂ Pn be a non-singular curve not passing through O and let P ∈ X. Then the
tangent map TPπ : TPX → TPPn−1 is injective if and only if the projective tangent
line TPX does not pass through O.

Proof. A local computation with flavor similar to that of the proof of Proposition
12.1. �

Remark 12.3. It is useful to draw a picture illustrating the above Proposition.

Proposition 12.4. Let f : X → Y be a finite morphism of varieties which is
injective and such that for all P ∈ X the tangent map TP f : TPX → Tf(P )Y is
injective. Then f is an embedding (by which we mean induces an isomorphism
X → f(X)).

Proof. One may assume Y (and hence X) is affine. Let A = O(Y ) and B = O(X).
It is enough to check that A→ B is surjective. It is then enough to show that for
every maximal ideal m of A the map Am → Bm is surjective. The maximal ideals of
Bm are in bijection with the points in X lying above the point in Y corresponding to
m. So Bm has only one maximal ideal (it is local with maximal ideal M) and finite
over Am. Since the map m/m2 → M/M2 is surjective it follows by Nakayama’s
Lemma for the Bm-module M that mBm = M . Again by Nakayama’s Lemma for
the Am-module Bm since 1 generates the Am-module k = Bm/M = Bm/mBm it
follows that 1 generates the Am-module Bm and we are done. �.

Corollary 12.5. If X is a non-singular projective curve then X is isomorphic to
a curve in P3.

Proof. Start with X ⊂ Pn with n ≥ 4. One can show that the closure S of
the union of all lines passing through at least 2 points of X has dimension at most
3. Similarly the closure T of the union of all projective tangent lines at points
of X has dimension at most 2. So there is a point O ∈ Pn not on S or T . By
Propositions 12.2 and 12.4 the projection from O induces an isomorphism between
X and a curve in Pn−1. We conclude by induction. �
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Remark 12.6. Not all non-singular projective curves are isomorphic to curves in
P2 i.e., to plane curves!

Proposition 12.7. Let X ⊂ Pn be a non-singular projective curve and let π :
X → Y = f(X) ⊂ Pn−1 be the projection from a point outside X. Assume Y is
non-singular. Prove that

deg(X) = deg(f) · deg(Y ).

Proof. One may assume P = (1 : 0 : ... : 0). By Proposition 10.9 it is enough
to show that if H = Z(x0) ⊂ Pn−1 and H = Z(x0) ⊂ Pn then f∗(Y ·H) = H ·X.
This can be checked by directly using the definitions. �

13. Differentials

Let A be a ring, B an A-algebra, and M a B-module.

Definition 13.1. An A-derivation from B to M is an A-module homomorphism
d : B →M , b 7→ db, satisfying the Leibniz rule:

d(b1b2) = b1db2 + b2db1, b1, b2 ∈ B.

Denote by DerA(B,M) the B-module of A-derivations from B to M .

Definition 13.2. Let B′ be a set equipped with a bijection B → B′, b 7→ b′.
The B-module ΩB/A (called the module of Kähler differentials) is the module E/F
where E is the free B-module generated by the set B′ and F is the B-submodule
generated by elements of E of the form

(b1 + b2)′ − b′1 − b′2, (b1b2)′ − b1b′2 − b2b′1 and a′,

where b1, b2 ∈ B, a ∈ A.

Then we have an A-derivation d : B → ΩB/A,

b 7→ db := b′ + F

We have the following universal property:

Proposition 13.3. The map

HomB(ΩB/A,M)→ DerA(B,M), f 7→ f ◦ d

is an isomorphism.

Proof. Left to the reader. �

Remark 13.4. For ring homomorphisms A→ B → C we have a naturally induced
B-module homomorphism

ΩB/A → ΩC/A.

Exercise 13.5. For S a multiplicative subset in B we have

ΩS−1B/A ' S−1ΩB/A.

Hint: use the universal property of Ω in Proposition 13.3.

Exercise 13.6. ΩA[x1,...,xn]/A is a free A[x1, ..., xn]-module with basis dx1, ..., dxn.
Hint: use the universal property of Ω in Proposition 13.3
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Exercise 13.7. If A → B → C are ring homomorphisms then there is a natural
exact sequence of C-modules

ΩB/A ⊗B C → ΩC/A → ΩC/B → 0

Hint: use the universal property of Ω.

Proposition 13.8. If I is an ideal in B and C = B/I then we have a natural
exact sequence

I/I2 d→ ΩB/A ⊗B C → ΩC/A → 0.

Proof. Recall ΩB/A ⊗B C =
ΩB/A

IΩB/A
. Then one proves that the module

ΩB/A

dI + IΩB/A

has the same universal property as ΩC/A. �

Proposition 13.9. Let K be a finitely generated extension of an algebraically closed
field k with separable transcendence basis x1, ..., xn (i.e., K is separable over L :=
k(x1, ..., xn)). Then dx1, ..., dxn is a basis of the K-vector space ΩK/k.

Proof. By the Theorem of the Primitive Element

K = L[x]/(f)

for some polynomial f . Then use the previous Proposition and Exercises plus the
fact that df = f ′(x)dx where f ′ is the usual derivative of f . �

Proposition 13.10. Let X be a variety, P ∈ X, and mP the maximal ideal of OP .
Then the map

mP
m2
P

→
ΩOP /k

mPΩOP /k

is an isomorphism. So we have an induced isomorphism

TPX :=

(
mP
m2
P

)◦
= Homk

(
mP
m2
P

, k

)
' DerOP

(OP , k).

Proof. By Proposition 13.8 this map is surjective. To prove injectivity it is
enough to prove that the dual map

Homk(
ΩOP /k

mPΩOP /k
, k)→ Homk(

mP
m2
P

, k)

is surjective. But

Homk(
ΩOP /k

mPΩOP /k
, k) = HomOP

(ΩOP /k, k) = DerOP
(OP .k)

So we have to show that every k-linear map ϕ : mP

m2
P
→ k comes from a derivation

D : OP → k. Define
Df = ϕ(f − f(P ) + m2

P );

one checks that D is a derivation and we are done. �

Lemma 13.11. Let A be a Noetherian local integral domain with maximal ideal
m and fraction field K and M a finitely generated A-module. Let S = A \ {0}.
Assume

dimk(M/mM) = dimK(S−1M) = r.

Then M is free of rank r.
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Proof. By Nakayama M is generated by r elements. So there is an exact sequence

0→ R→ Ar →M → 0

We get an exact sequence

0→ S−1R→ Kr → S−1M → 0

So S−1R = 0. Since R is torsion free we get R = 0. �

Definition 13.12. Let X be an affine variety and P ∈ X. Set Ω(X) := ΩO(X)/k

and

ΩX,P = ΩP := ΩOP /k = Ω(X)m(P ).

Call Ω(X) the module of (regular) Kähler differentials on X.

Proposition 13.13. Let X be a non-singular curve and P ∈ X. Then ΩX,P =
OP dtP i.e. this OP -module is free with basis dtP , (where tP is any generator of
mP ).

