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Theorem 0.1 (Inverse Function Theorem). Suppose Ω ⊂ Rn is an open set
and that F : Ω→ Rn is a continuously differentiable function on Ω. Suppose
further that F ′(a) ∈ L(Rn) is an invertible transformation for some a ∈ Ω.
Denote b = F (a).

1. There exist open sets U, V ⊂ Rn such that a ∈ U , b ∈ V , F is one-to-
one on U and F (U) = V . In other words the restriction of F to U ,
denoted F : U → V defines a bijection.

2. If F−1 : V → U denotes the inverse map of the bijection above, then
F−1 is continuously differentiable on V and (F−1)′(y) = (F ′(x))−1

where y = F (x).

Proof. We first observe that if A ∈ L(Rn) is invertible and b ∈ Rn is any
vector, then the mapping x 7→ Ax + b defines a bijection from Rn to itself
with inverse given by y 7→ A−1(y − b). Both mappings are the composition
of a linear transformation with a translation and hence continuous. Since
the inverse image of open sets under continuous maps are open, we know

U is open ⇔ {Ax+ b : x ∈ U} is open.

Consequently, it suffices to assume that a = b = 0, that is F (0) = 0, and that
F ′(0) = I is the identity. For if this is not the case, we can apply the theorem
with these additional assumptions to F̃ (x) := (F ′(a))−1(F (x + a) − F (a)),
which is easily verified to be continuously differentiable on the open set
{x ∈ Rn : x + a ∈ Ω}. It is then an exercise to see that the open sets U, V
furnished by applying the theorem to F̃ yield open sets about a and b for
which the conclusion of the theorem hold for F .

From now on, we assume that a = b = 0 so that F (0) = 0 and that
F ′(0) = I with 0 ∈ Ω. Define H : Ω → Rn by H(x) = x − F (x), so that
H(0) = 0 and H is verified to be continuously differentiable with H ′(0) = 0.
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By continuity, there exists r > 0 such that Nr(0) ⊂ Ω and ‖H ′(x)‖ < 1
2 for

x ∈ Nr(0). Since Nr(0) is convex, Theorem 9.19 in Rudin implies that

|H(x)−H(x′)| ≤ 1

2
|x− x′|. (0.1)

Next, recalling that F (x) +H(x) = x, we have that

|x− x′| = |F (x) +H(x)− (F (x′) +H(x′))|
≤ |F (x)− F (x′)|+ |H(x)−H(x′)|

≤ |F (x)− F (x′)|+ 1

2
|x− x′|,

and by rearranging the inequality, we have that

|x− x′| ≤ 2|F (x)− F (x′)|.

This now shows that restricting F to Nr(0) yields an injective map, for if
F (x) = F (x′) with x, x′ ∈ Nr(0), then x = x′.

Next, we have to show that F is surjective near the origin. We thus
take y ∈ Nr/2(0) and want to show that there exists x ∈ Nr(0) such that
F (x) = y. To this end, define G(x) := x+ y−F (x) = H(x) + y and observe
that G has a fixed point in Nr(0) if and only if F (x) = y has a solution on
this set:

x = G(x) = x+ y − F (x)⇔ 0 = y − F (x)⇔ F (x) = y.

But G is easily observed to be a contraction since it is a translation of H

|G(x)−G(x′)| = |H(x)−H(x′)| ≤ 1

2
|x− x′|.

This if we can show that G(Nr(0)) ⊂ Nr(0), that is, G : Nr(0) → Nr(0),
then G is a mapping from a complete metric space to itself, at which point
the contraction mapping fixed point theorem shows that G has a unique
fixed point in Nr(0). Indeed, it can be verified that a closed subset of a
complete metric space defines a complete space on its own, or alternatively
that any compact space is complete. Suppose x ∈ Nr(0), then applying
(0.1) with x′ = 0, we obtain

|G(x)| ≤ |H(x)|+ |y| < 1

2
|x|+ r

2
≤ r

2
+
r

2
= r,

hence G(Nr(0)) ⊂ Nr(0) and the second inequality is indeed strict since
y ∈ Nr/2(0). Note that the latter point implies that if x = G(x), then
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in fact |x| < r, so in fact the solution to y = F (x) is satisfied by some
x ∈ Nr(0).

