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Chladni’s experiment (circa 1787)

Bowing a dusted plate
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Chladni figures on a square plate

From the book Die Akustik by Ernst Chladni
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Changing the shape of the plate

Uploaded to Wikipedia by Denis Diderot
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Amplitudes of vibrational modes
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Helmholtz equation

Led to study the Helmholtz equation on a domain

(λ2 + ∆)ϕλ(x) = 0

Every ϕλ gives rise to solutions to the wave equation

(−∂2
t + ∆)(e±itλϕλ(x)) = 0

Fermat’s principle suggests the mass of ϕλ should in some
sense be invariant under the billiard dynamics (paths of
least action) on the plate as λ→∞
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Lp norms

For a compact domain M and f : M → C continuous, define

‖f‖Lp(M) :=

(∫
M
|f (x)|p dx

) 1
p

, 1 ≤ p <∞

‖f‖L∞(M) := max
x∈M
|f (x)|,

Helmholtz sol’ns often normalized to have norm 1 in L2(M)

For 2 < p <∞, Lp norms will be sensitive to both the
extrema of the function and the regions where the extrema
is nearly obtained
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Scarring

By Eric Heller
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Laplacian on a compact manifold

Let (M,g) be a C∞, boundaryless, compact Riemannian
manifold, dim(M) = n ≥ 2
Let ∆g be the Laplace-Beltrami operator, in coordinates

∆gu =
n∑

i,j=1

1√
det gkl

∂i

(
g ij
√

det gkl ∂ju
)

Self-adjoint w.r.t. Riemannian measure dVg∫
M

∆gu v dVg =

∫
M

u ∆gv dVg ,∫
M

∆gu u dVg = −
∫

M
|∇gu|2dVg

Matthew D. Blair Lp norms and global harmonic analysis



Eigenfunctions on a compact manifold

Compactness of M =⇒ spectrum of ∆g is discrete:
there exists a sequence {ϕλj}∞j=1 of eigenfunctions forming
an O.N. basis for L2(M)

∆gϕλj = −λ2
j ϕλj ,

√
−∆gϕλj = λjϕλj

Eigenspaces are finite dimensional, but may have high
multiplicity (perhaps even growing with λ)
Notation: ϕλ is any admissible solution

∆gϕλ = −λ2ϕλ,

∫
M
|ϕλ|2 dVg = 1
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Example: Flat torus

Let Tn = Rn/(2πZ)n, endowed with the flat metric
(a.k.a. [−π, π]n with opposite sides “glued" together)

Laplacian is the familiar ∆u =
∑n

1
∂2u
∂x2

j

Eigenfunctions are linear combos of Fourier modes

ϕλ(x) =
1

(2π)n

∑
|m|=λ

ameix ·m,
∑
|m|=λ

|am|2 = 1 (m ∈ Zn)

Radius = λ
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Example: Sn, canonical sphere in Rn+1

On S2, with spherical coordinates (θ, φ)

∆gu =
1

sin θ
∂θ (sin θ ∂θu) +

1
sin2 θ

∂2
φu

E’functions are linear combos of Y m
l (θ, φ) = eimφPm

l (cos θ)
(Pm

l an associated Legendre polynomial)
For n ≥ 2, spectrum of ∆g on Sn is:

spec(
√
−∆g) =

{√
k(k + n − 1) = k +O(k−1) : k = 0,1,2, . . .

}
and dimension of each eigenspace is ≈ kn−1
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Lp bounds on eigenfunctions

Main problem: given (M,g) and the unit sphere in an
eigenspace

Vλ = {ϕλ : ∆gϕλ = −λ2ϕλ, ‖ϕλ‖L2 = 1}

find (best possible) upper bounds on

sup
ϕλ∈Vλ

‖ϕλ‖Lp(M), 2 < p ≤ ∞

Might expect the following type, for some δ(p) > 0

‖ϕλ‖Lp(M) ≤ Cλδ(p) for ‖ϕλ‖L2(M) = 1

Main difficulty: for most (M,g), projection onto eigenspace
is difficult to understand!
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Wave approach to eigenfunctions (see Sogge, Fourier
Integrals in Classical Analysis)

Let χ ∈ S(R), satisfy supp(χ̂) ⊂ (−ε, ε), χ(0) = 1, define

χ(λ−
√
−∆g)f =

∞∑
j=1

χ(λ− λj)〈f , ϕλj 〉 ϕλj

so that χ(λ−
√
−∆g)ϕλ = ϕλ

λ

width ≈ 1
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Wave approach to eigenfunctions

Formally, using Fourier integrals

χ(λ−
√
−∆g) =

1
2π

∫ ε

−ε
eitλe−it

√
−∆g χ̂(t) dt

e−it
√
−∆g is the half-wave evolution, a solution map for the

wave eqn, i.e.