Proof. By Proposition 13.10

dimk

(
ΩOP /k

mPΩOP /k

)
= 1.

By Proposition 13.9, for K = K(X) and S = OP \ {0} we have

dimK(S−1ΩOP /k) = 1.

We conclude by Lemma 13.11 plus Nakayama. �

In particular, in the notation of the above Proposition we have a derivation

OP → OP , f 7→ df

dtP
,

defined by the formula

df =
df

dtP
dtP , f ∈ OP .

Corollary 13.14. Let X be an affine non-singular curve. Then Ω(X) is a torsion
free O(X)-module (hence it is contained in S−1Ω(X) = ΩK(X)/k, S = O(X) \ {0})
and

Ω(X) =
⋂
P

ΩX,P .

Definition 13.15. Let X be a non-singular curve (not necessarily affine). Set

Ω(X) = {ω ∈ ΩK(X)/k | ω ∈ ΩX,P ∀P ∈ X}.

For X affine this definition coincides with the previous one due to the above Corol-
lary.

Remark 13.16. For every non-constant morphism of projective curves f : X → Y
we have naturally induced injective homomorphisms

f∗ : Ω(Y )→ Ω(X),

f∗ : ΩY,f(P ) → ΩX,P ,

f∗ : ΩK(Y )/k → ΩK(X)/k.
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14. Canonical class

Definition 14.1. Let X be a non-singular curve and 0 6= ω ∈ ΩK(X)/k. Define the
divisor of ω,

div(ω) =
∑
P

vP (ω)P ∈ Div(X)

where if ω = fP dtP then
vP (ω) := vP (fP ).

This definition is correct because if t = tP = us for u ∈ O×P , mP = (s), then writing
du = hds, f = fP , we get

ω = fdt = f(uds+ sdu) = f(uds+ shds) = (u+ sh)fds

But vP (u+ sh) = 0 which shows the correctness of the definition.

Lemma 14.2.
1) div(fω) = div(f) + div(ω) for f ∈ K(X)×, 0 6= ω ∈ ΩK(X)/k.
2) div(ω) ≥ 0 for ω ∈ Ω(X).
3) For every ω, ω′ ∈ ΩK(X)/k \ {0} we have div(ω) ∼ div(ω′).

Proof. 1 and 2 are clear. 3 follows from 1 because dimK ΩK(X)/k = 1. �

Definition 14.3. Let X be a projective non-singular curve. The canonical class of
X is, by definition, κX := cl(div(ω)) ∈ Cl(X) where ω is any non-zero element of
ΩK(X)/k; the definition is correct by assertion 3 in the Lemma above. Every divisor
of the form KX = cl(div(ω)) ∈ Div(X) is called a canonical divisor.

Example 14.4. Let X = P1 with coordinates x0, x1. Set y = x1/x0 and ω = dy.
Let z = x0/x1 = y−1. So

dy = − 1

z2
dz

Hence if ∞ = (0 : 1) ∈ P1 we have

KP1 := div(ω) = −2 · ∞
is a canonical divisor.

Exercise 14.5. For X = Z(f) ⊂ A2, A = k[x, y]/(f), f irreducible. Then:
1) The class of xP ∈ OP of x − x(P ) is a parameter on X at every point

P ∈ X \ Z(∂f/∂y). Similarly the class yP ∈ OP of y − y(P ) is a parameter on X
at every point P ∈ X \ Z(∂f/∂x). Hint: use Exercise 2.35.

2) Show that

ωf,x :=
dx

∂f/∂y
∈ Ω(X \ Z(∂f/∂y)), ωf,y := − dy

∂f/∂x
∈ Ω(X \ Z(∂f/∂yx).

Also show that ωf,x and ωf,y are equal when viewed as elements of ΩK(X)/k so they
define an element ωf ∈ Ω(X).

3) We have OPωf = ΩX,P for all P ∈ X so Ω(X) is a free O(X)-module with
basis ωf . Hint: use Proposition 13.13.

Proposition 14.6. Let X = Z(F ) ⊂ P2 be a non-singular curve of degree d and
let H := X · L where L is a line. Then

KX := (d− 3)H

is a canonical divisor.
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Proof. Let Ui = P2 \Z(xi), y1 = x1/x0, y2 = x2/x0, f(y1, y2) = F (1, y1, y2), and

ωf =
dy1

∂f/∂y2
= − dy2

∂f/∂y1
∈ Ω(X ∩ U0).

So ωf has ‘no poles’ in U0. Set now z0 = x0/x1 = 1/y1, z2 = x2/x1 = y2/y1,
g(z0, z2) = F (z0, 1, z2). We have

∂f

∂y2
=
∂F

∂x2
(1, y1, y2)

and (by homogeneity of ∂F
∂x2

)

∂g

∂z2
=
∂F

∂x2
(z0, 1, z2) =

∂F

∂x2
(1/y1, 1, y2/y1) =

1

yd−1
1

∂F

∂x2
(1, y1, y2) = zd−1

0

∂f

∂y2

Now

dy1 = − 1

z2
0

dz0

so we get

ωf =
dy1

∂f/∂y2
= −zd−3

0

dz0

∂g/∂z2
= −zd−3

0 ωg

so
div(ωf ) = (d− 3)H ∈ Cl(X).

�

Exercise 14.7.
1) For X a non-singular curve in P2 of degree d we have deg(KX) = d(d− 3).
2) Non-singular curves in P2 of unequal degrees ≥ 3 cannot be isomorphic.

15. Statement of Riemann-Roch

Definition 15.1. Let X be a non-singular projective curve and D a divisor. Define

L(D) := {f ∈ K(X)× | D + div(f) ≥ 0} ∪ {0}.
So if D =

∑
nPP then

L(D) := {f ∈ K(X)× | vP (f) ≥ −nP , ∀P} ∪ {0}.
Exercise 15.2. L(D) is a k-linear subspace of K(X).

Definition 15.3. Set
`(D) = dimk L(D)

(which will be shown later it is finite) and define

|D| := {E ∈ Div(X) | E ∼ D, E ≥ 0}.
The latter is called the complete linear system attached to D.

Proposition 15.4. If D1 ∼ D2 then `(D1) = `(D2).

Proof. If D1 = D2 + div(g) then multiplication by g gives an isomorphism
L(D1)→ L(D2). �

Proposition 15.5. There is natural bijection

|D| ' L(D) \ {0}
∼

where
f ∼ g ⇔ ∃λ ∈ k×, g = λf.
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Proof. The map L(D)→ |D|, f 7→ D + div(f) (for f 6= 0) and 0 7→ D is clearly
surjective. The fiber of this map above the image of f are all g ∈ K(X)× such that
div(f/g) = 0. We conclude by the fact that O(X) = k. �

Proposition 15.6. For all D we have `(D) <∞. So |D| ' P`(D)−1.

