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The wave equation on Rn

Initial value problem for the wave equation

2u := (D2
t −∆)u = 0, (u, ∂tu)

∣∣
t=0 = (f ,g),

u(t , x) : R× Rn → C, (Dt = −i∂t , ∆ ≥ 0)

Properties:

‖∇t ,xu(t , ·)‖2L2 = ‖∇t ,xu(0, ·)‖2L2 (energy conservation)

‖u(t , ·)‖L∞(Rn) ≤ C(u)(1 + |t |)−
n−1

2 (decay inequality)
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Nonlinear wave equations

Semilinear wave equation with power type nonlinearity

2u = ±|u|r−1u

Inhomogeneous energy estimates

‖∇t ,xu(t , ·)‖L2 . ‖∇t ,xu(0, ·)‖L2 +

∫ t

0
‖2u(s, ·)‖L2 ds

In order to linearize the equation, need to estimate powers
of solutions efficiently

‖ur‖L1(I;L2(Rn)) = ‖u‖rLr (I;L2r (Rn)), I = (−T ,T )
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Strichartz estimates

Robert Strichartz (1970’s)–estimates for 2u = 0:

‖u‖Lq(Rn+1) ≤ C
(
‖f‖

Ḣ
1
2 (Rn)

+ ‖g‖
Ḣ−

1
2 (Rn)

)
, q =

2(n + 1)

n − 1

Consequence of Stein-Tomas restriction theorem:
û(τ, ξ) is supported on the cone S = {τ2 = |ξ|2},

‖u‖Lq(Rn+1) ≤ C‖û‖L2(S)

which is dual to a Fourier restriction estimate
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Strichartz estimates

80’s/90’s: Ginibre-Velo, Lindblad-Sogge, Keel-Tao, others

‖u‖Lp(R;Lq(Rn)) ≤ C
(
‖f‖Ḣγ(Rn) + ‖g‖Ḣγ−1(Rn)

)
Admissibility conditions:

1
p

+
n
q

=
n
2
− γ (Scaling)

2
p

+
n − 1

q
≤ n − 1

2
(Knapp example/Lorentz)
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Littlewood-Paley decompostions

Take a Littlewood-Paley decomposition in the spatial
frequencies

u =
∞∑

k=−∞
uk , uk (t , ·) = F−1{βk (ξ)û(t , ξ)},

supp(βk ) ⊂
{

2k− 1
2 < |ξ| < 2k+ 3

2

}
,

∞∑
k=−∞

βk (ξ) = 1

The Littlewood-Paley squarefunction estimate reduces
matters to

‖uk‖Lp(Lq) . 2γk‖fk‖L2 + 2γ(k−1)‖gk‖L2 k ∈ Z

Use scale invariance (t , x) 7→ (2−k t ,2−kx) to reduce to

‖u0‖Lp(Lq) . ‖f0‖L2 + ‖g0‖L2 (k = 0)
Matthew D. Blair Strichartz on polygons and cones



Strichartz estimates on Rn

Boundary value problems
Estimates on cones

Littlewood-Paley decompostions

Take a Littlewood-Paley decomposition in the spatial
frequencies

u =
∞∑

k=−∞
uk , uk (t , ·) = F−1{βk (ξ)û(t , ξ)},
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Frequency localized estimates

Crucial matter: show that

‖u0(t , ·)‖L∞ . (1 + |t |)−
n−1

2 (‖f0‖L1 + ‖g0‖L1)

Oscillatory integral approach is most effective∣∣∣∣∫ ei(x−y)·ξ±it |ξ|α(|ξ|) dξ
∣∣∣∣ . (1 + |t |)−

n−1
2 , α ∈ C∞c (R+)

Can view the Littlewood-Paley multiplier as an operator
which regularizes the Schwartz (distributional) kernels of

sin(t
√

∆)√
∆

and cos(t
√

∆)
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Boundary value problems

Let Ω be a domain in Rn, and consider solutions to

(D2
t −∆)u = 0, (u, ∂tu)

