Notes on Taylor's formula Math 511, Spring 2018

1 Taylor's formula in one dimension

We begin by recalling the standard Taylor formula (see e.g. Theorem 5.15 of Rudin)

Theorem 1.1. Suppose $g : [a,b] \to \mathbb{R}$ is a C^{k-1} function [a,b] and that $g^{(k-1)}(t)$ is differentiable for all $t \in (a,b)$. Then there exists $t_0 \in (a,b)$ such that

$$g(b) = \sum_{l=0}^{k-1} \frac{g^{(l)}(a)}{l!} (b-a)^l + \frac{g^{(k)}(t_0)}{k!} (b-a)^k.$$

If $g^{(k)}(t)$ is also Riemann integrable, the remainder term can also be characterized as an integral, as in the following theorem.

Theorem 1.2. Suppose $g : [a,b] \to \mathbb{R}$ differentiable up to order k on [a,b] and that $g^{(k)}(t)$ is Riemann integrable on [a,b]. Then

$$g(b) = \sum_{l=0}^{k-1} \frac{g^{(l)}(a)}{l!} (b-a)^l + \frac{(b-a)^k}{(k-1)!} \int_0^1 (1-t)^{k-1} g^{(k)}(a+t(b-a)) dt \quad (1.1)$$

Note that the hypotheses of this theorem are satisfied when g is $C^k([a, b])$.

Proof of Theorem 1.2. To prove the theorem we induct on k. The k = 1 case is a consequence of the fundamental theorem of calculus:

$$g(b) - g(a) = \int_0^1 \frac{d}{dt} \left(g(a + t(b - a)) \right) \, dt = (b - a) \int_0^1 g'(a + t(b - a)) \, dt.$$

Now suppose that the formula holds for some $k \ge 1$. To see that this implies the k + 1 case, it suffices to show that

$$\frac{(b-a)^k}{(k-1)!} \int_0^1 (1-t)^{k-1} g^{(k)}(a+t(b-a)) dt = \frac{g^{(k)}(a)}{k!} (b-a)^k + \frac{(b-a)^{k+1}}{k!} \int_0^1 (1-t)^k g^{(k+1)}(a+t(b-a)) dt. \quad (1.2)$$

To this end, observe that $\frac{1}{k}(1-t)^{k-1} = -\frac{d}{dt}(1-t)^k$. Integration by parts thus shows that the left hand side equals

$$-\frac{(b-a)^{k}}{k!}(1-t)^{k}g^{(k)}(a+t(b-a))\Big|_{t=0}^{t=1} +\frac{(b-a)^{k}}{k!}\int_{0}^{1}(1-t)^{k}\frac{d}{dt}\left(g^{(k)}(a+t(b-a))\right)\,dt.$$

It is then verified that this equals the right hand side of (1.2). Indeed, the contribution of t = 1 to the first term vanishes and applying the chain rule as before to the integral yields the desired identity.

Exercise. Show that the conclusion of Theorem 1.2 (i.e. identity (1.1)), holds in exactly the same way when when [a, b] is replaced by [b, a] for some b < a.

Exercise. Show that the remainder term in (1.1) (i.e. the integral) can be rewritten as

$$\frac{1}{(k-1)!} \int_{a}^{b} (b-s)^{k-1} g^{(k)}(s) \, ds.$$

2 Taylor's formula in higher dimensions

Let $\Omega \subset \mathbb{R}^n$ be an open set and $f : \Omega \to \mathbb{R}$. We say that f is k times continously differentiable, and denote $f \in \mathcal{C}^k(\Omega)$, if all the partial derivatives of order less than or equal to k exist and define continuous functions on Ω .

Given a dimension n, treated as fixed throughout any given discussion, we define a *multi-index* to be a vector $\alpha = (\alpha_1, \ldots, \alpha_n)$. In particular, any standard basis vector e_j in \mathbb{R}^n defines a multi-index. We define the *order* of a multi-index to be

$$|\alpha| = \alpha_1 + \dots + \alpha_n$$

We further define the *factorial* of a multi-index as

$$\alpha! = \alpha_1! \, \alpha_2! \, \cdots \, \alpha_n! \, .$$

The purpose of multi-index notation is that it simplifies various formulas which arise when studying monomials in higher dimensions and partial derivatives in higher dimensions.