Proof. We may assume D =
∑
nPP ≥ 0. Consider the ‘diagonal map’

L(D)→
⊕
P∈X

t−nP

P OP

OP
'
⊕
P∈X

OP

tnP

P OP

The kernel of this map is k because O(X) = k. �

Remark 15.7. The above argument shows that `(D) ≤ deg(D) + 1; this can be
shown, by a variation of the argument, to hold for D not necessarily ≥ 0.

Exercise 15.8.
1) If deg(D) < 0 then `(D) = 0 hence |D| = ∅.
2) If deg(D) = 0 and `(D) ≥ 1 then D ∼ 0.

Definition 15.9. For X a non-singular projective curve define its genus as

g(X) := dimk Ω(X).

Exercise 15.10. If KX = div(ω) is a canonical divisor then the map L(KX) →
Ω(X), f 7→ fω is an isomorphism. In particular the genus satisfies

g(X) = `(KX) <∞.

Here is the main result about curves.

Theorem 15.11. (Riemann-Roch Theorem) Let X be a non-singular projective
curve of genus g(X) = g, let D ∈ Div(X), and let K = KX be a canonical divisor.
Then the following holds:

`(D)− `(K −D) = deg(D) + 1− g.

We postpone the proof and present first some applications; this will not lead to
any circularity. The applications will be presented in the rest of this section plus the
next 3 sections. The proof of Riemann-Roch will be presented after that. The proof
will need: sheaves, cohomology, adeles, and residue theory. We will first introduce
sheaves and cohomology. Then we will introduce adeles as a tool to understand-
ing cohomology and we will prove a Cohomological (version of) Riemann-Roch
(Theorem 21.6). Next we will introduce and study residues. With their help we
will prove the so-called Serre Duality Theorem; the latter plus the Cohomological
Riemann-Roch will imply the Riemann-Roch Theorem.

Exercise 15.12.
1) deg(K) = 2g − 2. Hint: take D = K in Riemann-Roch.
2) If deg(D) ≥ g then |D| 6= ∅.
3) If deg(D) ≥ 2g − 1 then `(K −D) = 0 hence `(D) = deg(D) + 1− g.

Corollary 15.13. We have g(X) = 0 if and only if X ' P1.

Proof. The if part follows because by Example 14.4 deg(KP1) = −2. For the only
if part take P,Q ∈ X distinct and set D = P −Q. We have deg(KX) = 2g−2 = −2
so deg(K−D) = −2 < 0 so `(K−D) = 0. Then by Riemann-Roch `(D) = 1. Since
deg(D) = 0, by Exercise 15.8 above D ∼ 0. We conclude by Theorem 10.16. �
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Corollary 15.14. We have g(X) = 1 if and only if KX ∼ 0.

Proof. The if part is trivial. For the only if part we know `(KX) = 1 and
deg(KX) = 2g − 2 = 0. We conclude by Exercise 15.8.

Corollary 15.15. For X a non-singular curve in P2 of degree d the genus g of X
is given by the formula

g =
(d− 1)(d− 2)

2
.

Proof. This follows from Exercise 14.7 and Exercise 15.12, Part 1. �

So plane curves cannot gave arbitrary genus.

16. Linear systems

Definition 16.1. A linear system is a linear subspace Λ of a projective space of the
form |D| for some D. It is called complete if it is the whole of |D|. Since Λ itself is a
projective space it has a well defined dimension dim Λ. Clearly dim |D| = `(D)−1.
We define the base locus

Bs(Λ) = {P ∈ X | P ∈ Supp(E) ∀E ∈ Λ}.
Say Λ is base point free if Bs(Λ) = ∅.

Exercise 16.2.
1) Show that if X is isomorphic to P1 and P ∈ X then |P | is base point free.
2) Show that if X is not isomorphic to P1 and P ∈ X then Bs(|P |) = {P}.
3) Show that if X ⊂ Pn and H is a hypersurface then X ·H is base point free.

Proposition 16.3. Let D be a divisor and P a point. Then

`(D) ≥ `(D − P ) ≥ `(D)− 1

We have P ∈ Bs(|D|) if and only if `(D) = `(D − P ). In particular (by Riemann-
Roch) if deg(D) ≥ 2g then |D| is base point free.

Proof Let D =
∑
nPP . Then we conclude by considering the exact sequence

0→ L(D − P )→ L(D)→
t−nP

P OP

t−nP +1
P OP

' OP

tPOP
' k.

�

Definition 16.4. Let X be a non-singular projective curve and f : X → Pn be a
morphism. We say f is non-degenerate if f(X) is not contained in any hyperplane.
Assume this is the case. Then for every hyperplane H = Z(L) ⊂ Pn one defines
f∗H ∈ Div(X) by

f∗H =
∑
P∈X

(f∗H)PP

where for each P , if P 6∈ Z(xi), we set

(f∗H)P = vP (f∗(L/xi)).

So if f is an inclusion then f∗H = X ·H. We denote by |H| the set of hyperplanes
in Pn; it is the dual projective space P̌n.

Exercise 16.5. For every two hyperplanes H1, H2 we have f∗H1 ∼ f∗H2.
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So we have a map f∗ : |H| → |f∗H| whose image f∗|H| is a (not necessarily
complete) base point free linear system. So f∗|H| ⊂ |f∗H|.

Definition 16.6. Two morphisms from X to Pn are called projectively equivalent
if the two morphisms differ by an automorphism σ ∈ PGLn+1 of Pn.

Proposition 16.7. If X is a non-singular projective curve there is a natural bijec-
tion between the set of projective equivalence classes of non-degenerate morphisms
X → Pn and the set of base point free linear systems on X of dimension n.

Proof. Given f : X → Pn we constructed a base point free linear systems f∗|H|
on X of dimension n. (The dimension is n because if H = Z(L) we have a linear
map from the space of linear forms L′ in n + 1 variables to L(f∗H) defined by
L′ 7→ (L′/L)|X . This map is injective by non-degeneracy so it induces an inclusion
|H| → |f∗H|.) Conversely if Λ ⊂ |D| is free with Λ = P(V ) = (V \ {0})/ ∼,
V ⊂ L(D), and D =

∑
nRR, pick a basis f0, ..., fn ∈ V and define f : X → Pn

around each point Q by the formula

f(P ) = (f0(P )t
nQ

Q : ... : fn(P )t
nQ

Q ).

One checks the two constructions are inverse to each other. �

Remark 16.8. A ‘synthetic description’ of the bijection above is as follows. Given
Λ its associated f = fΛ is the map from X to the dual projective space

Λ̌ := {hyperplanes in Λ}

of the projective space Λ,

fΛ : X → Λ̌,

with f(P ) = ΛP where ΛP is the hyperplane in Λ defined by

ΛP = {D ∈ Λ | P ∈ Supp(D)}.

If f1 : X → Pn1 and f2 : X → Pn2 correspond to Λ1 and Λ2 then Λ1 ⊂ Λ2 if and
only if f1 if the composition of f2 with a projection Pn2 ... → Pn1 . In particular if
f1 is linearly normal there is no non-degenerate f2 (with n2 > n1) such that f1 is
obtained from f2 via a projection Pn2 ...→ Pn1 .

