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Abstract. This is an introductory exposition to background material use-
ful to appreciate various formulations of the Mordell–Lang conjecture (now
established by recent spectacular work due to Vojta, Faltings, Hrushovski,
Buium, Voloch, and others). It gives an exposition of some of the elemen-
tary and standard constructions of algebro-geometric models (rather than
model-theoretic ones) with applications (for example, via the method of
Chabauty) relevant to Mordell–Lang. The article turns technical at one
point (the step in the proof of the Mordell–Lang Conjecture in character-
istic zero which passes from number fields to general fields). Two different
procedures are sketched for doing this, with more details given than are
readily found in the literature. There is also some discussion of issues of
effectivity.
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The organizers of this MSRI workshop in Arithmetic and Model Theory gave
me the agreeable task of lecturing on introductory background in the theory
of abelian varieties, and especially those parts of the theory relevant to the
Mordell–Lang Conjecture, which is the theme of some of the recent spectac-
ular work (by Vojta, Faltings, Hrushovski, Buium, Voloch, and others). To
keep this talk as “introductory” and as focussed as possible I will concentrate
only on the version of the Mordell–Lang Conjecture that deals with abelian,
rather than semi-abelian, varieties, and I will not discuss its elaborations that
include “Manin–Mumford type” questions regarding torsion points. For this,
see [Raynaud 1983b; 1983c; Coleman 1985b; Hindry 1988; McQuillan 1995], and
the extensive bibliographies in these articles. For a general introduction to the
model theory approach to Mordell–Lang, see [Bouscaren 1998], and particularly
[Hindry 1998] therein. I have tried to make my expository article overlap as lit-
tle as possible with Hindry’s, given their nearly identical titles, and their similar
missions.

We can look forward to further deep connections between model theory and
arithmetic problems. For example, there is the model theory of difference fields
which already has given rise to explicit bounds in certain arithmetic questions;
see [Chatzidakis and Hrushovski 1999] and the bibliography there. Also there
are important applications of model theory to aspects of the ABC Conjecture, in
the work of Buium and that of Scanlon [1997a], which opens up a very promising
avenue of research.

The “fundamentals” of the theory of abelian varieties are collected in Sec-
tion 1. The main theorems are stated and discussed in Sections 2, 3, and 4.
Motivated by the title of this conference, I also recorded a few of the much more
modest construction of models, sometimes done explicitly, sometimes implicitly,
in standard algebraic geometric arguments. These well known constructions are
reviewed in Section 5. For fun, in Section 6 we put the “p-adic model” to work:
we make use of the beautiful classical idea of Chabauty [1941] to give a proof of
a (small) piece of Mordell–Lang. One can think of the strategy of Chabauty’s
method as being, first, to extend the groundfield to a rather large field (i.e.,
the p-adics) over which differential equations work well (i.e., giving us the Lie
theory for p-adic analytic groups), and then reaping the benefits of being able
to solve differential equations. Of course, I am saying it this way in order to
force a kinship (albeit a distant one) between the Chabauty approach and the
formidable methods (as in [Hrushovski 1996; Hrushovski and Zilber 1993; 1996])
that I am learning about in this conference, and therefore to justify including
it in this article. Section 7 discusses the step in the proof of the Mordell–Lang
Conjecture in characteristic 0 which passes from number fields to general fields;
we give more details about this step than is found in the literature. Finally,
Section 8 is devoted to some comments about effectivity.
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Introduction

The central result in the constellation of theorems to be discussed in this
article is the classical 1922 conjecture of Mordell, proved some sixty years later
by Faltings [1983] (which asserts that a curve of genus greater than 1 defined
over a number field has only a finite number of points rational over that number
field). As an example of an application of this theorem, choose your favorite
polynomial g(x) with rational coefficients, no multiple roots, and of degree ≥ 5,
for example

g(x) = x(x−1)(x−2)(x−3)(x−4),

and let K be any number field (that is, any field of finite degree over Q). Then
Faltings’ Theorem implies:

Corollary. Let g(x) be a polynomial in K[x] with no multiple roots, and of
degree ≥ 5. Then there are only finitely many elements α ∈ K for which g(α) is
a square in K.

We can use this corollary to illustrate some of the “degrees of effectivity” that
are of interest in this problem, and in similar problems. We distinguish three
grades:

1. Number-effectivity. Is there a “directly computable” function of the coef-
ficients of g(x) and of the number field K which provides an upper bound for
the number of such elements α ∈ K (i.e., for the number of α’s such that g(α)
is a square in K)?

2. Size-effectivity. Is there a “directly computable” function of the coefficients
of g(x) and of the number field K which provides an upper bound for the
heights of elements α ∈ K for which g(α) is a square in K?

3. Uniform number-effectivity. Is there a “directly computable” function of
the degree of g(x) and of the number field K which provides an upper bound
for the number of elements α ∈ K for which g(α) is a square in K?

There is at least one somewhat ambiguous term in all of the questions raised
above; namely, what does one accept as “directly computable”? But by any rea-
sonable standard of “direct computability”, the answer to Question 1 regarding
number-effectivity is yes: in fact the proof of Faltings’ Theorem readily provides
a quite large, but effective, upper bound for the number of K-valued points on
a curve of genus greater than 1 defined over K, in terms of K and the curve.
Question 2 is open, and is the focus of a good deal of activity. Question 3 is
also open (see [Caporaso et al. 1997] for the connection between Question 3 and
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certain conjectures of Lang). For further discussion of these issues, see Section
8 below.

Our main interest in the present article will be higher-dimensional analogues of
Faltings’ theorem, these analogues being expressed in terms of abelian varieties.

1. Complex Tori and Abelian Varieties

An excellent reference for the basics of this theory is [Mumford 1974]. Let
V be a finite dimensional complex vector space, and call its dimension d. Let
Λ ⊂ V be a discrete additive subgroup of rank 2d. It follows that the natural
homomorphism of real vector spaces Λ⊗ZR → V is an isomorphism, and that 2d
is the maximal rank that a discrete additive subgroup of V can have. We refer
to Λ as a lattice in V , and to the quotient (commutative, compact) complex Lie
group T := V/Λ as a complex torus. Given T we can reconstruct V up to unique
isomorphism as the tangent space at the origin (i.e., the “Lie algebra”) of the
complex Lie group T . The elementary construction of passing to the quotient

(V,Λ) 7→ T = V/Λ

is functorial from the category of lattices in finite-dimensional complex vector
spaces to the category of complex tori. If T = V/Λ we have the following diagram
of endomorphism rings:

Endcx tori(T ) = Endab gp(Λ) ∩ Endcx v. sp.(V )

⊂ Endreal v. sp.(Λ⊗Z R) = Endreal v. sp.(V ).

Since Endcx tori(T ) ⊂ Endab gp(Λ) it follows that the underlying additive
group of Endcx tori(T ) is a finitely generated and free abelian group.

If the complex manifold T ↪→ P
N admits a complex analytic imbedding into

projective N -space, then by Chow’s Theorem, T is the locus of zeroes of ho-
mogeneous polynomial equations in PN and therefore carries the structure of
projective algebraic variety; its group law is algebraic. By a projective variety in
this article, we do not impose the condition that it be irreducible; we mean what
is sometimes referred to as algebraic set, i.e., cut out by a system of homoge-
nous forms as in [Hartshorne 1977, Chapter 1, Section 2]. If our varieties are
irreducible, we will signal this explicitly by the phrase irreducible variety. By an
abelian variety over a field F we mean a group object in the category of geomet-
rically irreducible, proper (i.e., “complete”) , algebraic varieties (over F ). Thus,
a complex analytic imbedding of a complex torus T in projective space endows
T with the structure of abelian variety over the field C. Any abelian variety over
F is a projective variety, i.e., is isomorphic over F to a subvariety of projective
space. Any abelian variety over C, when viewed with its underlying complex
Lie group structure is a complex torus. The theory of Weierstrass guarantees
that any complex 1-dimensional torus admits a complex analytic imbedding (as
a plane cubic) in P2, and therefore admits the structure of an elliptic curve,
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i.e., the structure of an abelian variety (of dimension 1) over C. When d > 1
the “Riemann period relations” impose definite conditions on lattices Λ ⊂ V in
order that T = V/Λ be imbeddable in projective space, or equivalently, that T
have the structure of abelian variety over C.