∣∣
t=0 = (f ,g),

u(t , ·)|∂Ω = 0 (Dirichlet) or
∂u
∂ν

(t , ·)
∣∣∣
∂Ω

= 0 (Neumann)

Boundary conditions affect the flow of energy
Trapped rays can preclude a global (in time) estimate
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Boundary value problems

Partial progress on smooth boundaries: Smith-Sogge,
Burq-Lebeau-Planchon, MDB-Smith-Sogge
Common thread–can construct a parametrix for the
equation
Domains with corners? No known effective parametrix

Melrose-Vasy-Wunsch: If a singularity lies on a ray which
approaches a corner, it lies within the union of a family of
rays after the interaction
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Sommerfeld’s example

Sommerfeld (1896) did explicit computations in the exterior of a
wedge–he showed that when a wavefront interacts with the tip,
a spherical wave of singularities is formed, even into the
shadow region

(Figure from Friedlander’s Sound Pulses)
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Main theorem for domains

Theorem (MDB, Ford, Marzuola)

Let Ω be a domain in R2 whose boundary consists of a finite
number of line segments. Then any solution to the wave
equation with Dirichlet or Neumann BC’s satisfies

‖u‖Lp((−T ,T );Lq(Ω)) . ‖f‖Hγ(Ω) + ‖g‖Hγ−1(Ω)

1
p

+
2
q

= 1− γ (scaling)

2
p

+
1
q
≤ 1

2
(Knapp admissability)
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Doubling
Functional calculus
Proving the Decay Estimates

Doubling the domain

Since the estimate is local in time, finite speed of
propagation means that it suffices to work locally in space,
that is, over sets as small as you like
Away from the vertices: use the method of images
Near the vertices: impose polar coordinates (r , θ) centered
at the vertex. If the angle is α, (0, δ)× [0, α] ⊂ R+ × S1 will
describe the neighborhood.
This neighborhood can be “doubled" by gluing a copy of
the corner on to the original
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Doubling the domain

θ = 0 θ = α θ = 2αθ = α

Doubling gives (0, δ)× R/2α equipped with the metric
dr2 + r2dθ2, a subset of the Euclidean cone
C(S1

ρ) = R+ × R/2πρ, the Euclidean cone of radius ρ
(ρ = α/π). It has the flat metric g = dr2 + r2dθ2
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Doubling the domain

Dirichlet solutions can be extended by writing

u(t , r , θ) =
1√
α

∞∑
j=1

uj(t , r) sin
(

jπθ
α

)

Neumann solutions can be extended by writing

u(t , r , θ) = u0(t , r) +
1√
α

∞∑
j=1

uj(t , r) cos
(

jπθ
α

)
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Main theorem for cones

Theorem (MDB, Ford, Marzuola)

Let C(S1
ρ) be the Euclidean cone of radius ρ > 0. Then for any

admissible triple (p,q, γ)

‖u‖Lp(R;Lq(C(S1
ρ))) . ‖f‖Ḣγ(C(S1

ρ)) + ‖g‖Ḣγ−1(C(S1
ρ))

On C(S1
ρ), wave equation involves the Laplace-Beltrami

operator

−∆g =
∂2

∂r2 +
1
r
∂

∂r
+

1
r2

∂2

∂θ2
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The Spectral Theorem

Spectral Theorem

There exists a measure space (Y , µ) and a unitary map
W : L2(Y , µ)→ L2(C(S1

ρ)) and a measurable function a(y) on
Y such that

W−1∆gW h(y) = a(y)h(y), whenever W h ∈ Dom(∆g).