Definition 16.9.
1) A linear system Λ is said to separate points if for every distinct P,Q ∈ X there

exists D =
∑
nRR ∈ Λ such that P ∈ Supp(D) (i.e., nP 6= 0) and Q 6∈ Supp(D)

(i.e., nQ = 0). Any such Λ is, of course, base point free.
2) A linear system Λ is said to separate tangent vectors if for every P ∈ X there

exists D =
∑
nRR ∈ Λ such that nP = 1.

Proposition 16.10. If Λ separates points and tangent vectors then fΛ : X → Λ̌ is
an embedding.

Proof. The condition of separating points is equivalent to fΛ being injective (in
view of the synthetic description of fΛ). We claim that the condition of separat-
ing tangent vectors is equivalent to the condition that the tangent map TP fΛ is
injective. Indeed the latter is equivalent to the condition that the map

mf(P )

m2
f(P )

→ mP
m2
P



48 ALEXANDRU BUIUM

is surjective, equivalently non-zero. But the latter map is zero if and only if for
every hyperplane H passing through f(P ) we have (f∗H)P ≥ 2. This proves our
Claim. We conclude by Proposition 12.4. �

Definition 16.11. A divisor D is called very ample if f|D| is an embedding.

Exercise 16.12. Assume D is a divisor such that for every P,Q ∈ X we have

`(D − P −Q) = `(D)− 2.

Then D separates points and tangent vectors. Hint: use Proposition 16.3.

Corollary 16.13. If X had genus g and deg(D) ≥ 2g + 1 then D is very ample.

Proof. By Riemann-Roch we have `(D−P −Q) = `(D)− 2 for every P,Q ∈ X.
We conclude by Proposition 16.10 and Exercise 16.12. �

Corollary 16.14. For every P ∈ X the curve X \ {P} is affine.

Proof. Let n ≥ 2g + 1. Then nP is very ample. So f := f|nP | : X → Pdim |nP |

is an embedding. Now nP = f∗H for some hyperplane H. Hence X \ {P} =
f−1(Pn \H). Hence X \{P} is isomorphic to a closed subvariety of the affine space
An ' Pn \H. �

17. Hurwitz Theorem

Definition 17.1. Let f : X → Y be a non-constant morphism of non-singular
projective curves. For every P ∈ X and Q = f(P ) with mQ = (tQ) define the
ramification index at P to be

eP := vP (f∗tQ) ∈ N.
In other words

f∗Q =
∑

f(P )=Q

ePP.

We say P is unramified if eP = 1. We say that f is unramified if eP = 1 for all
P ∈ X. We say P is ramified (or f is ramified at P ) if eP ≥ 2. We say P is tamely
ramified if it is ramified and eP is not divisible by the characteristic of the field k.
We say that f is tamely ramified if all ramification points are tamely ramified. In
characteristic zero tame ramification is automatic. We say that f is separable if
the induced homomorphism f∗ : K(Y )→ K(X) is separable.

Theorem 17.2. (Hurwitz) If f is separable and KX ,KY are canonical divisors on
X,Y respectively then the set of ramified points is finite and

KX ∼ f∗KY +
∑
P∈X

(eP − 1)P +W.

with W a divisor satisfying W ≥ 0. Moreover W = 0 if and only if f is tamely
ramified.

Proof. By separability we have an injective map

f∗ : ΩK(Y )/k → ΩK(X)/k.

Let ω ∈ ΩK(Y )/k. For all Q ∈ Y write ω = uQt
nQ

Q dtQ with uQ ∈ O×Q. So

KY ∼ div(ω) =
∑
Q∈Y

nQQ.
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Hence

f∗KY ∼
∑
Q∈Y

nQf
∗Q =

∑
Q∈Y

∑
f(P )=Q

nQePP.

Now write f∗tQ = aP t
eP
P with aP ∈ O×P and set daP = bP dtP . Also

f∗ω = f∗(uQt
nQ

Q dtQ)

= f∗uQ · (f∗tQ)nQ · f∗(dtQ)

= f∗uQ · a
nQ

P t
ePnQ

P · d(f∗tQ)

= f∗uQa
nQ

P t
ePnQ

P · d(aP t
eP
P )

= f∗uQa
nQ

P t
ePnQ

P · (aP eP teP−1
P dtP + tePP daP )

= f∗uQa
nQ

P t
ePnQ

P · (aP eP teP−1
P + tePP bP )dtP .

Now since uQ, aP are invertible we have

vP (f∗ω) = vP (f∗uQa
nQ

P t
ePnQ

P · (aP eP teP−1
P + tePP bP )) ≥ ePnQ + eP − 1

with equality if and only if eP is not divisible by p. So, for some W ≥ 0, we have

KX ∼ div(f∗ω) =
∑
P

(ePnQ + eP − 1)P +W ∼ f∗KY +
∑
P

(eP − 1)P +W.

�

Exercise 17.3. In the above theorem

2g(X)− 2 ≥ (deg f)(2g(Y )− 2) +
∑
P∈X

(eP − 1)

with equality if and only if f is tamely ramified. In particular g(X) ≥ g(Y ). Hint:
take degrees in Hurwitz’s Theorem and use Exercise 15.12 and Proposition 10.9.

Exercise 17.4. (Lüroth’s Theorem) If X → Y is separable and X ' P1 then
Y ' P1.

Definition 17.5. An elliptic curve is a non-singular projective curve of genus 1.

Exercise 17.6. Every non-constant separable morphism of elliptic curves is un-
ramified.

18. Elliptic curves

We next apply the theory above to elliptic curves. We assume from now on the
characteristic of k is 6= 2.

Lemma 18.1. If X is an elliptic curve and P1, P2 ∈ X then:
1) The linear system |P1 + P2| is base point free of dimension 1 so it defines a

morphism f = f|P1+P2| : X → P1 such that P1 + P2 = f∗Q for some point Q ∈ P1.
2) There is an automorphism σ : X → X such that σ(P1) = P2.
3) f has exactly 4 ramification points R1, R2, R3, R4 on X and their images

Qi = f(Ri) are 4 distinct points in P1
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Proof. Part 1 follows from Riemann-Roch. Part 2 follows from the fact that the
generator of the Galois group of the degree 2 extension K(Y ) → K(X) acts on
f−1(V ) for each affine V ⊂ Y transitively on the fibers; the latter is proved by an
algebraic argument. Part 3 follows from Hurwitz. �

Lemma 18.2. Let X be an elliptic curve and P1, P2 ∈ X. Consider the morphisms
f1 = f|2P1| : X → P1 and f2 = f|2P2| : X → P1. Then there exists a commutative
diagram

X
σ−→ X

f1 ↓ ↓ f2

P1 τ−→ P1

with σ and τ isomorphisms.