As a first example, consider a monomial in *n*-dimensions $x_1^{\alpha_1} \cdots x_n^{\alpha_n}$. Taking $\alpha = (\alpha_1, \dots, \alpha_n)$, we may denote this monomial as

$$x^{\alpha} = x_1^{\alpha_1} \cdots x_n^{\alpha_n}.$$

As a second example, suppose $f \in C^k(\Omega)$ as defined above. By Clairaut's theorem, if $l \leq k$, we know that any partial derivative of f of order l is independent of the order of differentiation. We may therefore unambiguously write

$$\partial^{\alpha} f(x) = \frac{\partial^{|\alpha|} f(x)}{\partial x_1^{\alpha_1} \cdots \partial x_n^{\alpha_n}}$$

but it is understood that any other order of partial differentiation yields the same function.

Theorem 2.1 (Taylor's formula in higher dimensions). Let $\Omega \subset \mathbb{R}^n$ be an open set and $f : \Omega \to \mathbb{R}$ be in $\mathcal{C}^k(\Omega)$. Then for any $x, x + y \in \Omega$ such that the line segment between them lies in Ω , we have that

$$f(x+y) = \sum_{|\alpha| < k} \frac{y^{\alpha}}{\alpha!} \partial^{\alpha} f(x) + R_f^k(x,y)$$

where $R_f(x, y)$ is a remainder term that can be characterized in one of two ways:

$$R_f^k(x,y) = \sum_{|\alpha|=k} \frac{y^{\alpha}}{\alpha!} \partial^{\alpha} f(c) \qquad (classical form) \quad (2.1)$$

$$R_f^k(x,y) = \sum_{|\alpha|=k} \frac{y^{\alpha}}{\alpha!} \int_0^1 k(1-t)^{k-1} \partial^{\alpha} f(x+ty) dt \quad (integral form) \quad (2.2)$$

where in the former case, c is some point on the line segment between x and x + y.

The crux of the proof of this theorem lies in the following lemma.

Lemma 2.2. Let f, Ω be as in Theorem 2.1, and define $g: [0,1] \to \Omega$ by

$$g(t) = f(x + ty)$$

Then $g \in C^k([0,1])$ satisfies

$$g^{(k)}(t) = k! \sum_{|\alpha|=k} \frac{y^{\alpha}}{\alpha!} \partial^{\alpha} f(x+ty).$$
(2.3)

To see that Theorem 2.1 follows as a corollary to the lemma, we apply Theorem 1.2 to g in order to obtain (2.2). The identity (2.1) follows from applying Theorem 1.1 to g, then realizing $x + t_0 y$ yields a point on the line segment between x and x + ty.

Proof of Lemma 2.2. That $g \in C^k([0,1])$ is a consequence of the chain rule, and is implicit in the argument below. We prove (2.3) by induction, noting that the k = 0 case is clear.

We thus assume the formula to be true for some k and show that it implies the k + 1 case, when $k \ge 0$. If $f \in \mathcal{C}^{k+1}(\Omega)$, we have

$$g^{(k+1)}(t) = \frac{d}{dt} \left(g^{(k)}(t) \right) = \frac{d}{dt} \left(k! \sum_{|\alpha|=k} \frac{y^{\alpha}}{\alpha!} \partial^{\alpha} f(x+ty) \right)$$
$$= k! \sum_{|\alpha|=k} \frac{y^{\alpha}}{\alpha!} \frac{d}{dt} \left(\partial^{\alpha} f(x+ty) \right)$$
$$= k! \sum_{|\alpha|=k} \frac{y^{\alpha}}{\alpha!} \left(\sum_{j=1}^{n} y_{j} \partial^{\alpha+e_{j}} f(x+ty) \right)$$
$$= k! \sum_{|\alpha|=k} \sum_{j=1}^{n} \frac{y^{\alpha+e_{j}}}{\alpha!} \partial^{\alpha+e_{j}} f(x+ty), \qquad (2.4)$$

where the fourth identity follows from the chain rule. We now have to reindex the sum on the right as a sum over multi-indices of order k + 1. As sets, observe that

$$\{\alpha + e_j : |\alpha| = k, 1 \le j \le n\} = \{\beta : |\beta| = k + 1\}.$$