The first part of the theorem is concluded by setting V = Nr/2(0) and
U = Nr(0) ∩ F−1(Nr/2(0)), which define open sets since F is continuous.
Moreover, the properties established above ensure that F : U → V is a
bijection.

We now prove the second half of the theorem, that F−1 : V → U is
continuously differentiable. Note that since ‖F ′(x) − I‖ = ‖H ′(x)‖ < 1/2
on U , F ′(x) is invertible for x ∈ U by Theorem 9.8(a) in Rudin. Here
it is sufficient to show that if y ∈ V , then (F−1)′(y) exists and is equal
to (F ′(x))−1, where y = F (x). Indeed, as soon as we establish that F−1 is
differentiable on V , then we know that x = F−1(y) defines x as a continuous
and function of y, so by continuity of inversion (Theorem 9.8(b)), y 7→
(F ′(F−1(y)))−1 is the composition of continuous maps, which shows that
F−1 is continuously differentiable. Alternatively, this can be seen by using
matrices: since the entries of (F ′(x))−1 are rational functions of the entries
of F ′(x) and the partial derivatives Djfi(x) are continuous functions, again
there is continuous dependence of the entries of (F−1)′(y) on y.

Recall that if R(h) := F (x+h)−F (x)−F ′(x)h, then |R(h)| = o(|h|) as
h→ 0. However, here we want to define h as a function k by the relation

h = F−1(y + k)− F−1(y) = F−1(y + k)− x,

which is a well defined injection for k such that y + k ∈ V . Hence x + h =
F−1(y + k), equivalently,

F (x+ h) = y + k = F (x) + k.

We now return the function G = x+y−F (x) defined above. Recall that
it is a contraction with constant 1/2. Hence since

G(x+ h)−G(x) = x+ h+ y − F (x+ h)− (x+ y − F (x)) = h− k

we have that

|h− k| = |G(x+ h)−G(x)| ≤ 1

2
|h|.

Hence

|h| ≤ |k|+ |h− k| ≤ |k|+ 1

2
|h|

or equivalently, |h| ≤ 2|k|. This shows that h→ 0 as k → 0 and that when
h 6= 0, 1

|k| ≤
2
|h| .
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We now conclude by considering

F−1(y + k)− F−1(y)− (F ′(x))−1k = h− (F ′(x))−1k

= −(F ′(x))−1(k − F ′(x)h)

= −(F ′(x))−1(F (x+ h)− F (x)− F ′(x)h).

Hence

|F−1(y + k)− F−1(y)− (F ′(x))−1k|
|k|

≤ 2‖(F ′(x))−1‖
(
|(F (x+ h)− F (x)− F ′(x)h)|

|h|

)
and since h → 0 as k → 0, the right hand side of this inequality tends to 0
as k → 0. This concludes that F−1(y) is differentiable at y.

Theorem 0.2 (Implicit Function Theorem). Suppose Ω ⊂ Rn+m is an open
set and that F : Ω → Rn is continuously differentiable. Let (x, y) denote
coordinates in Rn+m so that x ∈ Rn, y ∈ Rm and write the Jacobian matrix
of F ′(x, y) in block form as F ′(x, y) = [∂F∂x

∂F
∂y ] where

∂F

∂x
=


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fn
∂x1

· · · ∂fn
∂xn

 , ∂F

∂y
=


∂f1
∂y1

· · · ∂f1
∂ym

...
. . .