Proof. Take σ as in Lemma 18.1 and τ the induced automorphism. �

Exercise 18.3. For every 3 distinct points Q1, Q2, Q3 ∈ P1 = A1 ∪ {∞} there
exists an automorphism τ : P1 → P1 (hence τ ∈ PGL2) such that

τ(Q1) = 0, τ(Q2) = 1, τ(Q3) =∞.
Define the rational function

j(x) = 28 (x2 − x+ 1)3

x2(x− 1)2
.

The factor 28 is motivated by considerations that will not be touched upon.

Exercise 18.4. Let λ, λ′ ∈ k \ {0, 1}. Prove that the following are equivalent:
1) There exists an automorphism τ : P1 → P1 that sends the set {0, 1,∞} onto

itself and sends λ into λ′.
2) There exists an automorphism τ : P1 → P1 that sends the set {0, 1, λ,∞}

onto the set {0, 1, λ′,∞}.
3) λ′ ∈ {λ, 1− λ, 1

λ ,
1

1−λ ,
λ
λ−1 ,

λ−1
λ }.

4) j(λ) = j(λ′).

Hint. 1 implies 2 implies 3 implies 4 are trivial/easy. To check 4 impples 1
consider the group G of automorphisms in 1 acting on the field k(x) and show,
using Galois theory that the field of invariants k(x)G equals k(j(x)). Then use the
fact that G acts transitively on the fibers of the map j : P1 → P1.

Definition 18.5. Let X be an elliptic curve. Define its j-invariant j(X) ∈ k as
follows. Let P ∈ X, consider the morphism f|2P | : X → P1, consider the images

Q1, Q2, Q3, Q4 ∈ P1 of the 4 ramification points of f|2P | (cf. Lemma 18.1), let

τ : P1 → P1 be an automorphism sending Q1, Q2, Q3 into 0, 1,∞, respectively (cf.
Exercise 18.3), let λ = τ(Q4), and set

j(X) = j(λ)

By Lemma 18.2 and Exercise 18.4 j(X) does not depend on P or τ .

Lemma 18.6. For every elliptic curve X and every point P ∈ X there is an
embedding f : X → P2 whose image is a cubic such that (viewing f and inclusion)
we have 3P = X · L for some line L.

Proof. Take f = f|3P |; by Riemann-Roch |3P | has dimension 2 and f is an
embedding by Corollary 16.13. Also we have 3P = f∗L for some L.

�
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Theorem 18.7. For every elliptic curve X and every point P there is an isomor-
phism of X to the projective closure Eϕ in P2 of a curve Z(y2−ϕ(x)) ⊂ A2, where
ϕ(x) ∈ k[x] is a cubic polynomial with distinct roots, such that P is mapped to the
point Eϕ ∩ Z(x0). Moreover:

1) One can choose ϕ(x) = x(x − 1)(x − λ) (the Legendre form) in which case
j(X) = j(λ). We then write Eϕ = Eλ.

2) If the characteristic if k is not 3 one can choose ϕ(x) of the form x3 +ax+ b.

Proof. By the Lemma above X ' E := Z(F ) ⊂ P2 with F a homogeneous
cubic such that E · L = 3P for some line L. We may assume L = Z(x0). Since
E · L = 3P , F must have the form F = x0Q + C where Q is a quadratic form in
x0, x1, x2 and C is a cubic form in x1, x2 whose zeroes in P1 coincide. Changing the
variables x1, x2 we may assume C = x3

1. Let q(x, y) = Q(1, x1, x2). We claim that
q has a y2 term; indeed if not then (check!) the curve E is rational. Completing
the terms that contain y2 and y to a square we may change the variables such that
F (1, x, y) = y2 − ϕ(x) for some cubic ϕ(x). The cubic ϕ must have distinct roots
(otherwise E is singular). Statements 2 and 3 are easy. �

Corollary 18.8.
1) For every c ∈ k there is an elliptic curve X with j(X) = c.
2) Two elliptic curves X1 and X2 are isomorphic if and only if j(X1) = j(X2).
3) For every elliptic curve X and every P0 ∈ X the map X → Cl0(X) given by

P 7→ cl(P − P0) is a bijection and X with the group structure induced by the above
bijection is an algebraic group.

Assertion 2 says that the set of isomorphism classes M1 of elliptic curves is in
bijection (given by j) with the set of points on the line A1.

Proof. For 1 the projective closure of the Legendre curve Eλ with parameter λ
satisfying j(λ) = c has j-invariant c. The only if part of 2 was already checked.
For the if part, if X1 ' Eλ1

and X2 ' Eλ2
and j(X1) = j(X2) then j(λ1) = j(λ2)

so by Exercise 18.4 there is an automorphism τ of P1 sending {0, 1, λ1,∞} onto
the set {0, 1, λ2,∞}. This isomorphism can be extended to an automorphism of
P2 that sends Eλ1

onto Eλ2
(check!). Part 3 follows because every elliptic curve

is isomorphic to a cubic Ea,b and we already know Part 3 for Ea,b at least if k
has characteristic 6= 2, 3; cf. Theorem 11.11. In these remaining cases a similar
argument can be given. �

Remark 18.9. A deep result in algebraic geometry says that the set of isomorphism
classes Mg of non-singular projective curves of genus g ≥ 2 is in a natural bijection
with the set of points of a variety Mg of dimension 3g− 3 (called the moduli space
of curves of genus g).

19. Sheaves

Definition 19.1. Let X be a topological space. A presheaf F of abelian groups
consists of the following data:

1) For every open set U ⊂ X one is given an abelian group F(U);
2) For every open sets V ⊂ U ⊂ X one is given a group homomorphism ρUV :

F(U)→ F(V );
satisfying the properties:

a) F(∅) = 0
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b) For all U we have ρUU = id;
c) For all W ⊂ V ⊂ U we have ρUV ◦ ρVW = ρUW .

A similar definition is given where “abelian groups” are replaced by “vector
spaces”, “rings”, etc.

The maps ρUV are called restriction maps and we write ρUV (s) = s|V for all

s ∈ F(U). Also we set H0(U,F) = F(U).

Definition 19.2. A presheaf is called a sheaf if for every open set U and every
open cover U = ∪Ui the following conditions are satisfied:

c) For all s ∈ F(U) if s|Ui
= 0 for all i then s = 0;

d) If (si) is a family with si ∈ F(Ui) such that for all i, j we have

si|Ui∩Uj
= sj|Ui∩Uj

then there exists a (unique by c above) s ∈ F(U) such that s|Ui
= si for all i.

Example 19.3.
1) Every sheaf of (k-valued) functions of a topological space is a sheaf of rings.