To see this, first note that every member of the set on the left is a member of the set on the right. Moreover, any member $\beta = (\beta_1, \ldots, \beta_n)$ of the set on the right satisfies $\beta_j > 0$ for some $j = 1, \ldots, n$ and hence can be written as $\alpha + e_j$ for some $|\alpha| = k$. So the sum in (2.4) can indeed be rewritten as a sum over the multi-indices β of order k + 1. But this requires setting $\beta = \alpha + e_j$ above, meaning that the factor of $1/\alpha!$ is replaced by $1/(\beta - e_j)!$. The one catch is that this factorial is meaningful only when $\beta - e_j$ is a multi-index itself, that is, $\beta_j > 0$.

So given $|\beta| = k + 1$, consider

$$B_{\beta} = \{\beta - e_j : \beta_j > 0\} = \{\alpha : |\alpha| = k \text{ and } \alpha = \beta - e_j \text{ for some } j = 1, \dots n\}.$$

Hence the sum in (2.4) can be rewritten as

$$k! \sum_{|\beta|=k+1} \sum_{\alpha \in B_{\beta}} \frac{y^{\beta}}{\alpha!} \partial^{\beta} f(x+ty) = k! \sum_{|\beta|=k+1} \frac{y^{\beta}}{\beta!} \partial^{\beta} f(x+ty) \sum_{\alpha \in B_{\beta}} \frac{\beta!}{\alpha!}$$

The induction is finished if we can show $\sum_{\alpha \in B_{\beta}} \frac{\beta!}{\alpha!} = k + 1$, which follows from

$$\sum_{\alpha \in B_{\beta}} \frac{\beta!}{\alpha!} = \sum_{j=1}^{n} \beta_j = |\beta| = k+1.$$

Indeed, either $\beta_j > 0$ meaning that $\beta = \alpha + e_j$ for some $\alpha \in B_\beta$, or $\beta_j = 0$, in which case the contribution is not counted in the first expression and contributes trivially in the second.

Remark 2.3. We conclude these notes by remarking that whenever $f \in C^2(\Omega)$ and $c \in \Omega$, we have the identity

$$\sum_{|\alpha|=2} \frac{y^{\alpha}}{\alpha!} \partial^{\alpha} f(c) = \frac{1}{2} (\nabla^2 f(c) y) \cdot y$$

where $\nabla^2 f(c)$ denotes the Hessian matrix (and not the Laplacian as some texts do)

$$\nabla^2 f(c) = \begin{bmatrix} D_{11}^2 f(c) & D_{12}^2 f(c) & \cdots & D_{1n}^2 f(c) \\ D_{21}^2 f(c) & D_{22}^2 f(c) & \cdots & D_{2n}^2 f(c) \\ \vdots & \vdots & \cdots & \vdots \\ \vdots & \vdots & \cdots & \vdots \\ D_{n1}^2 f(c) & D_{n2}^2 f(c) & \cdots & D_{nn}^2 f(c) \end{bmatrix}$$

To see this, note that since $D_{ji}^2 f(c) y_j y_i = D_{ij}^2 f(c) y_i y_j$,

$$\begin{aligned} \frac{1}{2} (\nabla^2 f(c)y) \cdot y &= \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n D_{ij}^2 f(c) y_i y_j \\ &= \sum_{i=1}^n \frac{1}{2} D_{ii}^2 f(c) y_i y_i + \sum_{i=1}^n \sum_{j=i+1}^n D_{ij}^2 f(c) y_i y_j. \end{aligned}$$

Indeed, the last expression here rewrites the second one as a sum over diagonal and off-diagonal terms. By the observed symmetry in i, j, the off-diagonal terms are counted twice in the second expression, but only once in the last expression, cancelling the factor of 1/2. But the right hand side here can be rewritten as a sum over multi-indices $\sum_{|\alpha|=2} \frac{y^{\alpha}}{\alpha!} \partial^{\alpha} f(c)$, using that $1/\alpha! = 1$ when $\alpha = e_i + e_j$ for $i \neq j$ and $1/\alpha! = 1/2$ when $\alpha = 2e_i$ for some $i = 1, \ldots, n$.