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1 Taylor’s formula in one dimension

We begin by recalling the standard Taylor formula (see e.g. Theorem 5.15
of Rudin)

Theorem 1.1. Suppose g : [a, b] → R is a Ck−1 function [a, b] and that
g(k−1)(t) is differentiable for all t ∈ (a, b). Then there exists t0 ∈ (a, b) such
that

g(b) =
k−1∑
l=0

g(l)(a)

l!
(b− a)l +

g(k)(t0)

k!
(b− a)k.

If g(k)(t) is also Riemann integrable, the remainder term can also be
characterized as an integral, as in the following theorem.

Theorem 1.2. Suppose g : [a, b] → R differentiable up to order k on [a, b]
and that g(k)(t) is Riemann integrable on [a, b]. Then

g(b) =
k−1∑
l=0

g(l)(a)

l!
(b− a)l +

(b− a)k

(k − 1)!

∫ 1

0
(1− t)k−1g(k)(a+ t(b− a)) dt (1.1)

Note that the hypotheses of this theorem are satisfied when g is Ck([a, b]).

Proof of Theorem 1.2. To prove the theorem we induct on k. The k = 1
case is a consequence of the fundamental theorem of calculus:

g(b)− g(a) =

∫ 1

0

d

dt
(g(a+ t(b− a))) dt = (b− a)

∫ 1

0
g′(a+ t(b− a)) dt.
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Now suppose that the formula holds for some k ≥ 1. To see that this
implies the k + 1 case, it suffices to show that

(b− a)k

(k − 1)!

∫ 1

0
(1− t)k−1g(k)(a+ t(b− a)) dt =

g(k)(a)

k!
(b− a)k +

(b− a)k+1

k!

∫ 1

0
(1− t)kg(k+1)(a+ t(b− a)) dt. (1.2)

To this end, observe that 1
k (1 − t)k−1 = − d

dt(1 − t)
k. Integration by parts

thus shows that the left hand side equals

− (b− a)k

k!
(1− t)kg(k)(a+ t(b− a))

∣∣∣t=1

t=0

+
(b− a)k

k!

∫ 1

0
(1− t)k d

dt

(
g(k)(a+ t(b− a))

)
dt.

It is then verified that this equals the right hand side of (1.2). Indeed, the
contribution of t = 1 to the first term vanishes and applying the chain rule
as before to the integral yields the desired identity.

Exercise. Show that the conclusion of Theorem 1.2 (i.e. identity (1.1)),
holds in exactly the same way when when [a, b] is replaced by [b, a] for some
b < a.

Exercise. Show that the remainder term in (1.1) (i.e. the integral) can be
rewritten as

1

(k − 1)!

∫ b

a
(b− s)k−1g(k)(s) ds.

2 Taylor’s formula in higher dimensions

Let Ω ⊂ Rn be an open set and f : Ω → R. We say that f is k times
continously differentiable, and denote f ∈ Ck(Ω), if all the partial derivatives
of order less than or equal to k exist and define continuous functions on Ω.

Given a dimension n, treated as fixed throughout any given discussion,
we define a multi-index to be a vector α = (α1, . . . , αn). In particular, any
standard basis vector ej in Rn defines a multi-index. We define the order of
a multi-index to be

|α| = α1 + · · ·+ αn.

We further define the factorial of a multi-index as

α! = α1!α2! · · · αn! .
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The purpose of multi-index notation is that it simplifies various formu-
las which arise when studying monomials in higher dimensions and partial
derivatives in higher dimensions.

As a first example, consider a monomial in n-dimensions xα1
1 · · ·xαnn .

Taking α = (α1, . . . , αn), we may denote this monomial as

xα = xα1
1 · · ·x

αn
n .

As a second example, suppose f ∈ Ck(Ω) as defined above. By Clairaut’s
theorem, if l ≤ k, we know that any partial derivative of f of order l is
independent of the order of differentiation. We may therefore unambiguously
write

∂αf(x) =
∂|α|f(x)

∂xα1
1 · · · ∂x

αn
n

but it is understood that any other order of partial differentiation yields the
same function.

Theorem 2.1 (Taylor’s formula in higher dimensions). Let Ω ⊂ Rn be an
open set and f : Ω → R be in Ck(Ω). Then for any x, x + y ∈ Ω such that
the line segment between them lies in Ω, we have that

f(x+ y) =
∑
|α|<k

yα

α!
∂αf(x) +Rkf (x, y)

where Rf (x, y) is a remainder term that can be characterized in one of two
ways:

Rkf (x, y) =
∑
|α|=k

yα

α!
∂αf(c) (classical form) (2.1)

Rkf (x, y) =
∑
|α|=k

yα

α!

∫ 1

0
k(1− t)k−1∂αf(x+ ty) dt (integral form) (2.2)

where in the former case, c is some point on the line segment between x and
x+ y.

The crux of the proof of this theorem lies in the following lemma.

Lemma 2.2. Let f , Ω be as in Theorem 2.1, and define g : [0, 1]→ Ω by

g(t) = f(x+ ty).
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Then g ∈ Ck([0, 1]) satisfies

g(k)(t) = k!
∑
|α|=k

yα

α!
∂αf(x+ ty). (2.3)

To see that Theorem 2.1 follows as a corollary to the lemma, we apply
Theorem 1.2 to g in order to obtain (2.2). The identity (2.1) follows from
applying Theorem 1.1 to g, then realizing x+ t0y yields a point on the line
segment between x and x+ ty.

Proof of Lemma 2.2. That g ∈ Ck([0, 1]) is a consequence of the chain rule,
and is implicit in the argument below. We prove (2.3) by induction, noting
that the k = 0 case is clear.

We thus assume the formula to be true for some k and show that it
implies the k + 1 case, when k ≥ 0. If f ∈ Ck+1(Ω), we have

g(k+1)(t) =
d

dt

(
g(k)(t)

)
=

d

dt

k!
∑
|α|=k

yα

α!
∂αf(x+ ty)


= k!

∑
|α|=k

yα

α!

d

dt

(
∂αf(x+ ty)

)

= k!
∑
|α|=k

yα

α!

 n∑
j=1

yj∂
α+ejf(x+ ty)


= k!

∑
|α|=k

n∑
j=1

yα+ej

α!
∂α+ejf(x+ ty), (2.4)

where the fourth identity follows from the chain rule. We now have to
reindex the sum on the right as a sum over multi-indices of order k + 1. As
sets, observe that

{α+ ej : |α| = k, 1 ≤ j ≤ n} = {β : |β| = k + 1}.

To see this, first note that every member of the set on the left is a member
of the set on the right. Moreover, any member β = (β1, . . . , βn) of the set on
the right satisfies βj > 0 for some j = 1, . . . , n and hence can be written as
α+ej for some |α| = k. So the sum in (2.4) can indeed be rewritten as a sum
over the multi-indices β of order k+ 1. But this requires setting β = α+ ej
above, meaning that the factor of 1/α! is replaced by 1/(β − ej)!. The one
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catch is that this factorial is meaningful only when β − ej is a multi-index
itself, that is, βj > 0.

So given |β| = k + 1, consider

Bβ = {β− ej : βj > 0} = {α : |α| = k and α = β− ej for some j = 1, . . . n}.

Hence the sum in (2.4) can be rewritten as

k!
∑
|β|=k+1

∑
α∈Bβ

yβ

α!
∂βf(x+ ty) = k!

∑
|β|=k+1

yβ

β!
∂βf(x+ ty)

∑
α∈Bβ

β!

α!
.

The induction is finished if we can show
∑

α∈Bβ
β!
α! = k + 1, which follows

from ∑
α∈Bβ

β!

α!
=

n∑
j=1

βj = |β| = k + 1.

Indeed, either βj > 0 meaning that β = α+ ej for some α ∈ Bβ, or βj = 0,
in which case the contribution is not counted in the first expression and
contributes trivially in the second.

Remark 2.3. We conclude these notes by remarking that whenever f ∈
C2(Ω) and c ∈ Ω, we have the identity∑

|α|=2

yα

α!
∂αf(c) =

1

2
(∇2f(c)y) · y

where ∇2f(c) denotes the Hessian matrix (and not the Laplacian as some
texts do)

∇2f(c) =


D2

11f(c) D2
12f(c) · · · D2

1nf(c)
D2

21f(c) D2
22f(c) · · · D2

2nf(c)
: : · · · :
: : · · · :

D2
n1f(c) D2

n2f(c) · · · D2
nnf(c)

 .
To see this, note that since D2

jif(c)yjyi = D2
ijf(c)yiyj ,

1

2
(∇2f(c)y) · y =

1

2

n∑
i=1

n∑
j=1

D2
ijf(c)yiyj

=
n∑
i=1

1

2
D2
iif(c)yiyi +

n∑
i=1

n∑
j=i+1

D2
ijf(c)yiyj .
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Indeed, the last expression here rewrites the second one as a sum over di-
agonal and off-diagonal terms. By the observed symmetry in i, j, the off-
diagonal terms are counted twice in the second expression, but only once
in the last expression, cancelling the factor of 1/2. But the right hand side
here can be rewritten as a sum over multi-indices

∑
|α|=2

yα

α! ∂
αf(c), using

that 1/α! = 1 when α = ei + ej for i 6= j and 1/α! = 1/2 when α = 2ei for
some i = 1, . . . , n.
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