So if X is a variety then U 7→ O(U) is a sheaf O = OX of rings.
2) If X is a non-singular curve then U 7→ Ω(U) is a sheaf ΩX of k-vector spaces

called the canonical sheaf. If D =
∑
nPP is a divisor on X we define

O(D)(U) := {f ∈ K(X)× | vP (f) ≥ −nP ,∀P ∈ U} ∪ {0};

Ω(D)(U) := {f ∈ ΩK(X)/k \ {0} | vP (ω) ≥ −nP ,∀P ∈ U} ∪ {0}.
Then U 7→ O(D)(U) is a sheaf of k-vector spaces O(D) = OX(D) and U 7→ Ω(D)(U)
is a sheaf of k-vector spaces Ω(D) = ΩX(D). Hence,

H0(X,O) = O(X), H0(X,O(D)) = L(D),

H0(X,Ω) = Ω(X), H0(X,Ω(D)) ' L(K +D).

Here K is any canonical divisor.

Definition 19.4. A presheaf F is called constant if there exists an abelian group
A such that F(U) = A for all U 6= ∅; we write F = A.

Exercise 19.5. A constant presheaf on an irreducible topological space X is a
sheaf.

Definition 19.6. A morphism of presheaves F → G is a collection of morphisms
F(U)→ G(U) that are compatible in the obvious sense with the restriction maps.

Definition 19.7. For a presheaf F on X and for P ∈ X we define the stalk of F
at P ,

FP := {(U, s) | P ∈ U, s ∈ F(U)}/ ∼,
where (U, s) ∼ (U ′, s′) if there exists (U ′′, s′′) with P ∈ U ′′ ⊂ U ∩ U ′ and s′′|U = s,

s′′|U ′ = s′.

For P ∈ U there is a natural map F(U)→ FP which we denote by s 7→ sP .

Example 19.8. For an variety the formerly defined OP is the stalk of O at P .
Similarly for ΩX,P .
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Proposition 19.9. For every presheaf F on X there exists a morphism of presheaves
F → F+ such that F+ is a sheaf and such that every morphism of presheaves F → G,
where G is a sheaf, factors through a unique morphism of sheaves F+ → G. More-
over the induced maps between stalks FP → F+

P are isomorphisms. Finally if F is
already a sheaf then F → F+ is an isomorphism.

Proof. One defines F+(U) to be the set of all families (sP )P∈U with sP ∈ FP
with the property that for every P ∈ U there exists an open set P ∈ V ⊂ U and
there exists t ∈ F(V ) such that sP = tP for all P ∈ V . One then easily checks the
rest of the properties. �

Definition 19.10. A subsheaf of a sheaf F is a sheaf F′ such that F′(U) ⊂ F(U)
for all U . (Then F′P ⊂ FP for all P ∈ X.) We define the quotient sheaf F/F′ as
being

F/F′ := G+

where G is the presheaf defined by

G(U) = F(U)/F′(U).

Note that (F/F′)P = FP /F
′
P for all P .

Exercise 19.11. Let F′ be a subsheaf of a sheaf F. Let s ∈ F(U) be such that
sP ∈ F′P for all P ∈ U . Then s ∈ F′(U).

Definition 19.12. A sequence of sheaves

F′ → F → F′′

is called exact if for all P ∈ X the sequence

F′P → FP → F′′P

is exact.

Note that for an exact sequence of sheaves as above it is NOT generally true
that the sequences

F′(U)→ F(U)→ F′′(U)

are exact.

Remark 19.13. By the above Proposition for every subsheaf F′ ⊂ F the sequence

0→ F′ → F → F/F′ → 0

is exact.

Recall the notation F(U) = H0(U,F).

Exercise 19.14. For every exact sequence of sheaves

0→ F′ → F → F′′ → 0

the induced sequences

0→ H0(U,F′)→ H0(U,F)→ H0(U,F′′)

are exact.

Definition 19.15. Let A be an abelian group and P ∈ X a closed point. We
define the skyscraper presheaf AP by setting AP (U) = U is P ∈ U and AP = 0 if
P 6∈ U .
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Exercise 19.16. Assume the points of X are closed. Prove that the skyscraper
presheaves are sheaves. Prove that the stalk (AP )Q of AP at Q ∈ X is A or 0
according as P = Q or P 6= Q.

20. Cohomology

Definition 20.1. Let X be a topological space and U an open cover, i.e. a map

U→ {open sets of X},

such that the open sets in the image of U cover X. For each U ∈ U we still denote by
U ⊂ X the open set which is the image of U ; this is, of course, an abuse of notation,
as the map above is not assumed to be injective so one should keep in mind this
fact. Then for a sheaf F of groups (vector spaces, rings,...) we let Z1(U,F) be the
group of all families

(aUV ) ∈
∏
U,V

F(U ∩ V )

satisfying

aUU = 0, aUV + aV U , aUV + aVW + aWU = 0

for all U, V,W ∈ U. Here, for simplicity, we continued to write aUV for its restriction
to U ∩V in the second equality and we continued to write aUV for its restriction to
U ∩ V ∩W in the third equality. Also we let B1(U,F) ⊂ Z1(U,F) be the subgroup
of all families as above for which there exists a family

(fU ) ∈
∏
U

F(U)

such that

aUV = fU − fV
for all U, V . Again, for simplicity we continued to write fU , fV for their restriction
to U ∩ V . Finally we set

H1(U,F) =
Z1(U,F)

B1(U,F)
.

The groups Z1, B1, H1 above are called the group of Cech cocycles, group of Cech
coboundaries, and the Cech cohomology group with respect to U, respectively. We
say V is a refinement of U if there is a map r : V → U such that r(V ) ⊃ V for all
V . Such a refinement induces a group homomorphism

H1(U,F)→ H1(V,F)

and we set

H1(X,F) := lim
−→
U

H1(U,F).

Proposition 20.2. For every exact sequence of sheaves of abelian groups

0→ F′ → F → F′′ → 0

there is an induced ‘long’ exact sequence

0→ H0(X,F′)→ H0(X,F)→ H0(X,F′′)
∂→ H1(X,F′)→ H1(X,F)→ H1(X,F′′)
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Proof. To define ∂ take an element x′′ ∈ H0(X,F′′); it is represented by a family

(t̂V ) where V is in a cover and t̂V ∈ F(V )/F′(V ) is the class of some tV ∈ F(V ).
Then by Exercise 19.11 the family

(tU − tV ) ∈
∏
UV

F(U ∩ V )

belongs to ∏
UV

F′(U ∩ V );

the latter family defines an element ∂(x′′) ∈ H1(X,F′). Checking exactness of the
sequence is an easy exercise. �

Exercise 20.3. If F is a constant sheaf or a skyscraper sheaf on X then

H1(X,F) = 0.

Definition 20.4. Let F be a sheaf of k-vector spaces. If Hi(X,F) are finite di-
mensional for i = 0, 1 we say that the Euler characteristic χ(X) of X is defined
and equal to

χ(X) = dimH0(X,F)− dimH1(X,F) ∈ Z.

Exercise 20.5. Let
0→ F′ → F → F′′ → 0

be an exact sequence of sheaves of k-vector spaces where F′′ is either constant or a
skyscraper. Then χ(F) is defined if and only if χ(F′) is defined and in this case we
have

χ(F) = χ(F′) + χ(F′′).

