Notes on Taylor’s formula
Math 511, Spring 2018

1 Taylor’s formula in one dimension

We begin by recalling the standard Taylor formula (see e.g. Theorem 5.15
of Rudin)

Theorem 1.1. Suppose g : [a,b] — R is a C*~1 function [a,b] and that
g* =1 (t) is differentiable for all t € (a,b). Then there exists to € (a,b) such
that
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If g®)(t) is also Riemann integrable, the remainder term can also be
characterized as an integral, as in the following theorem.

Theorem 1.2. Suppose g : [a,b] — R differentiable up to order k on [a, b
and that g (t) is Riemann integrable on [a,b]. Then
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Note that the hypotheses of this theorem are satisfied when g is C*([a, b]).

Proof of Theorem 1.2. To prove the theorem we induct on k. The k = 1
case is a consequence of the fundamental theorem of calculus:
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Now suppose that the formula holds for some £ > 1. To see that this
implies the k + 1 case, it suffices to show that
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To this end, observe that (1 — )" = —%(1 — t)*. Integration by parts

thus shows that the left hand side equals
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It is then verified that this equals the right hand side of (1.2). Indeed, the
contribution of ¢ = 1 to the first term vanishes and applying the chain rule
as before to the integral yields the desired identity. O

Exercise. Show that the conclusion of Theorem 1.2 (i.e. identity (1.1)),
holds in exactly the same way when when [a, b] is replaced by [b, a] for some
b<a.

Exercise. Show that the remainder term in (1.1) (i.e. the integral) can be

rewritten as )
(k:—ll)‘/ (b—s)F1g®) (s) ds.

2 Taylor’s formula in higher dimensions

Let & C R™ be an open set and f : @ — R. We say that f is k times
continously differentiable, and denote f € C*(Q), if all the partial derivatives
of order less than or equal to k exist and define continuous functions on 2.

Given a dimension n, treated as fixed throughout any given discussion,
we define a multi-index to be a vector a = («, ..., ). In particular, any
standard basis vector e; in R" defines a multi-index. We define the order of
a multi-index to be

la] = a1+ + ap.

We further define the factorial of a multi-index as
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The purpose of multi-index notation is that it simplifies various formu-
las which arise when studying monomials in higher dimensions and partial
derivatives in higher dimensions.

As a first example, consider a monomial in n-dimensions z{*---z%".
Taking o = (g, . .., @), we may denote this monomial as
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As a second example, suppose f € C¥() as defined above. By Clairaut’s
theorem, if [ < k, we know that any partial derivative of f of order [ is
independent of the order of differentiation. We may therefore unambiguously

write
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but it is understood that any other order of partial differentiation yields the
same function.
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Theorem 2.1 (Taylor’s formula in higher dimensions). Let Q C R™ be an
open set and f : Q — R be in C¥(Q). Then for any x,x +y € Q such that
the line segment between them lies in (), we have that
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where Ry(x,y) is a remainder term that can be characterized in one of two
ways:

Rlﬁ(x,y) = Z %8‘”]”(0) (classical form) (2.1)
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where in the former case, c is some point on the line segment between x and
r+y.

The crux of the proof of this theorem lies in the following lemma.

Lemma 2.2. Let f, Q be as in Theorem 2.1, and define g : [0,1] — Q by

9(t) = f(z +ty).



Then g € C*([0,1]) satisfies
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To see that Theorem 2.1 follows as a corollary to the lemma, we apply
Theorem 1.2 to ¢ in order to obtain (2.2). The identity (2.1) follows from
applying Theorem 1.1 to g, then realizing x + toy yields a point on the line
segment between z and z + ty.

Proof of Lemma 2.2. That g € C*([0,1]) is a consequence of the chain rule,
and is implicit in the argument below. We prove (2.3) by induction, noting
that the k£ = 0 case is clear.

We thus assume the formula to be true for some k and show that it
implies the k + 1 case, when k > 0. If f € C*1(Q), we have

d d «
k+1) () = = (o(F) = — [ K Y g
g0 = 2 (90 0) = 5 (13 Lo sty

=k ) Zg > ;00T fz + ty)

o=k \J=1

n ya—l-ej ate,
=Ky D T et ty), (24)

o=k j=1

where the fourth identity follows from the chain rule. We now have to
reindex the sum on the right as a sum over multi-indices of order k + 1. As
sets, observe that

{a+e|al=k1<j<n}={B:18=k+1}.

To see this, first note that every member of the set on the left is a member
of the set on the right. Moreover, any member § = (B, ..., 3,) of the set on
the right satisfies 3; > 0 for some j = 1,...,n and hence can be written as
a+e; for some |a| = k. So the sum in (2.4) can indeed be rewritten as a sum
over the multi-indices 3 of order k + 1. But this requires setting 8 = o +¢;
above, meaning that the factor of 1/a! is replaced by 1/(5 — e;)!. The one



catch is that this factorial is meaningful only when 8 — e; is a multi-index
itself, that is, 8; > 0.
So given |B| = k + 1, consider

Bg={B—-e;:8; >0} ={a:|a] =kand a = f—e; for some j =1,...n}.

Hence the sum in (2.4) can be rewritten as
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The induction is finished if we can show » . Bs a, = k + 1, which follows
from
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Indeed, either 3; > 0 meaning that § = « + e; for some o € Bg, or 3; =0,
in which case the contribution is not counted in the first expression and
contributes trivially in the second. O

Remark 2.3. We conclude these notes by remarking that whenever f €
C2(Q2) and ¢ € Q, we have the identity
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where V2f(c) denotes the Hessian matrix (and not the Laplacian as some
texts do)
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To see this, note that since Djzif(c)yjyi = D%f(c)yiyj,
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Indeed, the last expression here rewrites the second one as a sum over di-
agonal and off-diagonal terms. By the observed symmetry in 4, j, the off-
diagonal terms are counted twice in the second expression, but only once
in the last expression, cancelling the factor of 1/2. But the right hand side
here can be rewritten as a sum over multi-indices Z| al=2 %8“ f(c), using
that 1/a! =1 when a = e; + e; for i # j and 1/a! = 1/2 when o = 2e; for
some i =1,...,n.