e−it
√
−∆g f =

∞∑
j=1

e−itλj 〈f , ϕλj 〉ϕλj

Lax parametrix + stationary phase yields

χ(λ−
√
−∆g)v(x) =

∫
M

eiλdg(x ,y)aλ(x , y)v(y) dy + small error

supp(aλ) ⊂ {(x , y) ∈ M ×M : dg(x , y) ≤ ε}
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Limitations to the wave approach

The dream: replace χ(λ−
√
−∆g) by χ̃λ(

√
−∆g) where

supp(χ̃λ) ∩ spec(
√
−∆g) = {λ}

χ̃λ(
√
−∆g) =

1
2π

∫
eitλe−it

√
−∆g ̂̃χλ(t) dt

Fourier transform of χ̃λ loses the compact support, so
must understand the wave kernel for all t ∈ R
Weyl’s law and its consequences:

#{λj : λj ≤ λ} = cnλ
n +O(λn−1)

#{λj : λj ∈ [λ, λ+ 1]} = O(λn−1)

so lots of eigenfunctions in the range of χ(λ−
√
−∆g),

typically a crude approximation to eigenspace projection
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Lp bounds on spectral clusters

Theorem: “Universal" Lp bounds (Sogge ‘88)

If dim(M) = n ≥ 2 and g ∈ C∞, then

‖χ(λ−
√
−∆g)f‖Lp(M) ≤ Cλδ(p)‖f‖L2(M)

δ(p) =

{
n−1

2 (1
2 −

1
p ), 2 ≤ p ≤ 2(n+1)

n−1
n−1

2 −
n
p ,

2(n+1)
n−1 ≤ p ≤ ∞

Consequently, ‖ϕλ‖Lp(M) = O(λδ(p)) as λ→∞

At best, growth rate δ(p) is sharp for the operator
χ(λ−

√
−∆g), but not necessarily eigenspace projections

Sn is exceptional:
spec(

√
−∆g) = {k +O(1/k) : k = 0,1,2, . . . }
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Lp bounds

1
p

n−1
2

( n−1
2(n+1),

n−1
2(n+1))

1
2

δ(p)
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Zonal harmonics on Sn

Sogge: On Sn, can find ϕλ satisfying for enough x

|ϕλ(x)| ≈ λ
n−1

2 (1 + λdg(x , x0))−
n−1

2 near x0 ∈ M,

hence the δ(p) = n−1
2 −

n
p cannot be improved for

2(n+1)
n−1 ≤ p ≤ ∞

‖ϕλ‖Lp(M) ≈ λ
n−1

2 −
n
p

On Sn, these are zonal harmonics (exact eigenfunctions)
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Highest weight/sectoral harmonics on Sn

ϕλ concentrated in a λ−
1
2 -nbd of a closed geodesic γ

Tλ−1/2(γ) = {x : dg(x , γ) . λ−
1
2 },

hence the δ(p) = n−1
2 (1

2 −
1
p ) growth rate cannot be

improved for 2 < p ≤ 2(n+1)
n−1

‖ϕλ‖Lp(M) ≈
[
Vol(Tλ−1/2(γ))

] 1
p−

1
2 ≈ λ

n−1
2 ( 1

2−
1
p )

On Sn, these are the highest weight harmonics

Underscores that p = 2(n+1)
n−1 is the critical exponent. Both

mass concentration profiles saturate the growth rate.
Pietromonaco honors thesis: worked out Sogge’s
examples in detail
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Highest weight harmonics on Sn

Mass of ϕλ concentrated in a λ−
1
2 neighborhood of the

equator

λ−
1
2
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Highest weight harmonics on Sn

Equator is a stable, degenerate orbit

λ−
1
2
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Flat and negatively curved manifolds

No such stable orbits on the torus: e.g. image of lines with
irrational slope under the quotient map are dense

(Image from J. Lee, Introduction to Smooth Manifolds)

If M has negative sectional curvatures, the geodesic flow is
unstable
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Sn is too special

Main question for general (M,g): When can the O(λδ(p))
bounds be improved?

Zygmund: ‖ϕλ‖L4(T2) ≤ C
Classical number theory: ‖ϕλ‖L∞(T2) ≤ Cελ

ε, any ε > 0
Bourgain, Bourgain-Demeter: improvements on δ(p)
exponent for flat tori
Iwaniec-Sarnak: power improvements for certain
(noncompact) arithmetic quotients of the hyperbolic plane
Sogge-Zelditch: maximal L∞ growth occurs only when “full
measure" family of geodesics issuing from a point loop
back at a common time
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Nonpositive curvature

Negative curvature: geodesic flow behaves chaotically,
stable and unstable manifolds are invariant under geodesic
flow (Anosov)
Lp bounds expected to be much better than predicted by
Sogge’s bounds (perhaps even O(λε) for any ε > 0)
Cartan-Hadamard thm: nonpositive curvature⇒ no
conjugate points, universal cover is diffeomorphic to Rn

Bérard ‘77, Hassell-Tacy ‘12: Logarithmic improvements Lp

bounds when 2(n+1)
n−1 < p ≤ ∞ for nonpositive curvature

‖ϕλ‖Lp(M) = O
( λδ(p)

(log λ)1/2

)
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Wave approach for nonpositive curvature

As before χ ∈ S(R) with χ̂ ∈ C∞ and compactly supported
in (−ε, ε), χ(0) = 1
This time consider with T = T (λ) = log λ

χ(T (λ−
√
−∆g)) =

1
2πT

∫ εT

−εT
eitλe−it

√
−∆g χ̂

(
t
T

)
dt

Yields a gain of 1
T , but have to analyze e−it

√
−∆g over large

time scales
Can lift the problem to the universal cover, treating it as a
“periodic" problem and use the Hadamard parametrix
Bérard: #{λj : λj ∈ [λ, λ+ (log λ)−1]} = O

(
λn−1(log λ)−1)
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Local vs. Global Harmonic Analysis

Universal Lp bounds of Sogge: fundamentally local
analysis, only uses information about e−it

√
−∆g over small

time scales
Improvements for nonpositive curvature (and other cases):
global harmonic analysis, want to understand wave kernel
over global time scales and implications for eigenfunctions
(e.g. T ≈ log λ in previous slide)
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Ehrenfest time

Coherent states/wave packets at frequency λ, consider
Gaussian concentrated at scales ∆x in space, ∆ξ in
frequency
Take localization scales ∆x ≈ λ−1/2, ∆ξ ≈ λ1/2, finest
possible while respecting uncertainty principle and
(approximate) invariance under bicharacteristic flow
For unstable flows, wave packets lose their coherent
structure when |t | � log λ, e.g.

∆xt + λ−1∆ξt ≤ Ceµt (∆x + λ−1∆ξ) ≈ eµtλ−
1
2

Work in progress: define coherent states which are
“intrinsic" to (M,g) and use this approximate general
solutions to the wave equation over Ehrenfest time scales
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Improvements beneath the critical exponent

Thm (B.-Sogge ‘15, to app. Comm. Math. Phys., J. Diff. Geom.)

Suppose (M,g) has nonpositive sectional curvatures. Then for
any 2 < p < 2(n+1)

n−1 , there exists an exponent σ = σ(p,n) > 0
such that

‖ϕλ‖Lp(M) = O
( λδ(p)

(log λ)σ

)
Showed that mass does not concentrate in λ−1/2

neighborhoods
Earlier work: Sogge, Sogge-Zelditch, B.-Sogge

σ(p,n)↘ 0 as p ↗ 2(n+1)
n−1

Matthew D. Blair Lp norms and global harmonic analysis



Improvements beneath the critical exponent

Thm (B.-Sogge ‘15, to app. Comm. Math. Phys., J. Diff. Geom.)

Suppose (M,g) has nonpositive sectional curvatures. Then for
any 2 < p < 2(n+1)

n−1 , there exists an exponent σ = σ(p,n) > 0
such that

‖ϕλ‖Lp(M) = O
( λδ(p)

(log λ)σ

)
Showed that mass does not concentrate in λ−1/2

neighborhoods
Earlier work: Sogge, Sogge-Zelditch, B.-Sogge

σ(p,n)↘ 0 as p ↗ 2(n+1)
n−1

Matthew D. Blair Lp norms and global harmonic analysis



Improvements beneath the critical exponent

Thm (B.-Sogge ‘15, to app. Comm. Math. Phys., J. Diff. Geom.)

Suppose (M,g) has nonpositive sectional curvatures. Then for
any 2 < p < 2(n+1)

n−1 , there exists an exponent σ = σ(p,n) > 0
such that

‖ϕλ‖Lp(M) = O
( λδ(p)

(log λ)σ

)
Showed that mass does not concentrate in λ−1/2

neighborhoods
Earlier work: Sogge, Sogge-Zelditch, B.-Sogge

σ(p,n)↘ 0 as p ↗ 2(n+1)
n−1

Matthew D. Blair Lp norms and global harmonic analysis



Improvements at the critical exponent

Theorem (B.-Sogge ‘17)

Suppose (M,g) has nonpositive sectional curvatures. Then
there exists an exponent σ = σ(n) > 0 such that

‖ϕλ‖
L

2(n+1)
n−1 (M)

= O
( λδ(p)

(log λ)σ

)
Earlier work: Sogge ‘15, achieving only a log log λ gain
Borrows strategies from nonlinear PDE: characterize
phase space profile of “singular" eigenfunctions, then show
this cannot occur
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Restrictions to geodesic segments

Theorem (B.‘16, to appear Israel J. Math.)

Suppose (M,g) has nonpositive sectional curvatures and
n = 2. Then for any unit length geodesic segment γ∥∥∥ϕλ∣∣γ∥∥∥L4(γ)

= O
( λ1/4

(log λ)1/4

)
Improves universal bounds for geodesic restrictions of
Burq-Gérard-Tzvetkov, Hu, Chen-Sogge
Xi-Zhang ’16: Logarithmic improvement for constant
negative curvature
L4 is critical for geodesic restrictions
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