Hint: Use the previous exercise and decompose the long exact sequence into short
exact sequences.

21. Adeles

Definition 21.1. Let X be nonsingular projective curve. The ring of adeles is the
ring R of all families r = (rP )P∈X , rP ∈ K(X), such that rP ∈ OP for all but
finitely many P ∈ X. If D =

∑
nPP is a divisor let

R(D) := {r ∈ R | vP (rP ) + nP ≥ 0}
So

R =
⋃
D

R(D)

There is an injective ‘diagonal’ map K(X)→ R, f 7→ (fP ) with fP = f for all P .

Proposition 21.2. For every divisor D one has a canonical isomorphism

H1(X,O(D)) ' R

R(D) +K(X)
.

Proof. Consider the exact sequence

0→ O(D)→ K(X)→ K(X)/O(D)→ 0

Since K(X) is constant its H1 group is trivial so by the cohomology long exact
sequence we get

H1(X,O(D)) ' H0(X,K(X)/O(D))

Im(K(X))
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But one can check that the map

R→ H0(X,K(X)/O(D)), (rP ) 7→ (rP + O(D)P ),

where rP + O(D)P ∈ K(X)
O(D)P

is the clas of rP , is correctly defined (i.e., the latter

family is a section) and induces an isomorphism

R

K(X) +R(D)
→ H0(X,K(X)/O(D))

Im(K(X))
.

�

Proposition 21.3. If D ≥ E are divisors then

deg(D)− deg(E) = dim
R(D) +K(X)

R(E) +K(X)
+ `(D)− `(E).

Proof. If D =
∑
nPP and E =

∑
mPP we have an exact sequence

0→ O(E)→ O(D)→ A→ 0

where

A =
⊕ t−nPOP

t−mPOP
hence

H0(X,A) = k`(D)−`(E).

We conclude by taking the cohomology long exact sequence and using Proposition
21.2. �

Theorem 21.4. Let X be a non-singular projective curve. Then H1(X,O) is finite
dimensional. So χ(O) is defined.

Proof. Let y ∈ K(X), y : X → P1, ∆ := y∗∞ =
∑
eiPi so y ∈ L(∆). Let

deg(∆) = d. Let z1, ..., zd be a basis of K(X)/K(P1). There exists n0 such that
z1, ..., zd ∈ L(n0∆). Let n >> n0. Then for 0 ≤ s ≤ n− n0 we have yszj ∈ L(n∆).
Hence `(n∆) ≥ (n− n0 + 1)d. Set

Nn = dim
R(n∆) +K(X)

R(0) +K(X)
.

By Proposition 21.3 we get

nd = Nn + `(n∆)− `(0) ≥ Nn + (n− n0 + 1)d− 1

hence
Nn ≤ n0d− d+ 1.

For every divisor D set r(D) := deg(D) − `(D); then r(D) only depends on the
linear equivalence class of D. Then for every D ≥ E, by Proposition 21.3 we have

(21.1) r(D)− r(E) = dim
R(D) +K(X)

R(E) +K(X)

Setting D = n∆, E = 0 we get that r(n∆) = r(0)+Nn is bounded b ya constant C
as n→∞. Let B be any divisor and take z ∈ k[y] such that z has high order zeroes
at all points of Supp(B)\Supp(∆). Then there exists n such that div(z)+n∆ ≥ B.
So

−1 = r(0) ≤ r(B) ≤ r(div(z) + n∆) = r(n∆) ≤ C
so the set

{r(B) | B ∈ Div(X)}
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is bounded. (Lang says: ‘the whole thing is of course pure magic’). By (21.1) with
D = B, E = 0, it follows that the set

{dim
R(B) +K(X)

R(0) +K(X)
| B ∈ Div(X)}

is bounded. Since

R =
⋃

B∈Div(X)

R(B)

we get that

dim
R

R(0) +K(X)
<∞

and we are done by Proposition 21.2. �

Proposition 21.5. Let X be a non-singular projective curve and D a divisor.
Then χ(O(D)) is defined and

χ(O(D)) = deg(D) + χ(O).

Proof. It is enough to show that the above is true for D if and only if it is true
for D + P where P is a point. Consider the exact sequence

0→ O(D)→ O(D + P )→ kP → 0.

This sequence is exact because if D =
∑
nPP then O(D)P = t−nP

P OP and similarly
for D + P so

O(D + P )P
O(D)P

=
t−nP−1
P OP

t−nP

P OP
' OP

tPOP
' k.

Then we have

χ(O(D + P )) = χ(O(D)) + 1

and the Proposition follows. �

For every divisor D we set i(D) = dimH1(X,O(D)). We conclude:

Theorem 21.6. (Cohomological Riemann-Roch Theorem) For every divisor D we
have

`(D)− i(D) = deg(D) + 1− i(O)

where g is the genus of X.

Theorem 21.6 is our first step in proving the Riemann-Roch theorem. In order
to deduce Riemann-Roch theorem from the cohomological Riemann-Roch above we
will need the so-called Serre Duality Theorem. The proof of the latter needs residue
theory. Residues are dealt with in the next section.

22. Residues

Definition 22.1. Let O be a DVR with maximal ideal m and containing a field k.
Assume O/m = k. Consider the completion of O,

Ô = lim
←
n

O/mn := {(a1, a2, a3, ...) | an ∈ O/mn, an 7→ an−1}.

Then Ô is a ring containing O.
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Proposition 22.2. If t ∈ m is a parameter (i.e., a generator) there is an isomor-
phism

Ô ' k[[t]]

sending t into t where k[[t]] is the ring of formal power series in t. In particular
Frac(O) ' k((t)), the field of Laurent series. Moreover if D : O → O is a k-
derivation with Dt = 1 then D extends uniquely to the ‘usual’ derivation d/dt on
k[[t]].

Proof. One checks by induction that the natural homomorphism k[[t]]/(tn) →
O/mn is an isomorphism for all n. Then one takes projective limits. The statement
about the derivations follows by noting that D induces a linear map O/mn →
O/mn−1 and the induced map k[[t]]/(tn) → k[[t]]/(tn−1) must send ti + (tn) into
iti−1 + (tn−1) by the Leibniz rule. �

From now we view the isomorphism in the above Proposition as an equality.

We say O is complete if it is equal to Ô.

Definition 22.3. Let O be complete with fraction field K. Define

Ω′K/k = Kdt

to be the one dimensionalK-vector space with basis dt where t is any parameter. We
identify Kdt with Kds for every two parameters t and s by viewing k((s)) = k((t)),
writing s =

∑
cit

i and identifying ds with (
∑
icit

i−1)dt. (Note that Ω′K/k 6= ΩK/k
in general!) For

ω =

∞∑
i=−∞

ait
idt ∈ Ω′K/k

we set
rest(ω) = a−1.

Exercise 22.4. The following hold:
1) The map Ω′K/k → k, ω 7→ rest(ω) is k-linear.