Furthermore, functions f (∆g) can be defined by

W−1f (∆g)W g(y) = f (a(y))g(y)

Can take a Littlewood-Paley decomp. w.r.t. the spectrum of ∆g

I =
∞∑

k=−∞
βk (
√

∆g)
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Functional calculus on cones

Begin with separated solutions to the Helmholtz eqn
(∆g − λ2)g(r)ϕν(θ) = 0, with −ϕ′′ν(θ) = ν2ϕν(θ)

g(r) must satisfy the Bessel-type equation

Lνg = −g′′(r)−1
r

g′(r)+
ν2

r2 g(r) = λ2g(r) ⇒ g(r) = Cν(λr)

Taking Cν(λr) = Jν(λr), define the Hankel transform

Hν(g)(λ) =

∫ ∞
0

g(r)Jν(λr)r dr

Hν defines a unitary map Hν : L2(R+, r dr)→ L2(R+, λdλ)
and Hν ◦ Hν = I, Hν(Lνg)(λ) = λ2Hν(g)(λ)
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Functional calculus on cones

Use this to create a spectral representation of ∆g,
Schwartz kernel of f (∆g) will have the form

Kf (r1, θ1; r2, θ2) =
∑
ν

K̃f (r1, r2, ν)ϕν(θ1)ϕν(θ2)

where ν indexes an O.N. basis of eigenfunctions and

K̃f (r1, r2, ν) =

∫ ∞
0

f (λ2)Jν(λr1)Jν(λr2)λdλ

Use this to understand kernels of e−it
√

∆g
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Formulae for the coefficients

Lipschitz-Hankel integral
(Qν− 1

2
= Legendre function of the 2nd kind, order ν − 1

2 )

∫ ∞
0

e−itλJν(λr1)Jν(λr2) dλ =
1
π

(r1r2)−
1
2 Qν− 1

2

(
r2
1 + r2

2 − t2

2r1r2

)

Now sum to obtain formulae for sin(t
√

∆g)/
√

∆g,
cos(t

√
∆g)

Kf (r1, θ1; r2, θ2) =
1

2πρ

∞∑
j=−∞

K̃f

(
r1, r2,

|j |
ρ

)
exp

(
ij(θ1 − θ2)

ρ

)
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Formulae for the solution operators

Cheeger-Taylor: formulas for the kernel of
sin(t

√
∆g)/

√
∆g on cones

MDB-Ford-Marzuola: formulas for cos(t
√

∆g) when ρ < 1
Kernels above take the form

Kgeom(r1, θ1; r2, θ2) + Kdiff (r1, θ1; r2, θ2)

“Kgeom" consists of terms arising from a formal application
of the method of images
“Kdiff " arises from diffraction by the cone tip
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Good news and bad news

Littlewood-Paley works as before and the wave equation is
invariant under dilations
Problem: Have good formulae for e.g. sin(t

√
∆g)/

√
∆g,

but not
sin(t

√
∆g)√

∆g
β0(
√

∆g)

Very difficult to obtain oscillatory integrals analogous to
those on R2

Take a new perspective on the problem in R2 and
regularize the kernel of sin(t

√
∆)/
√

∆,

K (t , x , y) = π−1(t2 − |x − y |2)
− 1

2
+
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Functional calculus
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The averaging approach on R2

Treat Littlewood Paley operator as a regularizing operator∫
K (t , x , y)β0(

√
∆)g0(y) dy =

∫ (
β0(
√

∆y )K (t , x , y)
)

g0(y) dy

On R2, convolution kernel of β0(
√

∆) is a Schwartz
function, rapidly decreasing on the unit scale
Morally, |β0(

√
∆y )K (t , x , y)| is controlled by its average on

a set of size one
Averages are bounded since (t2 − r2)−

1
2 ≤ t−

1
2 (t − r)−

1
2

and the second factor is integrable in r
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The averaging approach on the Euclidean cone

Heat kernel results give bounds on the kernel of β0(
√

∆g)

in terms of the distance function on C(S1
ρ)), yields similar

control via averages
Behavior of the geometric term is similar to the
corresponding propagator on R2 ⇒ averaging approach
carries over to the cone
We prove pointwise bounds on the diffractive term that
display a similar character

|Kdiff (r1, θ1; r2, θ2)| ≤ (t2 − (r1 + r2)2)
− 1
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