When T is an abelian variety, its complex analytic endomorphisms are all
“algebraic”, in the sense that they are endomorphisms of the abelian variety
T , defined over C. If A is an abelian variety over any field K, we have the
Poincaré complete reducibility theorem [Mumford 1974, Section 19, Theorem 1],
which says that given any abelian subvariety Y ⊂ A there is a “complementary”
abelian subvariety Z ⊂ A (in the sense that Y ∩ Z is a finite group and Y and
Z taken together span A). In standard terminology, we have that the natural
homomorphism Y ⊕ Z → A is an isogeny in the sense that it is a surjective
homomorphism with finite kernel. It follows directly that, “up to isogeny” ,
any abelian variety over a field F is a direct sum of (a finite number of) simple
abelian varieties over F . (An abelian variety X over F is called simple (over
F ) if any abelian subvariety of X defined over F is either {0} or X.) It follows
easily [Mumford 1974, Corollaries 1 and 2 of Section 19] that the algebra of
endomorphisms of the abelian variety A, after being tensored with Q,

Endab var /F
(A)⊗Z Q,

is a (finite-dimensional) semi-simple algebra over Q.

2. Configurations and Configuration-Closure

Let F be a field and let V be a finite dimensional vector space over F . By a
configuration in V we will mean a subset W ⊂ V that is the (possibly empty)
finite union of translates of vector subspaces (over the same field F ) of V . That
is, W is a configuration in V if

W =
n⋃
j=1

(vj + Vj)

for elements vj ∈ V and vector subspaces Vj ⊂ V . The collection of configu-
rations in a finite dimensional vector space V is closed under finite union and
arbitrary intersection — that is, it forms the collection of closed sets for a topol-
ogy of V ; moreover, this collection satisfies the “noetherian” (descending chain)
condition. That is, given any decreasing sequence · · · ⊂ Wj+1 ⊂ Wj ⊂ · · ·
of configurations in V , indexed by natural numbers j, the sequence eventually
stabilizes. This allows us to define the notion of configuration-closure:

Definition. Given an arbitrary subset S ⊂ V , the configuration-closure,
ConfV (S), of S in V is the smallest configuration in V containing S. Equiv-
alently, ConfV (S) is the intersection of all configurations containing S.



204 BARRY MAZUR

A linear transformation of vector spaces, φ : V →W , brings configurations in the
domain V to configurations in W , and the full inverse image of a configuration
in W (under φ) is a configuration in V . If S ⊂ V is a subset,

φ
(
ConfV (S)

)
= ConfW (φS).

We can carry the notion of “configuration” and “configuration-closure” to
abelian varieties, or to complex tori. We do this explicitly for abelian varieties
over an algebraically closed field K. Recall that if A is an abelian variety over
K, and S ⊂ A(K) is a set of K-rational points of A, we can consider, the
Zariski closure of S in A (which we denote ZarA(S) ⊂ A) which is defined to
be the smallest closed subvariety of A whose set of K-valued points contain S.
Equivalently, if you imbed A in PN , you may think of ZarA(S) as the projective
subvariety of PN cut out by the ideal of all homogenous polynomial forms which
contain the set S in their zero-locus.

Now, following the pattern set in our discussion of vector spaces above, define
a configuration in the abelian variety A to mean a subset B ⊂ A which is
(possibly empty) finite union of translates of abelian subvarieties of A. That is,
B is a configuration in A if

B =
n⋃
j=1

(aj +Aj)

for elements aj ∈ A and abelian subvarieties Aj ⊂ A.
As with vector spaces, the collection of configurations in an abelian variety A is

closed under arbitrary intersection and finite union, and satisfies the descending
chain condition. Therefore, we can define the “configuration-closure” of a subset
S ⊂ A(K) in A:

Definition. Given an arbitrary subset S ⊂ A(K), the configuration-closure,
denoted ConfA(S), of S in A is the smallest configuration C in A such that
S ⊂ C(K).

Clearly, ConfA(S) is a closed subvariety of A containing S, and therefore

ZarA(S) ⊂ ConfA(S).

3. “Absolute” Mordell–Lang in Characteristic Zero:
Theorems of Faltings and Vojta

Now we put these two notions of configuration (for abelian varieties and for
vector spaces) together to give two equivalent formulations of the theorem of
Faltings and Vojta. Let A be an abelian variety and S ⊂ A(K) a subset of the
group A(K) of K-rational points of A.
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Theorem 3.1 (“Absolute” Mordell–Lang in characteristic 0, first

version). Let K be algebraically closed of characteristic 0. If S ⊂ A(K) gen-
erates (or equivalently , is contained in) a finitely generated subgroup of A(K),
then the Zariski-closure of S in A is equal to its configuration-closure in A. In
notation,

ZarA(S) = ConfA(S).

This was first proved by Faltings [1994] (the proof in that reference is made
explicit only for the case of K = Q̄; but see, for example, [McQuillan 1995]
and Section 7 below). Earlier [1991] he had established the special case where
K = Q̄ and ZarA(S) contains no nontrivial translated abelian subvariety. The
techniques of [Faltings 1991] have, as their starting point, Vojta’s proof [1991]
of the classical Mordell Conjecture. The original 1960 article of Lang, which
formulated the special case of the Mordell–Lang conjecture proved in [Faltings
1991], is [Lang 1960], and this was followed by stronger versions of the conjecture
[Lang 1965; 1974; 1986]. For further developments extending the proofs of the
Mordell–Lang conjectures to include semi-abelian varieties see [Vojta 1996], and
for the strongest statement of Mordell–Lang (on semi-abelian varieties combined
with the Manin–Mumford conjecture) in characteristic 0, see [McQuillan 1995].

The “classical” application of Theorem 3.1. Let the abelian variety A

be defined over a number field L and let K be an algebraically closed field
containing L. Denote by A(L) the group of L-rational points of A. Let Z ⊂ A

be a closed subvariety defined over L, and suppose that S := Z(L), the set of
L-rational points of Z, is Zariski-dense in Z. By the theorem of Mordell–Weil
(see [Serre 1989, Section 4.3] or [Lang 1991, Chapter I, Theorem 4.1]), A(L)
is finitely generated, and so we have Z = ZarA(S) and all the hypotheses of
Theorem 3.1 above are satisfied (S = Z(L) ⊂ A(L) ⊂ A(K), so S is contained
in a finitely generated subgroup of A(K)). Therefore, Z is a configuration in A.
To summarize:

Corollary. Let A be an abelian variety defined over a number field L. Any
closed subvariety of A defined over L which is the Zariski-closure of its set of
L-rational points is a configuration in A; i .e., is a finite union of translates of
abelian subvarieties of A.

Bogomolov and Tschinkel [1999] introduced the term potentially dense to refer
to algebraic varieties V defined over number fields which have the property that,
over some (possibly larger) number field L, the variety V is the Zariski-closure
of its set V (L) of L-rational points. Another way of expressing the preceding
corollary is to say that the closed subvarieties of an abelian variety that are
potentially dense are precisely the configurations. One of the important projects
in number theory these days is to understand in a more general context which
algebraic varieties are potentially dense. There are many open issues here. It
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is even unknown, at present, whether there exist K3 surfaces which are not
potentially dense! (But see [Bogomolov and Tschinkel 1999] for elliptic K3’s!)

The “classical” Mordell Conjecture can be expressed as simply saying that
a smooth projective irreducible algebraic curve defined over a number field is
potentially dense (if and) only if its genus is 0 or 1. The “if” part of this statement
is easy (and isn’t usually packaged as part of the Mordell Conjecture). It is the
“only if” assertion that is deep; it follows from the preceding corollary by noting
that if C is a curve of positive genus defined over a number field, then by possible
extension of the number field L we can suppose that C has an L-rational point
c ∈ C. We then can view C as a subvariety of its jacobian, call it A, defined
over L, by sending a point x ∈ C to the linear equivalence class of the divisor
[x]− [c]. The preceding corollary would then tell us that C is a configuration in
A which can only be the case if its genus is 1.

The format of Theorem 3.1. Theorem 3.1 designates a class of algebraic
varieties (i.e, abelian varieties) and says that if, within a variety in this class, S
is a subset of points satisfying a certain “finiteness property” (i.e., is contained
in a finitely generated subgroup of the Mordell–Weil group) then the Zariski-
closure of S is a very restricted type of subvariety (i.e., is a configuration). Are
there analogous results in other settings? For example, take, as class of algebraic
varieties, smooth cubic hypersurfaces in PN . Define the “finiteness property” on
a set S of points of a cubic hypersurface V to be: S is contained in a subset of V
which is finitely generated in the sense of the chord-and-tangent process on V .
I ask this question not because I have a sense that it is worthwhile to pursue
(nor do I have any specific guess regarding the types of subvarieties of V that
one can get as Zariski-closures of S’s which are finitely generated in the above
sense) but just in order to help us think, for moment, about the formal shape
of Theorem 3.1. In the same vein, one can ask the analogous (Mordell–Lang)
question about complex tori (which are not necessarily abelian varieties). I did
so in an early draft of this article, and I am thankful to Anand Pillay for his
affirmative answer to that question; see his proof [Pillay 1999] of the fact that
if T is a complex torus and S ⊂ T a subset which is contained in a finitely
generated subgroup of T , then ZarT (S) = ConfT (S) if we interpret ZarT (S)
as the smallest compact complex analytic subvariety of T containing S, and
ConfT (S) the smallest finite union of translates of complex subtori of T having
the property that S ⊂ ConfT (S).

Theorem 3.1 is equivalent to:

Theorem 3.2 (“Absolute” Mordell–Lang in characteristic 0, second

version). Let K be algebraically closed of characteristic 0, A an abelian variety
defined over K, and suppose that we are given a subset S ⊂ Γ ⊂ A(K), where Γ
is a finitely generated subgroup of A(K). If Γ is Zariski-dense in A, and if the
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configuration-closure of the image of S in the real vector space V = Γ⊗R is all
of V , then S is Zariski-dense in A.

Proof of equivalence. Suppose the truth of Theorem 3.1 and the hypotheses
of Theorem 3.2. We must prove that S is Zariski-dense in A. So

ZarA(S) = ConfA(S) =
n⋃
j=1

(aj +Aj) ⊂ A,

where the Aj ’s are abelian subvarieties of A and the aj ∈ A(K) are points. Put
Γ̃j := (Γ

⋂
(aj +Aj) so we have that S ⊂

⋃n
j=1 Γ̃j . We have put the tilde on the

Γ̃j to remind ourselves that Γ̃j isn’t a subgroup of Γ but is rather a coset. Fix
any element γj ∈ Γ̃j and we may write Γ̃j = γj + Γj for some subgroup Γj ⊂ Γ.

Therefore the image of S in V = Γ ⊗ R is contained in the union of the
translates by the image of γj of Γj⊗R for j = 1, . . . , n. Since S is configuration-
dense in V we must have V = Γj ⊗ R for some j, and for this j, Γj ⊂ Γ must
be a subgroup of Γ of finite index. But if Γ is Zariski-dense in A so is every
(coset of every) subgroup of finite index in Γ. We deduce that Aj = A, and
since a translate of Aj is contained in the Zariski-closure of S, it follows that S
is Zariski-dense in A.

Now suppose the hypotheses of Theorem 3.1 and the truth of Theorem 3.2. We
must prove that the conclusion of Theorem 3.1 holds. Consider the real vector
space V = Γ ⊗ R. Let ConfV (S) =

⋃n
j=1(vj + Vj) ⊂ V be the configuration-

closure of the image of S in V = Γ⊗R, where the Vj ’s are real vector subspaces
of V and the vj ∈ V are points. Let S̃j ⊂ S be the inverse image of the affine
subspace vj +Vj , so that S =

⋃n
j=1 S̃j . Since Theorem 3.1 holds for S if it holds

for each of the S̃j ’s, we need only prove Theorem 3.1 for each S̃j . To do this
we may, of course, take S̃j to be nonempty. Make a translation of S̃j by any
element s̃j ∈ S̃j to get a set which we denote Sj := S̃j − s̃j and we have that
ConfV (Sj) = Vj , i.e., is a vector subspace of V . If Γj ⊂ Γ is the subgroup of
all elements in Γ whose image in V lies in Vj , we have the inclusion Sj ⊂ Γj .
By construction, ConfVj (Sj) = Vj . Let Ãj ⊂ A be the Zariski-closure of the
subgroup Γj ⊂ A.

If Ãj were connected, then it would be an abelian subvariety of A, and the
triple Sj ,Γj , Ãj would satisfy all the hypotheses required to apply Theorem 3.2,
giving that

ZarÃj (Sj) = Ãj ,

thereby proving Theorem 3.1 for S̃j . In general, let Aj ⊂ Ãj be the connected
component containing the identity element, so that Ãj is a finite union of cosets
of Aj . Breaking things up coset by coset, and applying the same argument as
above, allows us to conclude the proof. �
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About positive characteristic. In the setting of characteristic p > 0, the
statement analogous to “absolute” Mordell–Lang (Theorem 3.1 or 3.2 above) is
no longer true, as the following well-known counter-example will make clear. If
C is any curve (of positive genus) defined over a finite field k of characteristic
p, and if K = k(C) is the function field of C, then let C/K be the curve over K
obtained from C by extending the field of scalars from k to K. We can think
of C/K as the generic fiber of the constant family π : C × C → C, where π is
projection to the second factor. There is a natural K-valued point, call it c,
on C/K , which can be described geometrically as the restriction to the generic
fiber of the diagonal section C → C × C. If F = F/k : C/k → C/k is the
Frobenius endomorphism of C/k (defined on local rings by the rule: f 7→ fq

where q = card(k)), denote by the same letter F = F/K : C/K → C/K the base
change of the Frobenius endomorphism to K. For any natural number n, Fn(c)
is the restriction to the generic fiber of C → C × C of the graph of the n-th
iterate of F/k. The set, S = {Fn(c) | n = 1, 2, . . . } ⊂ C(K), of images of c under
these iterations of F/K is an infinite subset whose Zariski closure is therefore the
entire curve C/K . The Frobenius endomorphism F acting on C/K induces an
endomorphism Φ of the jacobian A/K = Pico(C/K). Let E := EndK(A) denote
the endomorphism ring of the abelian variety A over K, so that Φ ∈ E. Since C
is of positive genus, we have an imbedding ι : C/K ↪→ A/K defined by sending
x ∈ C/K to the linear equivalence class of [x] − [c] in A/K . For any m ≥ 0 we
have

Φm(ι(Fc)) = Φm([Fc]− [c]) = [Fm+1c]− [Fmc] = ι(Fm+1c)− ι(Fmc),

and therefore

ι(Fnc) =
n−1∑
j=0

Φj(ι(Fc))

for any n ≥ 1, so that the image of S under ι is contained in E · ι(Fc) ⊂ A(K)
which is a finitely generated subgroup of A(K) (the endomorphism ring E of the
abelian variety A being a finitely generated abelian group).

So ZarA(ιS) = ιC ⊂ A, and therefore if C is of genus > 1, ZarA(ιS) is not
a configuration in A despite the fact that ιS is contained in a finitely generated
subgroup of A(K). Therefore one needs to appropriately modify the statement
of “absolute Mordell–Lang” if one wishes to obtain a result which is valid in
characteristic p. This is the subject of the next section.

4. “Relative” Mordell–Lang in All Characteristics: Theorems
of Manin, Grauert, Buium, Voloch, Hrushovski, etc.

Theorem 4.1 (“Relative” Mordell–Lang in all characteristics). Let
k ⊂ K be an inclusion of algebraically closed fields. Let A be an abelian variety
over K having the property that no positive dimensional factor abelian variety
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of A comes by base extension from an abelian variety over k. Let S ⊂ A(K) be
a subset generating a finitely generated subgroup of A(K). Then

ZarA(S) = ConfA(S).

There is, to be sure, a large literature dealing with the “classical version” of
this theorem by which I mean the special case where X := ZarA(S) is a curve.
This classical case was originally proved by Manin [1963] in characteristic zero.
Another proof of it was given by Grauert [1965]. This latter proof was adapted
by Samuel [1966] to make it work in characteristic p. In 1991, Voloch produced
an extremely short, insightful, proof of this classical theorem under the auxiliary
hypothesis that X is non-isotrivial, and its jacobian is ordinary [Voloch 1991].

To be sure, the statement of Theorem 4.1 in characteristic 0 is weaker than (and
therefore follows immediately from) Theorem 3.1. So, it is only the characteris-
tic p aspect of this theorem that is specifically new to our discussion. Progress to-
wards the above theorem in characteristic p was made in [Abramovich and Voloch
1992], following on Voloch’s approach. The full theorem is due to Hrushovski
[1996], who writes that Buium’s approach (to the characteristic 0 part of Theo-
rem 4.1) inspired his own. Buium’s ten-page paper [1992] is quite illuminating,
and I would urge anyone who has not yet read it to do so! A certain universal jet
space construction plays critical role in it. Briefly, given any affine smooth C-
scheme S with a derivation δ ∈ Der(OS), and any S-scheme X, Buium constructs
a “pro-X-scheme” (i.e., a projective system of X-schemes) jet(X/S, δ) (call it J ,
for short) and he constructs a derivation δJ on J lifting δ on S such that the pair
(J, δJ) satisfies the following universal property. For any pair η = (Y, δY ) where
Y is an X-scheme and δY is a derivation on Y lifting δ on S, there is a unique
X-morphism jet(η) : Y → J = jet(X/S, δ) which is horizontal in the sense that
jet(η) intertwines the derivations δY and δJ . The method of Buium turns on
the properties of jet(X/S, δ) where specifically X is a group scheme over S; this
method depends especially on the manner in which finitely generated groups of
S-sections in group schemes X lift to jet(X/S, δ). The fact that the theory of
ordinary differential equations works so well in the complex analytic category is
essential. In characteristic p, things aren’t so smooth-going. People with some
algebraic geometric background who wish to see a bridge between Buium’s tech-
niques and the model-theoretic techniques of Hrushovski might find it useful to
read Chapter 2 of Scanlon’s thesis [1997b], where he introduced the notion of
D-rings and D-functors which serve as “jet-theoretic” technology suitable for use
in characteristic p.

As with the Absolute Mordell–Lang Theorem, the “Relative” Mordell–Lang
result we have just formulated has an alternate version:

Theorem 4.2 (“Relative” Mordell–Lang in all characteristics, sec-

ond version). Let k ⊂ K be an inclusion of algebraically closed fields. Let A
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be an abelian variety over K having the property that no positive dimensional
factor abelian variety of A comes by base extension from an abelian variety over
k and suppose that we are given a subset S ⊂ Γ ⊂ A(K) where Γ is a finitely
generated subgroup of A(K). If Γ is Zariski-dense in A and the configuration-
closure of the image of S in the real vector space V = Γ⊗ R is all of V , then S

is Zariski-dense in A.

The equivalence between Theorems 4.1 and 4.2 is proved in exactly the same
way as the equivalence between Theorems 3.1 and 3.2 were proved.

5. Models in the Sense of Algebraic Geometry

If you start with the utterly general fields that appear in the statement of
Theorems 3.1, 3.2, 4.1, and 4.2, here is the standard way of cutting down to
the study of reasonably small fields. Consider, for example, the data of any of
these theorems, say Theorem 4.2: that is, we are given (k,K,A, S) with k ⊂ K,
an inclusion of algebraically closed fields, A an abelian variety over K having
the property that no positive dimensional factor abelian variety of A comes by
base extension from an abelian variety over k, and S ⊂ Γ ⊂ A(K), a subset S
generating Γ, a finitely generated subgroup of A(K). Fix elements {γ1, . . . , γν}
that generate Γ.

If, contrary to the conclusion of Theorem 4.2, we were dealing with a counter-
example to the assertion of that theorem, there would be some hypersurface
D ⊂ A which contains S but which does not contain some element γ ∈ Γ − S.
Call such a pair (D, γ) a witness to the fact that A,S,Γ is a counter-example to
Theorem 4.2, or just a witness for short. Similarly we can talk about the notion
of “counter-example witness” to Theorem 3.2.

Let k0 ⊂ k denote the prime field (i.e., it is Q if we are in characteristic 0 and
Fp if we are in characteristic p). Consider a specific set of equations defining
the abelian variety A over K in projective space; for concreteness we can take
A as given as an intersection of a finite collection of quadrics in some high-
dimensional projective space, following Mumford [1966; 1967]). These equations
have, all in all, only a finite number of coefficients and so do all the coordinates
(in projective space) of the finitely many points γ1, . . . , γν . If we are presented
with a witness (D, γ) to the fact that A,S,Γ is a counter-example, we add to
this set of coefficients of these equations the coefficients of the equations defining
the hypersurface D. Letting C denote the set of all the coefficents enumerated
above, we see that C ⊂ K is finite. It follows that the subfield K0 := k0(C) ⊂ K
is finitely generated over the prime field k0, and moreover we have S ⊂ Γ ⊂
A(K0) (and in the case where we have prescribed witness (D, γ) we can get that
D is defined over K0 as well). We have then, a finitely generated model for
our putative witnesses. For example, if we had a witnessed counter-example to
Theorem 3.2 over any algebraically closed field K of characteristic 0 (that is, if
we had A, Γ ⊂ A(K), S ⊂ Γ, S ⊂ D ⊂ A, and γ ∈ Γ with γ /∈ D, satisfying the
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hypotheses required; i.e., that A is an abelian variety, Γ is a finitely generated
subgroup of its group of K-rational points, S is configuration-dense in Γ ⊗ R,
and D a hypersurface in A) the above discussion shows that we would also have
such a witnessed counter-example all of whose ingredients are given over a field
K0 which is finitely generated over Q.

Corollary 5.1. To prove Theorems 3.1, 3.2, 4.1 and 4.2 it suffices to treat the
case of fields K which are the algebraic closure of fields of finite transcendence
degree over the prime fields; i .e., where K ranges through the algebraic closures
of k0(x1, . . . , xd) (for d = 1, 2, . . .) where the k0’s are the prime fields (so that in
the case of Theorems 3.1 and 3.2, k0 = Q), and where in the case of Theorem 4.1
and 4.2, k is an algebraic closure of k0.

Producing a “complex” or a “p-adic” model. In the case where K is of
characteristic 0 it is sometimes useful to make use of complex analytic, or p-adic
analytic methods. Imagine that we have given ourselves a witnessed counter-
example to Theorem 3.2, which by Corollary 5.1 can be taken to be over a
field K0 which is of finite transcendence degree over Q. Since any field of finite
transcendence degree over Q is isomorphic to a subfield of C, we may choose
an imbedding K0 ↪→ C and make the base change (for our model) from K0 to
C gives us a model over the complex numbers. Similarly, let p be any prime
number, and noting the fact that as an “abstract” field, Q̄p is the extension of
Q given by adjoining an uncountable number of independent variables and then
passing to the algebraic closure of the field so obtained, we see that there exists
an imbedding K0 ⊂ Q̄p. Identify, then, K0 with a subfield of Q̄p and form the
compositum E = Qp ·K0 ⊂ Q̄p. Since K0 is a finitely generated field extension
of Q, E is a finitely generated, algebraic, field extension of Q̄p. It follows that
E/Q̄p is of finite degree. As before, if we make the base change (for our model)
from K0 to E we get our sought-for model over E.

Corollary 5.2. Let p be any fixed prime number . In proving Theorems 3.1
and 3.2 by reductio ad absurdum it suffices to assume that there is a counter-
example defined over a finite field extension E of Qp, and then prove its nonex-
istence.

Call such a putative counter-example a “p-adic model” of a counter-example. If
we wish, we may make a further finite extension of our base field E so that the
abelian variety A of our p-adic model over E has semi-stable reduction over the
ring of integers of E (by a theorem of Grothendieck [1972]). As we shall see
below, if we are willing to exclude a finite set of (“bad”) primes p we may find
finite field extensions E/Qp and models over E for which the abelian variety A
has good reduction over the ring of integers of E.

If our original putative counter-example is over a field of characteristic p, a
similar argument as we have just given will allow us to produce a counter-example
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over the field Fq((t)) of (finite-tailed) Laurent series with coefficients in a finite
field Fq of cardinality q = a power of p.

In our search for models, we needn’t work only over fields: we can find subrings
r0 ⊂ k0 and r0 ⊂ R0 ⊂ K0 such that r0 and R0 are finitely generated rings over
Z, where r0 = Fp if K0 is of characteristic p, and r0 = Z[1/m] for some positive
integer m if K0 is of characteristic zero, and such that

• the equations for A give us an abelian scheme, call it A0, such that
• the elements γ1, . . . , γν are R0-valued points of the R0-scheme A0, and
• given a specific witness (D, γ), if it exists, the hypersurface D can be taken

to be a relative Cartier divisor over R0, and denoting W0 := Spec R0 which
is a scheme over w0 := Spec r0 we may also arrange it so that (for fun)

• W0 → w0 is a smooth surjective morphism of schemes.

We therefore have an abelian scheme

A0 →W0,

over the smooth w0-scheme W0 with the structures described above. The “pic-
ture”, when r0 = Z[1/m], looks as follows:

Abelian scheme A0 over W0

W0

w0 = SpecZ[1/m]

At this point, here are some things we can do:

Producing a “p-adic model” with good reduction. If we are given a
putative counter-example model over a field of characteristic 0, then r0 = Z[1/m]
for some nonzero integer m, and we have our geometric model A0 → W0, as
above with witness (D, γ), where the hypersurface D is a relative Cartier divisor
over R0, and R0 is as described above over Z[1/m], the mapping of schemes π :
Spec(R0) → Z[1/m] being smooth and surjective. After possibly “augmenting
m”, i.e., making the base change Spec(R0) 7→ Spec(R0 ⊗Z[1/m] Z[1/m′]) for m′

a suitable nonzero multiple of m (we assume this done without changing our
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notation) we can prepare the ring R0 via “Noether normalization” [Bourbaki
1972, Chapter V, Section 4, Corollary 1] so that R0 contains a polynomial ring
in a finite number of variables Z[1/m][x1, . . . , xν ] ⊂ R0, and such that R0 is
an integral extension of Z[1/m][x1, . . . , xν ]. Let p be any prime number not
dividing m. We choose any ring homomorphism ξ : Z[1/m][x1, . . . , xν ] → Fp

(and, of course, there are some). Now find any system of ν elements αj ∈ Zp
(for j = 1, . . . , ν) which are transcendentally independent over Z taking care to
choose them so that

ξ(xj) = αj mod p,

for j = 1, . . . , ν (and we can do this). We use this system of αj ’s to imbed
Z[1/m][x1, . . . , xν ] in Zp. Call the imbedding α : Z[1/m][x1, . . . , xν ] ↪→ Zp.
Since R0 is an integral domain, and finitely generated and integral (hence finite)
over Z[1/m][x1, . . . , xν ], we may extend α to an imbedding of R0 into a finite
discrete valuation ring extension O, of Zp. Making the base change from R0 to
O, we transfer our model over R0 to O, and letting E/Qp be the field of fractions
of O, we have constructed a “p-adic model” (over the discrete valued field E) for
which the abelian variety A0 has good reduction over the residue field of E.

6. Proof of Absolute Mordell–Lang in Characteristic 0
for Curves of Rank 1

The beautiful classical argument of Chabauty may be adapted to give an
elementary proof of Theorem 3.2 when the rank of Γ is equal to 1. Here is
the briefest sketch of this argument; for a more general statement, see [Hindry
1988, Section 7]. If rank(Γ) = 1 the condition that the configuration-closure of
the image of S in the real vector space V = Γ ⊗ R is all of V boils down to
simply saying that S is infinite. Since Theorem 3.2 would be immediate if A
were of dimension ≤ 1 we may assume that the dimension of A is 2 or more.
Suppose that Theorem 3.2 were false. Then there would be a hypersurface D in A
containing S but not containing Γ. Now there is a “p-adic model” for this. That
is, there is a prime number p and a finite extension K of Qp admitting the same
situation, i.e., an abelian variety A over K and a hypersurface D ⊂ A over K,
and S ⊂ Γ ⊂ A(K) all with the same properties as before (e.g., S ⊂ D(K)). The
existence of such “p-adic models” is explained in Corollary 5.2 above. Choose
such a p-adic model, and note that A(K) has the structure of (compact) p-adic
Lie group. Let Γ̄ denote the topological closure of Γ ⊂ A(K), and note that (by
the basic theory of the p-adic logarithm, which identifies an open neighborhood
of A(K) with an open “additive” subgroup in KdimA) we may identify Γ̄ with a
one-dimensional p-adic Lie subgroup of the p-adic Lie group A(K). Since Γ is
Zariski-dense in A, it follows that any open(-closed) subgroup of finite index in Γ̄
is also Zariski-dense in A. Since S is infinite, it has at least one limit point in the
p-adic Lie group A(K) and all of the limit points of S lie in D(K) ∩ Γ̄ ⊂ A(K).
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f = 0

U

Γ̄

σ

Fix a limit point σ of S. Consider a local equation f for D in a neighborhood
U ⊂ A(K) of σ. We view f as a p-adic analytic function on U ⊂ A(K), and
restricting it to the intersection of U with the p-adic Lie subgroup Γ̄, we see that
f must vanish on some open neighborhood of σ in U ∩ Γ̄ because it vanishes
on the infinite set of points of U ∩ S which has σ as accumulation point. It
follows that Γ̄ is contained in a finite union of translates of D, contradicting the
Zariski-density of Γ.

About effectivity. Before we can discuss the status of effectivity of the above
proof, we have to reformulate the theorem that it proves in a manner so that
the result is providing something for us, and only then can we unambiguously
ask whether or not our proof is providing that thing “effectively”. One natural
reformulation is to say that given the hypotheses of Theorem 3.2, in the case
where V is of dimension one, and given any hypersurface D ⊂ A, there are only
a finite number of points in the intersection D ∩ Γ. Now even in this restricted
setting– the above Chabauty-type argument seems to be giving us the same level
of effectivity (and no more) that the general results of Vojta and Faltings provide.
Namely, we can refine the above argument to give a number-effective statement,
but not, it would seem, a size-effective one. But see [Coleman 1985a]!

7. The Reduction of the Proof of Mordell–Lang to Global
Fields

It seems that there are (at least) two possible strategies for performing this
reduction step. One approach is suggested in a few words in [Faltings 1994,
Section 5]. We shall, up to a certain point, give a detailed account of how to
follow this out. I say “up to a certain point” because, as the reader will see,
we will be asserting that a demonstration given explicitly in the literature for
number fields, also works for global fields. I am thankful to Paul Vojta for
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substantial help here. The alternative strategy requires, among other things,
an excursus about the specialization properties of maximal abelian subvarieties
in subvarieties in abelian varieties (sic). All the essential materials needed for
this second strategy can be found in the literature. (See [Lang 1983, Chapter
9], especially Theorem 6.2 and Corollary 6.3, together with either [Hindry 1988,
Appendice I] and, in particular, Lemma A there, or alternatively [Abramovich
1994; McQuillan 1994]. For further background I found [Raynaud 1983a, Section
III] helpful.) We end this section with a sketch of how this second approach
works, spelling out some (minor) aspects of the proof not found in the sources.
I am thankful to Michael McQuillan and Dan Abramovich for substantial help
with this.

First Approach. Recall that, as in Corollary 5.1 above, we know that to
prove Theorems 3.1 and 3.2 it suffices to work over base fields K which are
finitely generated over Q. “Filtering” such a K by a sequence of subfields, each
of transcendence degree 1 over the next, we shall see that it suffices to prove
appropriately stated versions of Theorems 3.1 and 3.2:

(a) for number fields F , and
(b) for fields F of rational functions on curves C over base fields F0, given that we

have already proved (appropriately stated versions of) Theorems 3.1 and 3.2
for F0.

In either case, our field F will therefore have the structure of a global field and
therefore it may pay to recall this fundamental notion of global field structure
(which was given center stage in Artin–Whaples’ treatment of algebraic number
theory and has kept that position in every subsequent treatment of the subject).
We will be referring specifically to the discussion in [Lang 1983, Chapter 2,
Section 1]. Recall that a valuation v on a field F of characteristic 0 is called proper
if it is nontrivial, and its restriction to Q is either trivial, the negative logarithm
of ordinary absolute value or a p-adic valuation for some prime number p. (If F
is of positive characteristic, for the valuation v to be proper, it is also required
to be “well-behaved”, a condition automatically satisfied in characteristic 0; see
[Lang 1983].) By a global field structure on a field F we mean a collection of
“proper” valuations MF of F , and of multiplicities v 7→ λv > 0 for v ∈MF such
that for every x ∈ F ∗, we have the summation formula with the multiplicities
v 7→ λv, ∑

v∈MF

λv · v(x) = 0.

Here we have written things additively, rather than multiplicatively as was done
in [Lang 1983]. Our valuations v : F ∗ → R are related to the absolute values
| |v there by the standard formula v(x) = −log |x|v.
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Recall that if F is endowed with a global field structure, and E/F is a finite
field extension, there is a unique global field structure on E extending that on
F (for details, again consult loc. cit.).

The examples of global field structures are precisely the fields that enter into
the cases (a) and (b) above. More precisely, if F is a number field, we take
MF to be the standard collection of normalized absolute values corresponding
to the archimedean and non-archimedean places of F and λv the collection of
multiplicities as set out in [Lang 1983, Chapter 2, Section 1]. If F is expressed
as a field of rational functions of a proper smooth curve C defined over a subfield
F0 ⊂ F , i.e., if we can write F = F0(C), we may impose a global field structure
on K, again in the standard manner (see loc. cit.). Note that if F is of tran-
scendence degree at least 2 over the prime field, there are many possible global
field structures we can impose on F . Nevertheless (when no confusion can arise)
a field F endowed with a specific global field structure will be called a “global
field” and we will denote it (along with its global field structure) simply F .

Given a global field F , with F̄ /F an algebraic closure, it is standard (see [Lang
1983, Chapters 3–5] for the details) to define the associated height function on
F̄ -rational points of N -dimensional projective space (any N)

hF : PN (F̄ )→ R.

If ι : X ↪→ P
N is a projective variety defined over F , we can restrict the above

height function to F̄ -rational points of X and divide by the degree of X to obtain
a height function “on X” which we denote

hF,X,ι : X(F̄ )→ R;

that is, hF,X,ι(P ) = 1
d · hF (ι(P )) where d = the degree of the projective variety

ι(F ) ⊂ PN . [In the special case where Pic(F ) = Z (e.g., if F = C is a smooth
projective curve), dividing by d has the effect of making the real-valued function
hF,X,ι on the set F (K̄) independent (modulo bounded functions) of the projective
imbedding ι; i.e., it depends only on the global field F and X (mod O(1)). ]

Given a global field F , an abelian variety A defined over K, and a line bundle
L over A defined over F , we also have the normalized Néron–Tate height function
on F̄ -rational points of A [Lang 1983, Chapter 5, Section 3]

ĥF,A,L : A(K̄)→ R.

All of these height functions depend upon the global field structure of F .

The Ueno–Kawamata structures on subvarieties of abelian varieties.
For a compendium of the results we are about to cite, and for complete references
to the literature containing their proofs, see [Lang 1991, Chapter I, Section 6].
Recall Ueno’s Theorem (loc. cit.), which says if X ⊂ A is an irreducible subvari-
ety of an abelian variety (over a field) and if B ⊂ A is the connected component
of the subgroup of translations of A that preserve X, then if Y := X/B ⊂ A/B
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is the quotient variety of X under the action of the group B we have that Y
is a variety of general type (or, in the terminology of [Lang 1991], is pseudo-
canonical). Refer to the morphism X → Y as the Ueno fibration of X. Recall
Kawamata’s Structure Theorem that says if X ⊂ A is an irreducible subvariety
of general type (alias: pseudo-canonical) and the base field is of characteristic 0,
then there is a finite number of proper subvarieties Zi ⊂ X (i = 1, . . . , ν) whose
Ueno fibrations Zi → Yi have positive fiber dimension, and such that any finite
union of translates of nontrivial abelian subvarieties in X is actually contained
in

Z :=
ν⋃
i=1

Zi ⊂ X.

Refer to Z ⊂ X as the Kawamata locus of X.

Theorem 7.1 (Faltings, extending the method of Vojta). Let F be a
global field of characteristic 0, A an abelian variety over F , and L any line bundle
over A (defined over F ). Let X ⊂ A be an irreducible subvariety of general type
(defined over F ) and Z ⊂ X its Kawamata locus. Then the set of F -rational
points on X not lying in Z has bounded (Néron–Tate) height . That is, there is
a bound B such that

ĥF,A,L(x) ≤ B

for all x ∈ X(F )− Z(F ).

For a proof of this the reader might consult [Faltings 1994]; in that reference
Faltings only states the theorem for F a number field, but his proof goes through,
word-for-word, for global fields of characteristic 0. Vojta [1993] has given another
account of the proof of this same result (also stated only for number fields, but
he assures me that his account of the proof works as well, with no change, in the
context of global fields).

We shall now sketch the proof of why the preceding theorem implies Theorem 3.1
(and therefore also Theorem 3.2). Firstly, let A be an abelian variety over F
and S ⊂ A(F ) as hypothesized in Theorem 3.1, where F is a field which is
finitely generated over Q. We shall prove Theorem 3.1, in effect, by induction
on the transcendence degree of F , and the dimension of A. We view F with a
given global field structure, coming either because F is a number field, or else
by writing F = F0(C) where C is a curve. In the latter case, we may assume
by induction that Theorem 3.1 holds for abelian varieties A0 over the field F0,
and for subsets S0 ⊂ A0(F0) generating finitely generated subgroups. We may
also assume that Theorem 3.1 holds for abelian varieties over F of strictly lower
dimension than the dimension of A. Consider ZarA(S), the Zariski-closure of the
set S.
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Step 1. Reduction to the case where ZarA(S) is an irreducible variety of general

type. Writing ZarA(S) =
⋃
j Xj as a finite union of irreducible varieties, we

may cover the set S by a finite union of subsets Sj = S ∩Xj(F ) and note that it
suffices to prove Theorem 3.1 for each of these Sj ’s separately. We may assume,
therefore, that X := ZarA(S) is irreducible, and then, using Ueno’s Theorem,
we pass to an appropriate quotient abelian variety of A in which X is of general
type. Here, note that in this reduction step we have possibly reduced (but we
have not increased) the dimension of A.

Step 2. Applying the theorem. We apply the above theorem for a choice of
ample line bundle L over A to get that there is a bound B such that S breaks
up into the union of two sets, the part of S contained in Z, S1 := S ∩Z(F ) and
the part of small height,

S2 := {x ∈ S | ĥF,A,L(x) ≤ B}.

Now we can apply Step 1 again to S1, and note that here the application of
Step 1 is guaranteed to reduce the dimension of the ambient abelian variety A;
our inductive hypothesis therefore proves Theorem 3.1 for S1. We may assume,
then, that

S = S2 = {x ∈ S | ĥF,A,L(x) ≤ B}.

If F is a number field, it follows that S is finite, and so again Theorem 3.1
follows. We have reduced ourselves, therefore, to the case where F = F0(C)
and S is of bounded height. After applying Step 1 again, we may assume that
X := ZarA(S) is irreducible (of general type). Let B ⊂ A be the F/F0-trace (that
is, the “largest abelian subvariety of A defined over F0”; [Lang 1991, Chapter I,
Section 4]) and apply [Lang 1983, Chapter 6, Theorem 5.3] to guarantee that S
is contained in a finite union of cosets of B(F0) (in A(F )). In particular, S is
contained in a configuration in A consisting of a finite union of translates of B.
We may assume that one of these translates covers X, and translating back to
the origin, we may simply assume now that S ⊂ B(F0). Since, by our inductive
hypothesis, Theorem 3.1 holds for the abelian variety B over the field F0 and for
S ⊂ B(F0), we are done.

Remarks regarding the second method. Here, as mentioned above, the relevant
literature is [Lang 1983, Chapter 9] and either [Hindry 1988, Appendice I] or
[Abramovich 1994; McQuillan 1994]. To be brief, we start by performing Step 1
of the first method, and therefore we have reduced ourselves to proving, simply,
that if A is an abelian variety over K a field finitely generated overQ, Γ ⊂ A(K) is
a finitely generated group, andX ⊂ A is an irreducible subvariety of general type,
then X ∩ Γ is not Zariski dense in X. For short, refer to the triple (A,Γ, X) as
ξ. Also, by induction we assume that this has already been proved for all triples
ξ′ = (A′,Γ′, X ′) satisfying the same properties (meaning that A′ an abelian
variety over K, Γ′ a finitely generated subgroup of the Mordell–Weil group of
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A′ ,and X ′ ⊂ A′ a subvariety of general type) where X ′ is of dimension strictly
smaller than X and dim(A′) ≤ dim(A), or A′ is of dimension strictly smaller
than A. Moreover, we assume Mordell–Lang for number fields!

Also, we will be availing ourselves of a good model of ξ over R, an integral
domain and regular, finitely generated over Q, whose field of fractions is K. We
will be explaining what we mean by good presently. But we begin with a model
of the following form: an abelian scheme A over R, and Γ ⊂ A(R) a finitely
generated subgroup of the Mordell–Weil group over R, and X ⊂ A a closed
irreducible subvariety flat over R, such that the fiber of the triple ξR = (A,Γ, X)
over K is ξ.

Ueno–Kawamata collections. For any homomorphism R → K, with K a
field, let ξ/K = (A/K ,Γ/K , X/K) denote the “fiber” of our triple over K. We
may apply the Ueno–Kawamata theory to the subvariety X/K ⊂ A/K obtaining
the Kawamata locus Z(X/K , A/K) ⊂ X/K and after possible finite field extension
of K we may write Z(X/K , A/K) =

⋃ν
j=1 Zj(X/K , A/K) with Zj geometrically

irreducible, and having Ueno fibrations denoted ηj : Zj → Xj where the mapping
ηj is induced from the natural projection A→ A/Aj for Aj some abelian variety
of positive dimension, and such that Xj ⊂ A/Aj is of general type. We define
inductively, a (finite) set C(A/K , X/K) of pairs (B, Y ), such a pair consisting of
an abelian subvariety of positive dimension B ⊂ A and an irreducible subvariety
of general type Y ⊂ A/B. For this purpose we note that single points are deemed
to be of general type (and, of course, the Kawamata locus of a point is empty).
An inductive definition of the Ueno–Kawamata Collection can be culled from
the following axioms:

0. If A/K = 0 then C(A/K , X/K) is empty.
1. If the Kawamata locus of X/K is empty, and A/K is of positive dimension,

then C(A/K , X/K) consists of the single element (A/K , X/K).
2. Keep the notation as in the preceding paragraph, but drop the subscript /K

in some of the terms to make it easier to read. For each index 1 ≤ j ≤ ν

and each pair (B′, Y ′) ∈ C(A/Aj , Xj) form the pair (B, Y ) where B ⊂ A is
the abelian subvariety which is the inverse image in A of B′ ⊂ A/Aj under
the homomorphism A → A/Aj , and where Y ⊂ A/B is the subvariety Y ′ ⊂
(A/Aj)/B′ = A/B. The elements of the set C(A/K , X/K) are precise all these
pairs (B, Y ) together with the pair (A/K , X/K).

We have a partial ordering on Ueno–Kawamata collections where, by definition,
(B′, Y ′) ≤ (B, Y ) if B ⊂ B′ and the inverse image of Y ′ in A/B is contained
in Y .

“Good” Models. Consider ξR = (A,Γ, X), as described above, and the Ueno–
Kawamata collections C(A/K , X/K) for each homomorphism R→ K where K is
a field. We say that our model is good if there is a collection which we can denote
C(A/R, X/R) of pairs (B/R, Y/R) where B/R ⊂ A/R is an abelian subscheme over
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R, and Y/R ⊂ (A/B)/R is a closed subscheme, flat over R, with the following
property:

“The Ueno–Kawamata collection specializes well”: For each R → K,
with K a field, the “fiber” of the collection of pairs C(A/R, X/R) over K (i.e.,
the set of pairs (B/K , Y/K) obtained by restriction to the fiber over K of the pairs
(B/R, Y/R) in C(A/R, X/R)) is the Ueno–Kawamata collection C(A/K , X/K).

Here one has a choice. One may use the results in [Hindry 1988, Appendice 1]
(in particular, Lemme A), which guarantee that the generic Kawamata locus
specializes to the special Kawamata locus outside a proper closed subscheme in
Spec(R). An alternative argument for this using a method of Abramovich [1994]
is found in [McQuillan 1994], where (loc. cit., Theorem 1.2) it is shown that
there is a closed subscheme of X/R whose fibers (over R) are the Kawamata loci
of the fibers of X/R.

An inductive application of these results to the successive tiers in the Ueno–
Kawamata collection allows us to conclude that we have such a “good model”.

Specialization of Γ. Fix a “good model” as described above.

Lemma 1. There exists a closed point u of Spec(R) such that for every pair
(B/R, Y/R) ∈ C(A/R, X/R) the specialization mappings of Γ/Γ ∩ B ⊂ (A/B)(R)
to (A/B)(k(u)) is injective; i .e., the specialization mapping allows us to identify
Γ/Γ∩B with a subgroup Γ/Γ∩B ↪→ (A/B)(k(u)). Here k(u) is the residue field
of the point u ∈ Spec(R).

Proof. Apply [Lang 1974, Chapter 9, Theorem 6.2] to the finitely generated
subgroup

∏
Γ/Γ ∩ B of the Mordell–Weil group of the abelian scheme

∏
A/B,

where the products range over all abelian subschemes B occurring in pairs in
the Ueno–Kawamata collection C(A/R, X/R). �

Specializing points in the complement of the Kawamata locus. Fix such a closed
point u ∈ Spec(R) with the properties guaranteed by Lemma 1. Let S de-
note the set of points in Γ/K ∩ X/K which lie outside the Kawamata locus
Z(X/K, A/K). (We are eventually aiming to prove that S is finite.) For a pair
(B, Y ) ∈ C(A/R, X/R) consider the subsets S(B, Y ) ⊂ S consisting of those
elements of S, which when projected to A/B and specialized to k(u) land in
Y (k(u)). Clearly,

S =
⋃

S(B, Y ),

where the union is taken over all pairs in the Ueno–Kawamata collection. Given
a point y ∈ Y (k(u)) let S(B, Y, y) ⊂ S consist of the elements of S(B, Y ), which
when projected to A/B and specialized to k(u) map to y.

Lemma 2. The sets S(B, Y, y) are finite.

Proof. By the definition of S(B, Y, y) and the injectivity guaranteed by Lemma
1, we have that the projection of the subset S(B, Y, y) ⊂ Γ to Γ/Γ ∩ B consists
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of a single point, and therefore S(B, Y, y) lies in a coset of the abelian subvariety
B. Since B is of strictly smaller dimension than A, our inductive hypothesis
guarantees that the Zariski-closure of S(B, Y, y) is a union of translates of abelian
subvarieties of B, and since S(B, Y, y) is external to the Kawamata locus of X
this union must only contain abelian varieties of dimension zero, i.e., S(B, Y, y)
is finite. �

Conclusion of the proof by downwards induction on the dimension of the Y ’s.

Proposition. The set S is finite.

Proof. Consider the following statement:

P(N): The union of the subsets S(B, Y ) where (B, Y ) range through all pairs
in the Ueno–Kawamata locus such that dim(Y ) ≤ N has finite complement in
S.

By Lemma 2, we see that P(0) implies that S is finite. Clearly P(d) is true for
d = dim(X). For N > 0, suppose P(N) and we shall show P(N − 1). There are
only finitely many pairs (B, Y ) in the Ueno–Kawamata locus with dim(Y ) = N .
Fix one such pair (B, Y ). Now invoke Mordell–Lang for Y/k(u): there are only
a finite number of k(u)-rational points of Y/k(u) which lie outside its Kawamata
locus. By Lemma 2, only a finite subset of S which specializes to this finite set of
points. Excluding those points, the remainder specialize to the Kawamata locus
of Y , and therefore the complement of a finite subset of S lies in the union of the
subsets S(B′, Y ′) where (B′, Y ′) range through all pairs in the Ueno–Kawamata
locus such that dim(Y ′) ≤ N − 1, giving our proposition. �

8. Number-Effectivity Revisited

In the introduction we asked briefly about possible levels of effectivity we
might hope for in connection with the finiteness of numbers of solutions of a cer-
tain class of Diophantine equations (we chose hyper-elliptic curves as our illustra-
tive class). In this section I would like to discuss number-effectivity questions in
the general context of curves of genus at least 2 but with some attention paid to
uniformity over families of curves and the base fields. As Teresa de Diego [1997]
has explained, the methods of Vojta, Faltings, and Bombieri produce number-
effective upper bounds of a very precise nature. Let X be a smooth projective
curve of genus > 0 defined over Q̄, and consider the “canonical” mapping of X
to its jacobian (abelian) variety A,

j : X ↪→ A

by the rule x 7→ the linear equivalence class of the divisor (2g− 2)[x]− κ, where
κ is (a choice of) canonical divisor for the curve X. Now consider the Néron–
Tate height function ĥ : A(Q̄) → R, where ĥ := ĥ

Q̄,A,L in the notation that
we introduced earlier, where L is the “Poincaré” line bundle on the jacobian
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A = jac(X). Composing the ĥ : A(Q̄)→ R with j : X(Q̄)→ A(Q̄), gives us the
height function on algebraic points of X, which we will continue to refer to as
“Néron–Tate height”:

ĥ(X,P ) := ĥ(j(P )) ∈ R.
Our height function ĥ(X,P ) is “canonical”, in the sense that it depends upon

nothing more than X and P . For our purposes below we need to make a further
normalization of this height function, scaling it relative to the “height” of the
curve X itself. At present, we must do this in a slightly ad hoc way. Eventually
we might want a thoroughly canonical normalization (e.g., perhaps the correct
thing to do is to replace ĥ(X,P ) by the ratio

ĥ(X,P )√
ω2
X

,

where ωX is the canonical divisor attached to a semi-stable model of the curve
X over the ring of integers in an appropriate number field, as given in Arakelov’s
Theory; see [Lang 1988]). But a perfectly serviceable, and more down-to-earth
if less canonical, normalization, which works uniformly for families of curves
parametrized by specific quasi-projective varieties, is as follows. Let ι : T ↪→ P

N

be an irreducible quasi-projective variety which is a parameter space for a family
of curves of genus > 1. That is, we give ourselves a smooth proper family X→ T

with fibers Xt equal to (smooth proper) curves of genus > 1 as t ranges through
the Q̄-rational points of T . Now, for an algebraic point P ∈ Xt(Q̄), define

h(Xt, P ) :=
ĥ(Xt, P )

1 +
√
h
Q̄,T,ι

.

For example, we can take the hyper-elliptic family y2 = g(x) discussed in the
introduction, where g(x) =

∑d
j=0 gjx

j is a polynomial of degree d (at least 5)
with no multiple roots, and the variety T = Td is the open variety in affine
(d + 1)-space over Q (parametrized by g0, . . . , gd) which is the complement of
gd = 0 and the discriminant locus.

But fix any quasi-projective variety ι : T ↪→ P
N over a number field k ⊂ Q̄

which parametrizes a family, X→ T , of (smooth projective) curves of genus ≥ 2.
For C a positive number, define a C-small point of Xt to be an algebraic point
P ∈ Xt(Q̄) such that

h(Xt, P ) ≤ C,
and a C-large point of X to be one for which the reverse inequality holds, i.e.,

h(Xt, P ) > C.

For Xt be a curve in our family, and an intermediate field k ⊂ L ⊂ Q̄ , partition
the set, Xt(L), of L-rational points on Xt into the set of C-small and C-large
points,

Xt(L) = Xt(L)small

∐
Xt(L)large.
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We visibly have a size-estimate on Xt(L)small and, for appropriate choice of
C, we seek a number-estimate on Xt(L)large.

Problem. Given our parametrized family X → T ↪→ P
N over the number

field k, as above, find three constants C, D and E for which an estimate of the
following form holds. For any number field L containing k, and t ∈ T (L),∣∣Xt(L)C−large

∣∣ ≤ D · Er(Xt,L),

where r(Xt, L) is the rank of the Mordell–Weil group of the jacobian of Xt over L.

As mentioned, de Diego [1997], who establishes uniform estimates, developing
upon methods as given, for example, in [Bombieri 1990], shows that there exist
constants C, D, and E that solve this problem. In fact, de Diego shows that
(for any family as above) there is a choice of C for which:

|Xt(L)C−large| ≤ 55
2 · 7

r(Xt,L),

for all number fields L containing k and points t ∈ T (L). Of course, what is
missing here is an explicit evaluation of a constant C = C(X, T, ι) that does the
above job.

In the recent work of A. Pacheco, there are similar estimates for curves over
finite fields replacing number fields (but with further complications due to in-
separability phenomena).

In view of a solution to the preceding problem, we might hope for an upper
bound with better uniformity in the sense that it would involve only the genus
of the curve and the quantity r(X,L). We might ask for the following stronger
assertion than the above (this being, at the same time, weaker than the question
about uniform number-effectivity posed on page 201 (Question 3).

Question. If X is a (smooth projective) curve over a field L, let g(L) denote its
genus; let X(L) denote the set of its L-rational points, and r(X,L) the rank of
the group of L-rational points of the jacobian of X. Is there a function N(g, L, r)
with the property that

|X(L)| ≤ N
(
g(X), L, r(X,L)

)
,

where L ranges through all number fields, and X ranges through all (smooth
projective) curves over L of genus ≥ 2?

In the direction of achieving effective results in characteristic p, Buium and
Voloch [1996] establish an affirmative answer to the question analogous to the
question above in the case where X is a curve defined over a field K (of charac-
teristic p) and the jacobian of X is ordinary and such that no non-trivial factor
of the jacobian is definable over Kp. Specifically, they show that

|X(L)| ≤ pr(X,K) · (3p)g · (8g − 2)g!,

where g = g(X) ≥ 2.
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Returning to characteristic 0, Buium [1993; 1994] has shown:

Proposition (Buium). Let X be a closed (possibly singular) curve in an abelian
variety A (over the complex numbers) and let Γ be a subgroup of A(C) of rank r.
Assume that X is of geometric genus g ≥ 2 and its normalisation is not defined
over the field of algebraic numbers. Set N = max{g, r, 4}. Then the cardinality
of X(C) ∩ Γ ⊂ A(C) is at most N(!)6N+6, where (!)m means factorial iterated
m times.

In e-mail correspondence, Buium noted to me the curious fact that the bound
just quoted for characteristic zero is much worse than the one proved in [Buium
and Voloch 1993] for characteristic p. In the higher-dimensional situation (but
over number fields) one has the very interesting preprint [Hrushovski and Pillay
1998], which gives a related uniform upper bound. This work makes use of the
powerful methods explained in this conference; their context is as follows. One
is given a subvariety X ⊂ A in a (semi-) abelian variety both defined over a
number field contained in C and one assumes that X contains no subvarieties of
the form X1 +X2 ⊂ A, for X1, X2 positive dimensional varieties. One considers
finitely generated subgroups Γ ⊂ A(C) and seeks an upper bound for the number
of nonalgebraic points in X ∩ Γ, i.e., for |X ∩ Γ−X(Q̄)|. Letting r := rank(Γ),
the upper bound given in [Hrushovski and Pillay 1998] for |X ∩ Γ − X(Q̄)| is
doubly exponential in r. More specificially, the upper bound is of the form

a(br)cr,

where a, b, c are explicit, and quite computable, functions of X and A.
The double exponential upper bound in this result of Hrushovski and Pillay

raises the hope (as Buium mentioned to me in e-mail correspondence) that the
iterated factorial upper bound obtained in the non-isotrival context (i.e., in the
proposition of Buium quoted above) will eventually be significantly improved.
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