2) rest(ω) = 0 if ω ∈ Odt.
3) rest(df) = 0 for f ∈ K.
4) rest(df/f) = v(f) for f ∈ K× where v : K× → Z is the valuation on K.

Proposition 22.5. Let O be complete with fraction field K and let t, s ∈ O be two
parameters. Then for all ω,

rest(ω) = ress(ω).

So we set res(ω) = rest(ω) for every t.

Proof. We only the give the proof in characteristic zero; one can prove the
characteristic p case by ‘reduction to characteristic zero’ (but we omit that). Write

ω =
∑
n≥1

an
ds

sn
+ ω0, ω0 ∈ Ods = Odt.

So ress(ω) = a1. Now by Exercise 22.4 we have

rest(ω) =
∑
n≥1

anrest

(
ds

sn

)
= a1v(s) + rest

d
−∑

n≥2

an
(n− 1)sn−1

 = a1.

�
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Definition 22.6. For P a point on a non-singular curve X we consider the com-
position:

resP : ΩK(X)/k → Ω′KP /k
res→ k,

where KP is the fraction field of ÔP .

Theorem 22.7. (Residue formula). If X is a nonsingular projective curve then
for all ω ∈ Ωk(X)/k we have ∑

P∈X
resP (ω) = 0.

Sketch of proof. First one checks the above for X = P1 (see the Exercise below).
Next consider t ∈ K(X) such that k(t) ⊂ K(X) is separable and consider the
morphism f : X → P1 defined by this field extension. The trace map

Tr : K(X)→ k(t), T r(g) = Tr(K(X)→ K(X), h 7→ gh)

induces an intrinsic map

Tr : ΩK(X)/k = K(X)dt→ Ωk(t)/t = k(t)t, T r(gdt) = Tr(g)dt.

One then checks (by a local computation which we omit) that for every Q ∈ P1∑
f(P )=Q

resP (ω) = resQ(Tr(ω)).

Taking
∑
Q∈P1 in the above equality we conclude by theX = P1 case of the theorem.

�

Exercise 22.8. Prove the residue formula in case X = P1. Hint: write ω =
f(t)dt ∈ k(t)dt and write f(t) as a polynomial plus sum of simple fractions 1

(t−λ)n .

Then prove the residue formula by direct computation for monomials tn and for
simple fractions.

Exercise 22.9. Let X = Z(f) ⊂ A2 be non-singular, A = k[x, y]/(y2 − x3 − x),
P = (0, 0). Compute

resP (dy/x) and, resP (dx/y), resP (dx/x) and, resP (dy/y).

23. Proof of Riemann-Roch

We prove here the Serre Duality Theorem which, in combination with the Co-
homological Riemann-Roch Theorem will prove the Riemann-Roch Theorem.

Definition 23.1. For a divisor D on X let

J(D) :=

(
R

R(D) +K(X)

)◦
Elements α ∈ J(D) will be identified with k-linear maps α : R → k vanishing on
R(D) +K(X).

For D′ ≥ D we have R(D′) ⊃ R(D) and J(D′) ⊂ J(D). Define

J =
⋃
D

J(D)

Note that J is a K(X)-linear space: for α ∈ J(D) and f ∈ L(D′) we define
f · α : R→ k by the formula

(f · α)(r) = α(f · r).
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One checks that f · α ∈ J(D −D′).

Proposition 23.2. dimK(X) J ≤ 1.

Proof. Assume α, α′ ∈ J are K(X)-linearly independent. Let α, α′ ∈ J(D),
deg(D) = d. Take any P ∈ X. The map

L(nP )⊕ L(nP )→ J(D − nP ), (f, g) 7→ f · α+ g · α′

is injective so

dim J(D − nP ) ≥ 2`(nP ).

We will make n→∞ and get a contradiction. By finite dimensionality we have

(23.1)

dim J(D − nP ) = dimH1(X,O(D − nP ))

= `(D − nP )− χ(O(D − nP ))

= `(D − nP )− deg(D − nP )− χ(O)

= `(D − nP ) + n− d− χ(O)

= n− d− χ(O) for n > d

On the other hand

`(nP ) ≥ χ(O(nP )) = deg(nP ) + χ(O) = n+ χ(O).

Hence

(23.2) dimJ(D − nP ) ≥ 2n+ 2χ(O).

By (23.1) and (23.2) we get a contradiction. �

Definition 23.3. Let 〈 , 〉 : ΩK(X)/k ×R→ k be the map

〈ω, r〉 :=
∑
P∈X

resP (rPω).

Exercise 23.4.
1) 〈 , 〉 is k-bilinear.
2) 〈ω, r〉 = 0 for r ∈ K(X).
3) 〈ω, r〉 = 0 for ω ∈ H0(X,Ω(−D)) and r ∈ R(D).
4) 〈f · ω, r〉 = 〈ω, f · r〉 for f ∈ K(X).

Let θ : ΩK(X)/k → R◦ be the map

θ(ω) = (r 7→ 〈ω, r〉).

By the above Exercise

θ(H0(X,Ω(−D)) ⊂ J(D)

hence

Im(θ) ⊂ J.

Lemma 23.5. Let ω ∈ ΩK(X)/k be such that θ(ω) ∈ J(D). Then ω ∈ H0(X,Ω(−D)).
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Proof. Let D =
∑
nPP . Assume the conclusion is false so there exists P ∈ X

such that vP (ω) − nP ≤ −1. Set n = vP (ω). Define r ∈ R by letting rQ = 0 for

Q 6= P and rP = t−n−1
P . Then vP (rPω) = −1 so 〈ω, r〉 6= 0. Now r ∈ R(D) because

vP (rP ) + nP = −n− 1 + nP = −vP (ω)− 1 + nP ≥ 0.

We got a contradiction because θ(ω) vanishes on R(D). �

Proposition 23.6. The map θ : ΩK(X)/k → J is injective (hence an isomorphism
because it is K(X)-linear, the source has dimension 1 and the target has dimension
≤ 1).

Proof. Assume ω ∈ ΩK(X)/k is such that θ(ω) = 0. Then θ(ω) = 0 ∈ J(D) for

all D. By Lemma 23.5 above ω ∈ H0(X,Ω(−D)) for all D. This forces ω = 0. �

Corollary 23.7. The map θ : H0(X,Ω(−D))→ J(D) is a bijection.

Proof. Injectivity follows from Proposition 23.6. Surjectivity follows from Propo-
sition 23.6 plus Lemma 23.5. �

We are ready for:

Theorem 23.8. (Serre Duality) Let X be a non-singular projective curve and D
a divisor. Then

H1(X,O(D)) ' H0(X,O(K −D))◦.

In particular
i(D) = `(K −D).

Proof. It follows from Corollary 23.7 and Proposition 21.2. �

Finally we can give:

Proof of the Riemann-Roch Theorem 15.11. It follows from the Serre Duality
Theorem 23.8 plus the Cohomological Riemann-Roch Theorem 21.6. �


