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Part I: Outline of the theory



• STARTING POINT:
A.B.,“Differential characters of abelian varieties over p-adic fields”,
Inventiones 1995.

Idea there: Fermat quotients instead of derivations used to construct arithmetic
analogues of the Lie-Cartan jet spaces.

Subsequently: latter used in 2 contexts:

a) arithmetic on Abelian and Shimura varieties
b) arithmetic on classical groups GLn, SOn,Spn, ...

• For a) see book “Arithmetic differential equations” AMS 2005; one is led to
arithmetic analogues of Picard-Fuchs, Manin kernels, modular forms, etc.

• For b) book “Foundations of arithmetic differential geometry”, AMS 2017;
one is led to arithmetic analogues of Riemannian and symplectic geometry.
THIS TALK IS ABOUT b).



In this talk:

• Z analogous to a ring of functions on M = Rm, m→∞

• primes p ∈ Z analogous to coordinate functions ξi : M → R, i ≤ m

• ∂f
∂ξi

replaced by Fermat quotients n−np

p

• metrics replaced by symmetric integral matrices

• connections replaced by adelic objects attached to such matrices

• curvature replaced by global objects attached to such matrices



Classical versus arithmetic differentiation

• A ⊂ C∞(Rm,R)

• A = Z[1/M, ζN ]

• U = {ξ1, ξ2, ..., ξm} ⊂ C∞(Rm,R)

• V = {p1, p2, p3, ...} ⊂ Z, m = |V| ≤ ∞



• For A ⊂ C∞(Rm,R),

δi : A→ A, δi f :=
∂f

∂ξi
, , i ∈ {1, ...,m}. (1)

• For A = Z[1/M, ζN ]

δp : A→ A, δp(a) =
φp(a)− ap

p
, p ∈ V, (2)

where φp : A→ A the unique ring automorphism sending ζN into ζpN .



• A derivation on a ring B is an additive map B → B that satisfies the Leibniz
rule.

• A p-derivation defined as follows. Assume B is a ring and assume, for
simplicity, that p is a non-zero divisor in B; then a p-derivation on B is a set
theoretic map

δp : B → B

with the property that the map

φp : B → B

defined by
φp(b) = bp + pδpb

is a ring homomorphism.

• We denote by φp the ring homomorphism attached to a p-derivation δp and
we shall refer to φp as the Frobenius lift attached to δp.



Classical differential geometry revisited

• n × n matrix x = (xij) of indeterminates

• For A ⊂ C∞(Rm,R),
B = A[x , det(x)−1]. (3)

• A connection on P = Rm × GLn is a tuple δ = (δi ) of derivations

δi : B → B, i ∈ {1, ...,m}, (4)

extending the derivations 1.



• For δ define the curvature as the matrix (ϕij) of commutators

ϕij := [δi , δj ] : B → B, i , j ∈ {1, ...,m}. (5)

• The holonomy ring of δ is the Z-span hol in

End(B) := EndZ−mod(B)

of the commutators
[δi1 , [δi2 , [...., [δis−1 , δis ]...]]], (6)

where s ≥ 2; it is a Lie subring of End(B).



• The trivial connection δ0 = (δ0i ) is defined by

δ0ix = 0.

• A connection is flat if its curvature vanishes: ϕij = 0 for all i , j = 1, ...,m.
For instance δ0 is flat.



Types of connections for which we seek arithmetic analogues:

1) Ehresmann connections,
2) Chern connections,
3) Levi-Civita connections,
4) Fedosov connections,
5) Lax connections,
6) Hamiltonian connections,
7) Cartan connections.

Will concentrate on 1) through 5).



• A connection (δi ) is called an Ehresmann connection if it satisfies one of the
following two equivalent conditions:

1a) There exist n× n matrices Ai with coefficients in A ⊂ C∞(Rm,R) such that

δix = Aix (7)

1b) The following diagrams are commutative:

B
µ−→ B ⊗A B

δi ↓ ↓ δi ⊗ 1 + 1⊗ δ0i

B
µ−→ B ⊗ B

(8)



• Condition 1a: (δi ) is right linear.

• Condition 1b: (δi ) is right invariant.

• The arithmetic analogues of conditions 1a and 1b cease to be equivalent.

• If (δi ) is an Ehresmann connection the curvature satisfies ϕij(x) = Fijx where
Fij is the matrix given by the classical formula

Fij := δiAj − δjAi − [Ai ,Aj ]. (9)



• There is a Galois theory attached to flat Ehresmann connections, the
Picard-Vessiot theory.

• Indeed, for a flat Ehresmann connection δ = (δi ) consider the logarithmic
derivative map lδ : GLn(A)→ gln(A)m with coordinates

lδi (u) = δiu · u−1,

where gln is the Lie algebra of GLn.

• The fibers of the map lδ are solution sets of systems of linear equations

δiu = Ai · u.

• If one replaces A by a ring of complex analytic functions then Galois groups
can be classically attached to such systems; these groups are algebraic
subgroups of GLn(C) measuring the algebraic relations among the solutions to
the corresponding systems.



• We next discuss (“real”) Chern connections.

• In classical differential geometry Chern connections form a subclass of
Ehresmann connections. This will not be the case in arithmetic differential
geometry.

• For A ⊂ C∞(Rm,R) let q ∈ GLn(A) with qt = ±q; think: metric/2-form.

• For G = GLn = Spec B consider the maps of schemes over A,

Hq : G → G , Bq : G × G → G (10)

defined by
Hq(x) = x tqx , Bq(x , y) = x tqy . (11)



• Recall the trivial connection δ0 = (δ0i ) on G defined by δ0ix = 0.

• Non-standard reformulation of a classical fact: there is a unique connection
(δi ) on G such that the following diagrams are commutative:

B
δi←− B

Hq ↑ ↑ Hq

B
δ0i←− B

B
δi⊗1+1⊗δ0i←− B ⊗A B

δ0i ⊗ 1 + 1⊗ δi ↑ ↑ Bq

B ⊗A B
Bq←− B

(12)

• This δ turns out to be Ehresmann and can be referred to as the Chern
connection attached to q.



• To see the analogy with the classical Chern connection set

Γk
ij = −Aikj = (k, j) entry of (−Ai := −δix · x−1).

(Christoffel symbols of the 2nd kind)

Γijk := Γl
ijqlk ,

(Christoffel symbols of the 1st kind).

• The commutativity of the left diagram in 12 is equivalent to the condition

δiqjk = Γijk ± Γikj , (13)



• The commutativity of the right diagram in 12 is equivalent to the condition

Γijk = ±Γikj ; (14)

• So the Chern connection attached to q exists and is unique, given by

Γijk =
1

2
δiqjk . (15)



• We next discuss Levi-Civita connections.

• Again, in classical differential geometry, these are special cases of Ehresmann
connections (which will not be the case in arithmetic differential geometry).

• Assume here that n = m. (Note we also implicitly assume here that a
bijection is given between the set indexing the derivations δi and the set
indexing the rows and columns of the matrix xij ; such a bijection plays the role
of what is classically called a soldering.)

• The connection (δi ) is torsion free if:

Γijk = Γjik . (16)



• The fundamental theorem of Riemannian geometry says: for qt = q, there is
a unique connection δ satisfying the equations 13 (with the + sign) and 16; it
is given by

Γkij =
1

2
(δkqij + δiqjk − δjqki ) (17)

• It is Ehresmann and it is called the Levi-Civita connection attached to q.

• The Levi-Civita connection is generally different from the Chern connection;
it coincides with the Chern connection if and only if

δiqjk = δjqik (18)

in which case q is called Hessian (the “real” analogue of Kähler).



• For the Levi-Cività connection attached to a metric q = (qij) we set:

ϕij(x) = Fijx , Fij := δiAj − δjAi − [Ai ,Aj ], (19)

Fij = (Fijkl), Rk
lij := −Fijkl , Rijkl = qimRm

jkl . (20)

One refers to Rijkl as the covariant Riemann tensor; the latter has following
symmetries:

Rijkl = −Rjikl , Rijkl = −Rijlk , Rijkl + Riklj + Rijlk = 0, Rijkl = Rklij . (21)

• A metric q is said to have constant sectional curvature if there exists κ ∈ A
with δiκ = 0 such that

Rijkl = κ · (qikqjl − qjkqil). (22)



• If a metric q is normal at the origin 0 (i.e. q ≡ 1 mod M2 where 1 is the
identity matrix and M ⊂ A is the ideal of functions vanishing at 0) then the
covariant Riemann tensor satisfies:

Rijkl ≡
1

2
(δjδkqil + δiδlqjk − δiδkqjl − δjδlqik) mod M. (23)



• A “symplectic analogue” of Levi-Civita connections are Fedosov connections.
They are not necessarily Ehresmann connections; and the Ehresmann ones are
not unique.

• q ∈ GLn(A), qt = −q, so n is even. A Fedosov connection relative to q is an
invariant connection δ that is torsion free (i.e. 16 holds) and satisfies 13 (with
the − sign).

• A Fedosov connection relative to q exists if and only if q is symplectic in the
sense that it satisfies

δiqjk + δjqki + δkqij = 0. (24)

• For a given symplectic q Ehresmann Fedosov connections exist and are not
unique; one such connection is given by

Γijk =
1

3
(δiqjk + δjqik) . (25)



• Finally we discuss Lax connections; unlike Chern and Levi-Civita connections,
Lax connections are not a subclass of the Ehresmann connections.

• (δi ) is Lax if
δix = [Ai (x), x ] := Ai (x)x − xAi (x) (26)

for some n × n matrix Ai (x) with coefficients in B.

• If Ai (x) = Ai have coefficients in A (independent of x) and Fij is the
curvature of the connection x 7→ Aix then the curvature of Lax connection is
given by

ϕij(x) = [Fij , x ] (27)

so it completely determines the trace free part of (Fij).



• For Lax connections the following diagrams are commutative:

B
δi←− B

P ↑ ↑ P
A[z]

δ0i←− A[z]

(28)

where A[z] = A[z1, ..., zn] is a ring of polynomials in the variables zj , δ0i are the
unique derivations extending the corresponding derivations on A with δ0izj = 0,
and P is the A-algebra homomorphism with P(zj) = Pj(x),

det(s · 1− x) =
n∑

j=0

(−1)jPj(x)sn−j .



• The commutativity of 28 expresses the fact that the Lax connections describe
“isospectral flows” on GLn: if u is a solution to

δiu = [Ai (u), u]

then
δi (Pj(u)) = 0

so the eigenvalues of u are δi -constant.



• The real theory above has a complex analogue (and hence a
“(1, 1)-analogue”)

• M = Cm, A ⊂ C∞(M,C) stable under

δi :=
∂

∂zi
, δi :=

∂

∂z i
, i = 1, ...,m,

• A connection on G = Spec B, B = A[x , det(x)−1], is an m-tuple of
derivations δi : B → B extending the derivations δi : A→ A.

• For δi : B → B, extending the derivations δi : A→ A, such that δix = 0
define the (1, 1)-curvature of δ = (δi ) as the matrix (ϕi j) with entries the
A-derivations

ϕi j := [δi , δj ] : B → B. (29)

The theory proceeds from here.



Arithmetic differential geometry

• We introduce an arithmetic analogue of connection and curvature. We start
with the analogue of the real case.

• The first step is clear: we consider a ring

B = A[x , det(x)−1]

with A = Z[1/M, ζN ].



• A first attempt to define arithmetic analogues of connections would be to
consider families of p-derivations δp : B → B, p ∈ V, extending the
p-derivations 2; one would then proceed by considering their commutators on
B (or, if necessary, expressions derived from these commutators). But the point
is that the examples of “arithmetic analogues of connections” we will encounter
in practice will almost never lead to p-derivations B → B!

• What we shall be led to is, rather, an adelic concept we next introduce. (Our
guiding “principle” here is that C∞ geometric objects should correspond to
adelic objects in arithmetic while analytic/algebraic geometric objects
correspond to global objects in arithmetic.)



• For each p ∈ V we consider the p-adic completion of B:

B p̂ := lim
←

B/pnB. (30)

• Define an adelic connection on G = GLn to be a family (δp) of p-derivations

δp : B p̂ → B p̂, p ∈ V, (31)

extending the p-derivations in 2.

• If φp : B p̂ → B p̂ are the Frobenius lifts attached to δp and G p̂ = Spf B p̂ is
the p-adic completion of G = GLn = Spec B then we still denote by
φp : G p̂ → G p̂ the induced morphisms of p-adic formal schemes.



• Next: analogues of the various types of connections encountered in classical
differential geometry: Ehresmann, Chern, Levi-Civita, Fedosov, and Lax.

• Analogue of the trivial connection (δ0i ), δ0ix = 0 is the adelic connection
(δ0p) defined by δ0px = 0. The associated Frobenius lifts (φ0p) satisfy
φ0p(x) = x (p) where x (p) is the matrix (xp

ij ).

• To introduce arithmetic analogues of Ehresmann connections one starts by
noting that, for n ≥ 2, there are no adelic connections (δp) whose attached
Frobenius lifts (φp) make the following diagrams commute:

G p̂ × G p̂ µ−→ G p̂

φp × φ0p ↓ ↓ φp

G p̂ × G p̂ µ−→ G p̂

(32)



• The above is an elementary observation; one can prove a less elementary
result that for n ≥ 2 and p 6 |n there are no adelic connections whose attached
Frobenius lifts (φp) and (φ1p) make the following diagrams commute:

G p̂ × G p̂ µ−→ G p̂

φp × φ1p ↓ ↓ φp

G p̂ × G p̂ µ−→ G p̂

(33)



• There is a useful property, weaker than the commutativity of 32, namely an
invariance property with respect to the action of N on G by right translation,
where

N is the normalizer of the diagonal maximal torus T of G . (34)

Indeed we will say that an adelic connection (δp) with associated Frobenius lifts
(φp) is right invariant with respect to N if the following diagrams are
commutative:

G p̂ × N p̂ µ−→ G p̂

φp × φ0p ↓ ↓ φp

G p̂ × N p̂ µ−→ G p̂

(35)

• This latter property has its own merits but is too weak to function
appropriately as a defining property of Ehresmann connections in arithmetic.
Instead, we can consider an appropriate analogue of “linear,” 7. What we can
do is replace the Lie algebra gln by an arithmetic analogue of it, gln,δp , and
then we can introduce an arithmetic analogue of the logarithmic derivative.



• This new framework leads to the following definition: an adelic connection
(δp) is an Ehresmann connection if

δpx = αp · x (p), (36)

where αp are matrices with coefficients in A. Ehresmann connections are right
invariant with respect to N.

• One can attach Galois groups to such Ehresmann connections and develop
the first steps of their theory. A natural expectation is that these Galois groups
belong to the group N(A)δ of all matrices in N(A) whose entries are roots of
unity or 0. This expectation is not always realized but one can prove
(B-Dupuy) that something close to it is realized for (αp) “sufficiently general.”

• The above expectation is justified by the fact that, according to the general
philosophy of the field with one element F1, the union of the N(A)δ’s, as A
varies, plays the role of “GLn(Fa

1),” where Fa
1 is the “algebraic closure of F1.



• Next: arithmetic analogue of Chern connections. Unlike in the case of
classical differential geometry our adelic Chern connections will not be special
cases of Ehresmann connections (although they will be right invariant with
respect to N).

• Let q ∈ GLn(A) with qt = ±q. Attached to q we have, again, maps
Hq : G → G and Bq : G × G → G defined by Hq(x) = x tqx and
Bq(x , y) = x tqy . We continue to denote by Hq,Bq the maps induced on the
p-adic completions G p̂ and G p̂ × G p̂. Consider the unique adelic connection
δ0 = (δ0p) on G with δ0px = 0 and denote by (φ0p) the attached Frobenius
lifts. Also, for an arbitrary adelic connection δ = (δp) on G , denote by (φp) the
Frobenius lifts attached to δ.



• Then one proves that there exists a unique adelic connection δ such that the
following diagrams are commutative:

G p̂ φp−→ G p̂

Hq ↓ ↓ Hq

G p̂ φ0p−→ G p̂

G p̂ φ0p×φp−→ G p̂ × G p̂

φp × φ0p ↓ ↓ Bq
G p̂ × G p̂ Bq−→ G p̂

(37)

• The adelic connection δ is referred to as the Chern connection (on G = GLn)
attached to q.



• Note the following relation between the “Christoffel symbols” defining our
Chern connection and the Legendre symbol. Let q ∈ GL1(A) = A×,
A = Z[1/M], and let δ = (δp) be the Chern connection associated to q. Then
it turns out that φp : G p̂ → G p̂ is defined by φp : Zp[x , x−1]p̂ → Zp[x , x−1]p̂,

φp(x) = q(p−1)/2

(
q

p

)
xp, (38)

where
(

q
p

)
is the Legendre symbol of q ∈ A× ⊂ Z(p).



• Next: analogues of Levi-Civita connections. They are already relevant in case
V consists of one prime p only.

• Analogue of fundamental theorem of Riemannian geometry: for q ∈ GLn(A),
qt = q, there is a unique n-tuple of (δ1p, ..., δnp) of adelic connections on
G = GLn, called the Levi-Civita connection attached to q, with attached
Frobenius lifts (φ1p, ..., φnp), such that the following diagrams are commutative
for i = 1, ..., n,

G p̂ φip−→ G p̂

Hq ↓ ↓ Hq

G p̂ φ0p−→ G p̂

(39)

and such that, for all i , j = 1, ..., n, we have:

δipxkj = δjpxki . (40)



• The conditions 39 and 40 are analogous to the conditions of parallelism 13
(with the + sign) and torsion freeness 16 defining classical Levi-Civita
connections.

• The Levi-Civita connection and the Chern connection attached to q are
related by certain congruences mod p that are reminiscent of the relation
between the two connections in classical differential geometry.

• The fact that in the Levi-Civita picture we restrict to the case of one prime
only suggests that our picture corresponds to the classical Levi-Civita
connections of cohomogeneity one metrics, by which we understand here
metrics g =

∑
gijdξidξj satisfying

δkgij = δlgij . (41)



• One can also attempt to develop an arithmetic analogue of Fedosov
connections as follows.

• For q ∈ GLn(A), qt = −q say that an n-tuple of (δ1p, ..., δnp) of adelic
connections on G = GLn is a Fedosov connection relative to q if the attached
Frobenius lifts (φ1p, ..., φnp) make the diagrams 39 commutative and, in
addition the equalities 40 hold.

• One can prove that for n = 2 and any antisymmetric q Fedosov connections
relative to q exist. However, in contrast with the Levi-Civita story, for n ≥ 4
there is no Fedosov connection relative to the split q, for instance.



• Next: arithmetic analogues of Lax connections. In fact there are two such
analogues which we call isospectral and isocharacteristic Lax connections.

• By the way isospectral and isocharacteristic Lax connections are not defined
on the whole of G but rather on certain Zariski open sets

G∗, G∗∗ ⊂ G

respectively.



• If G∗ ⊂ G is the open set of regular matrices, T is the diagonal maximal
torus and T ∗ = T ∩ G∗ then there is an adelic connection, referred to as the
canonical isospectral Lax connection that makes commutative the following
diagrams:

(T ∗)p̂ × G p̂ φ0p×φ0p−→ (T ∗)p̂ × G p̂

C ↓ ↓ C
(G∗)p̂

φp−→ (G∗)p̂
(42)

with G∗ ∩ T = T ∗ and C(t, x) = x−1tx .



• More generally, if (δp) is the canonical isospectral Lax connection, with
Frobenius lifts (φp), φp(x) = Φp(x), and αp(x) are n × n matrices with entries
in O(G∗)p̂, then, setting

εp(x) = 1 + pαp(x)

one can consider the isospectral Lax connection attached to (αp), defined by

the family of Frobenius lifts (φ
(ε)
p ),

φ(ε)
p (x) = Φ(ε)

p (x) = εp(x) · Φp(x) · εp(x)−1.

The latter has the following property that justifies the term isospectral.



• Let

up = a−1
p bpap, ap ∈ GLn(Ap̂), bp = diag(bp1, ..., bpn) ∈ T ∗(Ap̂)

be such that φ
(ε)
p (u) = Φ

(ε)
p (u). Then

δpbpi = 0, i = 1, ..., n.

So the eigenvalues bpi of up are δp-constant.



• On the other hand we can prove: there exist adelic connections (δp) that
make commutative the following diagrams:

(G∗∗)p̂
φp−→ (G∗∗)p̂

P ↓ ↓ P
(An)p̂

φ0p−→ (An)p̂,

(43)

where An = Spec A[z]. These diagrams are analogous to 28; the connections
above are called isocharacteristic Lax connections. Among isocharacteristic Lax
connections there is a canonical one.

• For any isocharacteristic Lax connection (δp), if φp(x) = Φp(x) and
up ∈ G∗∗(Ap̂) satisfies φp(u) = Φp(u) we have that

δp(Pj(u)) = 0, j = 1, ..., n.

So the coefficients of the characteristic polynomial of up are δp-constant.



• We encountered 2 conditions for a matrix u

1) The eigenvalues of u are δp-constant;

2) The coefficients of the characteristic polynomial of u are δp-constant.

• Recall: δp-constant implies being a root of unity or 0.
• So (unlike in classical calculus) 1) and 2) are not equivalent!!!
• So “isospectral” and “isocharacteristic” Lax connections are quite different!!!



• Next: curvature of adelic connections.

• Case of Ehresmann connections, 36. Since αp ∈ A for all p our Frobenius lifts
φp : B p̂ → B p̂ induce Frobenius lifts φp : A[x ]→ A[x ] and hence one can
consider the “divided” commutators

ϕpp′ :=
1

pp′
[φp, φp′ ] : A[x ]→ A[x ], p, p′ ∈ V. (44)

The family (ϕpp′) will be referred to as the curvature of the adelic connection
(δp).

• The situation for general adelic connections (in particular for Chern and Lax
connections) will be quite different. Indeed, in defining curvature we face the
following dilemma: our p-derivations δp in 31 do not act on the same ring, so
there is no a priori way of considering their commutators and, hence, it does
not seem possible to define, in this way, the notion of curvature.



• It will turn out, however, that some of our adelic connections will satisfy a
remarkable property which we call globality along the identity (more generally
along various subvarieties) and which will allow us to define curvature via
commutators.

• Consider the matrix T = x − 1, where 1 is the identity matrix. We say that
an adelic connection (δp) on GLn, with attached family of Frobenius lifts (φp),
is global along 1 if, for all p, φp : B p̂ → B p̂ sends the ideal of 1 into itself and,
moreover, the induced homomorphism φp : Ap̂[[T ]]→ Ap̂[[T ]] sends the ring
A[[T ]] into itself.

• If the above holds then one can consider the curvature of (δp) as the family
of “divided” commutators (ϕpp′),

ϕpp′ :=
1

pp′
[φp, φp′ ] : A[[T ]]→ A[[T ]], (45)

where p, p′ ∈ V. Call this procedure analytic continuation between primes.



• Define the holonomy ring hol of δ as the Z-linear span in End(A[[T ]]) of all
the Lie monomials

[φp1 , [φp2 , ..., [φps−1 , φps ]...]] : A[[T ]]→ A[[T ]]

where s ≥ 2, pi ∈ V.

• Define the holonomy Q-algebra holQ of δ as the Q-linear span of hol in
End(A[[T ]])⊗Q.

• Define the completed holonomy ring,

ĥol = lim
←

holn,

where holn is the image of the map

hol→ End(A[[T ]]/(T )n). (46)



• The trivial adelic connection δ0 = (δ0p), δ0px = 0, is global along 1 so it
induces ring endomorphisms φ0p : A[[T ]]→ A[[T ]],

φ0p(T ) = (1 + T )(p) − 1.

We may morally view δ0 as an analogue of a flat connection in real geometry
(where A ⊂ C∞(Rm,R)). Alternatively we may view δ0 as an arithmetic
analogue of the derivations δi = ∂/∂z i on A[x , det(x)−1] which kill x , where
A ⊂ C∞(Cm,C).

• Following this second analogy we may consider an arbitrary adelic connection
δ = (δp), with attached Frobenius lifts (φp), and we may define the
(1, 1)-curvature of δ as the matrix of “divided commutators” (ϕpp′)

ϕpp′ :=
1

pp′
[φp, φ0p′ ] : A[[T ]]→ A[[T ]], p 6= p′, (47)

ϕpp :=
1

p
[φp, φ0p] : A[[T ]]→ A[[T ]]. (48)



• Going back to our discussion of curvature for Chern connections consider,
again, q ∈ GLn(A) with qt = ±q.

• One can show that if all the entries of q are roots of unity or 0 then the
Chern connection δ attached to q is global along 1; in particular δ has a well
defined curvature and (1, 1)-curvature.

• Let us say that a matrix q ∈ GLn(A) is split if it is one of the following:

(
0 1r

−1r 0

)
,

(
0 1r

1r 0

)
,

 1 0 0
0 0 1r

0 1r 0

 , (49)

where 1r is the r × r identity matrix and n = 2r , 2r , 2r + 1 respectively. Let q
be split and let (ϕpp′) be the curvature of the Chern connection on G attached
to q. We can prove various vanishing/non-vanishing results for curvature and
(1, 1)-curvature; here is a sample:



• Assume n ≥ 4. Then for all p 6= p′ we have ϕpp′ 6= 0.
• Assume n = 2r ≥ 2. Then for all p, p′ we have ϕpp′(T ) ≡ 0 mod (T )3.
• Assume n = 2 and qt = −q. Then for all p, p′ we have ϕpp′ = 0.
• Assume n ≥ 2. Then for all p, p′ we have ϕpp′ 6= 0.
• Assume n = 1. Then for all p, p′ we have ϕpp′ = ϕpp′ = 0.

The first assertion morally says that Spec Z is “curved,” while the second
assertion morally says that Spec Z is only “mildly curved.” Note that the above
assertions say nothing about the vanishing of the curvature ϕpp′ in case n = 2, 3
and qt = q; our method of proof does not seem to apply to these cases.



• Assume q split and n ≥ 4 is even. Then, for the Chern connection attached
to q, the following hold:

1) ĥol is non-zero and pronilpotent.

2) holQ is not spanned over Q by the components of the curvature.

• Assertion 1 is in stark contrast with the fact that holonomy Lie algebras
arising from Galois theory are never nilpotent unless they vanish. Assertion 2
should be viewed as a statement suggesting that the flavor of our arithmetic
situation is rather different from that of classical locally symmetric spaces;
indeed, for the latter, the Lie algebra of holonomy is spanned by the
components of the curvature.



• Similar results proved for the curvature of Lax connections.

• The open sets G∗ and G∗∗ where isospectral and isocharacteristic Lax
connections are defined (cf. 43 and 42) do not contain the identity of the
group G = GLn hence curvature cannot be defined by analytic continuation
along the identity; however these open sets contain certain torsion points of the
diagonal maximal torus of G and we can use analytic continuation along such
torsion points to define curvature and (1, 1)-curvature. We can then prove:

• For the isocharacteristic Lax connection and n = 2:

ϕpp̄ 6= 0, all p.

On the other hand, by definition,

• For the (canonical) isospectral Lax connection

ϕpp′ = 0, all p, p′.



• The concept of curvature discussed above was based on what we called
analytic continuation between primes; this was the key to making Frobenius
lifts corresponding to different primes act on a same ring and note that it only
works for adelic connections that are global along 1 (or, as we shall see in the
body of the book, along certain tori in GLn). There is a different approach
towards making Frobenius lifts comparable; this approach is based on
algebraizing Frobenius lifts via correspondences and works for adelic
connections that are not necessarily global along 1 (or along a torus). The
price to pay for allowing this generality is that endomorphisms (of A[[T ]]) are
replaced by correspondences (on GLn).



• Let δ = (δp) be the Chern connection on G = GLn attached to a matrix
q ∈ GLn(A) with qt = ±q. Then we prove that there exist maps of A-schemes
πp : Yp → G and ϕp : Yp → G such that πp are affine and étale, the p-adic
completions of πp,

πp̂
p : Y p̂

p → G p̂,

are isomorphisms and we have equalities of maps,

ϕp̂
p = φp ◦ πp̂

p : Y p̂
p → G p̂.

In other words the correspondences

Γp := (Yp, πp, ϕp)

on G are “algebraizations” of our Frobenius lifts φp. The family (Γp) will be
referred to as a correspondence structure for (δp). This structure is not unique
but does have some “uniqueness features.”



• On the other hand any correspondence Γp acts on the field E of rational
functions of G = GLn by the formula Γ∗p : E → E ,

Γ∗p(z) := Trπp (ϕ∗p(z)), z ∈ E , (50)

where Trπp : Fp → E is the trace of the extension π∗p : E → Fp := Yp ⊗G E and
ϕ∗p : E → Fp is induced by ϕp. So one can define the curvature of (Γp) as the
matrix (ϕ∗pp′) where

ϕ∗pp′ :=
1

pp′
[Γ∗p , Γ

∗
p′ ] : E → E , p, p′ ∈ V. (51)



• Note that, in this way, we have defined a concept of “curvature” for Chern
connections attached to arbitrary q’s (that do not necessarily have entries
zeroes or roots of unity). There is a (1, 1)-version of the above as follows.
Indeed the trivial adelic connection δ0 = (δ0p) has a canonical correspondence
structure (Γ0p) given by

Γ0p = (G , π0p, ϕ0p),

where π0p is the identity, and ϕ0p(x) = x (p). One can then define the
(1, 1)-curvature of (Γp) as the family (ϕ∗pp′) where ϕ∗pp′ is the additive
endomorphism

ϕ∗pp′ :=
1

pp′
[Γ∗0p′ , Γ

∗
p ] : E → E for p 6= p′, (52)

ϕ∗pp :=
1

p
[Γ∗0p, Γ

∗
p ] : E → E . (53)



For q split we have:

• Assume n = 2 and qt = −q. Then for all p, p′ we have ϕ∗pp′ = 0 and
ϕ∗pp′ 6= 0.
• Assume n = 2 and qt = q. Then for all p, p′ we have ϕ∗pp′ 6= 0.

Once again our results say nothing about curvature in case n = 2 and qt = q;
our method of proof does not seem to apply to this case.



• For the Levi-Civita connection (δ1p, ..., δnp) attached to a symmetric q one
can define a curvature (ϕij

p), indexed by i , j = 1, ..., n given by the divided
commutators

ϕij
p :=

1

p
[φip, φjp] : O(G p̂)→ O(G p̂). (54)

This is a “vertical” curvature (indexed by the index set of the columns and
rows of x) rather than a “horizontal” curvature, in the style of the previously
introduced curvatures (which are indexed by primes). We can prove
non-vanishing results for these curvatures. For instance assume i , j , k, l are
fixed indices between 1 and n. We have:

• Assume δpqjk + δpqil 6≡ δpqik + δpqjl mod p. Then ϕij
p , ϕ

kl
p 6≡ 0 mod p.

• Assume n = 2r and q is split. Then ϕij
p 6≡ 0 mod p for i 6= j .



• We can prove a more precise result. Set

Φij := Φij(x) := ϕij(x), Ψij := Ψij(x) := x (p2)tq(p2)Φij(x),

and let Rijkl be the (k, l)-entry of the matrix Ψij , so

Ψij = (Rijkl). (55)

Then the Rijkl in 55 can be viewed as an arithmetic analogue of the covariant
Riemann tensor in classical differential geometry.

• We can prove that (Rijkl) in 55 satisfies congruences mod p:

Rijkl ≡ −Rjikl , Rijkl ≡ −Rijlk , Rijkl + Riklj + Rijlk ≡ 0, Rijkl ≡ Rklij , (56)

which are, of course, an arithmetic analogue of symmetries of Riemann tensor.



• In addition we can prove the congruence

Rijkl ≡ −
1

2
(δqjk + δqil − δqik − δqjl)

p mod (p, x − 1), (57)

equivalently the congruence

Rijkl ≡ −
1

2
(δ(pδqjk) + δ(pδqil)− δ(pδqik)− δ(pδqjl)) mod (p, x − 1). (58)

These can be viewed as one of the following:

1) an “infinitesimal” analogue of the condition of constant sectional curvature;

2) an analogue of the formula giving curvature of normal metrics at the origin.



• For a fixed p and the Fedosov connection (δ1p, δ2p) relative to any
antisymmetric q ∈ GL2(A) the formula 54 defines, again, a curvature; we can
prove that this curvature does not vanish in general even if q is split.



Part II: Comparison with other theories



• A number of analogies between primes and geometric objects have been
proposed. Here are three of them:

A) Primes are analogous to points on a Riemann surface.
B) Primes are analogous to knots in a 3-dimensional manifold.
C) Primes are analogous to directions in an infinite dimensional manifold.



• The viewpoint A is classical, going back to Dedekind, Hilbert, etc. The
framework of Grothendieck, Arakelov, etc., also fits into viewpoint A.
According to this viewpoint the ring of integers Z, or more generally rings of
integers in number fields, can be viewed as analogues of rings of functions on
Riemann surfaces or affine algebraic curves; these are objects of complex
dimension 1 (or real dimension 2). Genera of number fields are classically
defined and finite, as in the case of Riemann surfaces. There is a related
viewpoint according to which Z is the analogue of an algebraic curve of infinite
genus; cf. e.g., Connes-Consani.

• The viewpoint B originates in suggestions of Mazur, Manin, Kapranov, and
others. According to this viewpoint Spec Z should be viewed as an analogue of
a 3-dimensional manifold, while the embeddings Spec Fp → Spec Z should be
viewed as analogues of embeddings of circles. The Legendre symbol is then an
analogue of linking numbers. This analogy goes rather deep; cf. Morishita.

• Our approach adopts the viewpoint C.



• There are other approaches that adopt the viewpoint C. For instance Haran’s
theory (and previous work of Kurokawa and others) considers the operators

∂

∂p
: Z→ Z, ∂a

∂p
:= vp(a)

a

p
,

where vp(a) is the p-adic valuation of a. These operators have a flavor that is
rather different from that of Fermat quotients, though, and it seems unlikely
that Haran’s theory and ours are directly related.



• Borger’s philosophy on F1 can also be viewed as a viewpoint consistent with
C above. Indeed Borger’s beautiful suggestion is to take λ-geometry as a
possible candidate for the geometry over the field with one element, F1; this
viewpoint is perpendicular to other approaches to F1 (such as that of
Connes-Consani, Haran, etc.) but is consistent, in certain spacial cases, with
our theory. Recall that λ-geometry is, essentially, the usual algebraic geometry
of schemes X equipped with a commuting family (φp) of Frobenius lifts
φp : X → X . So our theory fits into λ-geometry as long as:
1) the Frobenius lifts are defined on the schemes X themselves (rather than on
the various p-adic completions X p̂) and
2) the Frobenius lifts commute.
However conditions 1 and 2 are almost never satisfied in our theory: the failure
of condition 2 is precisely the origin of our curvature, while finding substitutes
for condition 1 requires taking various convoluted paths (such as analytic
continuation between primes or algebraization by correspondences). So in
practice our approach places us, most of the times, outside the paradigm of
λ-geometry.



• Next we would like to point out what we think is an important difference
between our viewpoint here and the viewpoint proposed by Ihara. Our
approach, in its simplest form, proposes to see the operator

δ = δp : Z→ Z, a 7→ δa =
a− ap

p
,

where p is a fixed prime, as an analogue of a derivation with respect to p.
Ihara proposed to see the map

d : Z→
∏
p

Z/pZ, a 7→
(

a− ap

p
mod p

)
(59)

as an analogue of differentiation for integers and he proposed a series of
conjectures concerning the “zeroes” of the differential of an integer. These
conjectures are still completely open; they are in the spirit of the approach A
listed above, in the sense that counting zeroes of 1-forms is a Riemann surface
concept. But what we see as the main difference between Ihara’s viewpoint and
ours is that we do not consider the reduction mod p of the Fermat quotients
but the Fermat quotients themselves. This allows the possibility of considering
compositions between our δp’s which leads to the possibility of considering
arithmetic analogues of differential equations, curvature, etc.



• It is worth pointing out that what we call curvature in our context is entirely
different from what is called p-curvature in the arithmetic theory of differential
equations that has been developed around the Grothendieck conjecture; indeed
our curvature here is about the “p-differentiation” of numbers with respect to
primes p (in other words it is about d/dp) whereas the theory in Katz’ papers
(and related papers) is about usual differentiation d/dt with respect to a
variable t of power series in t with arithmetically interesting coefficients. A
similar remark can be made about the difference between our approach and
that in Bost’s work. In spite of this contrast there could be relations among
these two types of curvatures; indeed the arithmetic direction d/dp (which is
the one we are interested in our work) and the geometric direction d/dt
(involved in Grothendieck’s conjecture) do interact in interesting ways.



• Finally we would like to point out that the theory in this book is a priori
unrelated to topics such as the geometry of numbers on the one hand and
discrete differential geometry on the other. Indeed in both these geometries
what is being studied are discrete configurations of points in the Euclidean
space Rm; in the geometry of numbers the configurations of points typically
represent rings of algebraic numbers while in discrete differential geometry the
configurations of points approximate smooth submanifolds of the Euclidean
space. This framework is, therefore, that of the classical geometry of Euclidean
space, based on R-coordinates, and not that of an analogue of this geometry,
based on “prime coordinates.” It may very well happen, however, that (one or
both of) the above topics are a natural home for some (yet to be discovered)
Archimedian counterpart of our (finite) adelic theory.



Part III: Open problems



Unifying holQ and ΓQ

• We would like to view the Lie algebra holQ as an infinitesimal analogue of the
absolute Galois group ΓQ = Gal(Qa/Q).

• On the other hand if Hol is the holonomy group of a connection on principal
G -bundle over a manifold M in classical differential geometry and if Hol0 is its
connected component then the quotient Hol/Hol0 is usually referred to as the
monodromy group of the connection; it is isomorphic to the image ΓM of the
monodromy representation

π1(M)→ G (60)

defined by our connection. (We have ignored here the base points.)



• The exact sequence

1→ Hol0 → Hol → ΓM → 1 (61)

gives rise to a natural homomorphism

ΓM → Out(Hol0). (62)

• It is classical to see the absolute Galois group ΓQ as an arithmetic analogue
of a fundamental group π1(M). Galois representations are then analogous to
monodromy representations 60 and their images are analogous to the groups
ΓM . Our Lie algebras holQ attached to real Chern or Levi-Cività adelic
connections are an arithmetic analogue of the Lie algebra of Hol0. Also one
can naturally attach Lie algebras to data from Galois theory (“Galois
connections”). It is reasonable to pose the following:



Problem 1. “Unify” our holonomy on GLn with Galois theory by constructing
canonical extensions of Lie algebras

0→ hol1 → hol2 → hol3 → 0 (63)

where hol3 is attached to a Galois connection and hol1 is attached to a real
Chern or Levi-Cività (adelic) connection on GLn. Such an extension 63 should
function as an arithmetic analogue of the extension 61 and the induced
representation

hol3 → Out(hol1) (64)

should be an analogue of the representation 62. This construction could involve
interesting Galois representations; indeed an extension such as 63 could be, in
its turn, analogous to the basic exact sequence

1→ π1(X a)→ π1(X )→ ΓQ → 1 (65)

attached to a geometrically connected scheme X over Q (where X a = X ⊗Qa

and we suppressed, again, reference to base points).



The representation 64 could then be analogous to the representation

ΓQ → Out(π1(X a)) (66)

arising from 65. The representations 66 play a prominent role in work of
Grothendieck, Ihara, Deligne, and many others.

Here are some related problems:

Problem 2. Find links between our curvature of adelic connections and
reciprocity (as it appears in arithmetic topology); the appearance of the
Legendre symbol in our Christoffel symbols may be an indication that such
links may exist.

Problem 3. Develop a Galois correspondence for Ehresmann connections;
extend the Galois theory from Ehresmann connections to other types of
connections, especially real Chern and special linear connections.



Problem 4. Find links between our adelic (flat) connections and Galois
representations similar to the classical link between vector bundles with flat
connections and monodromy.

Problem 5. Find an arithmetic analogue of Atiyah’s theory according to which:
1) the algebraic connections on an algebraic vector bundle over a variety are in
bijection with the splittings of the Atiyah extension;
2) the obstruction to the splitting of the Atiyah extension generates the
characteristic ring of the vector bundle.

Problem 6. The curvature of adelic Chern connections led, in our theory, to
objects that we called Chern (1, 1)-forms; it is tempting to use these forms, and
higher versions of them, to define cohomology classes in the style of Chern-Weil
theory; the target cohomology groups could be Galois (étale) cohomology
groups of appropriate arithmetic objects.



Unifying “∂/∂p” and “∂/∂ζp∞”

The theory of p-adic periods of Fontaine and Colmez involves, in particular, a
“totally ramified arithmetic calculus” that is perpendicular to our (unramified)
arithmetic calculus. In its simplest form this totally ramified calculus morally
comes from the fact that the modules of Kähler differentials ΩZ[ζpn ] are torsion
but non-trivial: dζpn 6= 0. It is conceivable that this situation could lead to a
“derivation like” operator, “∂/∂ζp∞” on an appropriate space on which our
p-derivation δp also acts. Then one is led to:



Problem 7. Unify our unramified arithmetic calculus (based on p-derivations δp,
thought of as “∂/∂p”) with the totally ramified arithmetic calculus of
Fontaine-Colmez (possibly involving the conjectural “derivation like” operators
“∂/∂p∞”). One would presumably get, for each p, a partial differential
situation with two “directions” and, in particular, one could attempt to study
the resulting “curvature.” A way to proceed could be to start from an earlier
paper where the base ring was the ring of power series R[[q]] in the variable q,
equipped with the “standard” p-derivation δp (extending that of R = W (Fa

p)
and killing q) and with the usual derivation δq = qd/dq. Then one could try to
specialize the theory in that paper via q 7→ ζpn with n→∞. Such a
specialization does not a priori make sense, of course, and no recipe to give it a
meaning seems available at this point. However an indication that this
procedure might be meaningful can be found in the formulas giving the
“explicit reciprocity laws” of local class field theory due to Shafarevich,
Brückner, Vostokov, etc.



Unifying Sh and GLn

Problem 8. Relate the arithmetic differential calculus on Shimura varieties Sh
(B, AMS 2005) with the arithmetic differential calculus on the classical groups
(appearing in our present book). In particular examine the case of

Sh = SL2(Z)\SL2(R)/SO2(R).

An indication that such a relation may exist is the δ-algebraic theory of
δ-Hodge structures in (AB, AJM 1995) giving δ-algebraic correspondences
between classical groups and moduli spaces of abelian varieties; one would have
to develop an arithmetic analogue of that paper.

Here are some related questions:



Problem 9. Find a link between the concept of curvature in the present book
and the concept of curvature based on the arithmetic Laplacian
(AB+S.Simanca, Advances, 2008). More generally find a common ground
between our theory here and that paper.

Problem 10. The theory in this book is mainly about adelic connections on GLn

possibly compatible with involutions of GLn. It is natural to explore what
happens if one replaces GLn by a general reductive group.

Problem 11. Explore the arithmetic differential geometry of homogeneous
spaces such as “spheres,” Sn := SOn+1/SOn.



Problem 12. Develop an arithmetic analogue of the Cassidy-Kolchin theory of
differential algebraic groups. Compute the rings of invariant δ-functions for
actions of such groups on the varieties naturally appearing in Riemannian
geometry. For instance compute the δ-functions on SOn\GLn/Γ where Γ is a
δ-subgroup of GLn. The δ-invariants of the curvature of the Levi-Cività
connection may be playing a role in this problem.

Problem 13. Find interactions between the classical theory of quadratic forms
over rings of integers in number fields and our theory here (around symmetric
matrices that play the role of metrics). Both theories are about the geometry
of GLn/SOn.
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