...
∂fn
∂y1

· · · ∂fn
∂ym

 ,
so that ∂F

∂x , ∂F
∂y are n × n and n × m matrices respectively. If ∂F

∂x defines
a invertible transformation in L(Rn) at the point (a, b), where F (a, b) = 0,
then there exist neighborhoods V0,W0 with a ∈ V0 ⊂ Rn and b ∈ W0 ⊂ Rm

and a continuously differentiable mapping G : W0 → V0 with the property
that F (x, y) = 0 for (x, y) ∈ V0 × W0 if and only if x = G(y). In other
words, F−1(0) ∩ V0 ×W0 is the graph of G,

F−1(0) ∩ V0 ×W0 = {(G(y), y) : y ∈W0} .

Proof. Define H : Ω→ Rn+m by H(x, y) = (F (x, y), y) so that H is contin-
uously differentiable and the (n+m)× (n+m) Jacobian matrix of H ′(a, b)
in block form is

H ′(a, b) =

[∂F
∂x (a, b) ∂F

∂y (a, b)

0m×n Im×m

]
, (0.2)

where 0m×n is an m×n matrix of all zeros and Im×m denotes the m×m iden-
tity matrix. Thus by taking determinants det(H ′(a, b)) = det(∂F∂x (a, b)) 6= 0,

4



which shows that H ′(a, b) is invertible. Alternatively we can check that
H ′(a, b) is invertible by taking any vector (h, k) ∈ Rn+m in the null space of
H ′(a, b) and verifying that (h, k) = (0, 0). Indeed, conflating the matrices
∂F
∂x , ∂F

∂y with the linear transformations they define, we have

(0, 0) = H ′(a, b)(h, k) =

(
∂F

∂x
(a, b)h+

∂F

∂y
(a, b)k, k

)
,

and hence k = 0 by matching the Rm entries, and after inserting this into
the Rn entries, yields 0 = ∂F

∂x (a, b)h and hence h = 0.
The inverse function theorem now furnishes neighborhoods U,W with

(a, b) ∈ U and (0, b) ∈ W such that H : U → W is bijection with continu-
ously differentiable inverse. Shrinking U if necessary, we may assume it has
the product structure V0 × V1 where V0 ⊂ Rn, V1 ⊂ Rm are open in their
respective spaces.

We now write H−1(x, y) = (A(x, y), B(x, y)) where A : W → V0 and
B : W → V1. Hence

(x, y) = H(H−1(x, y)) = H(A(x, y), B(x, y))

= (F (A(x, y), B(x, y)), B(x, y)) .

Identifying both sides of the Rm identities here, we obtain B(x, y) = y and
inserting this into the Rn identities, we obtain that

x = F (A(x, y), y)

We now simply define G(y) := A(0, y) and W0 := {y ∈ Rm : (0, y) ∈W}∩V1
so that G : W0 → V0. It is verified that W0 is open. Thus

(x, y) ∈ F−1(0) ∩ V0 ×W0 ⇔ H(x, y) = (0, y) and (x, y) ∈ V0 ×W0

and by the definitions above, the latter is equivalent to (x, y) = H−1(0, y) =
(G(y), y) when (x, y) ∈ V0 ×W0.

Theorem 0.3 (Rank Theorem). Suppose Ω1 ⊂ Rn and Ω2 ⊂ Rm are open
subsets of their respective spaces and that F : Ω1 → Ω2 is a continuously
differentiable map. Suppose further that F ′(z) has constant rank for every
z ∈ Ω1. Then given z0 ∈ Ω1, there exist neighborhoods U, V of z0, F (z0)
respectively and bijections ϕ : U → ϕ(U), ψ : V → ψ(V ) such that both
ϕ,ψ and their inverses are continuously differentiable with the property that
F (U) ⊂ V and(

ψ ◦ F ◦ ϕ−1
)

(x1, . . . , xk, xk+1, . . . , xn) = (x1, . . . , xk, 0, . . . , 0)

where in the last expression, the last m− k entries vanish.
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Proof. Similar to the proof of the inverse function theorem, we may assume
that z0 = 0 and F (z0) = 0 as any needed translations can be absorbed in
ϕ,ψ. Moreover,

F ′(0) =

D1f1(0) . . . Dnf1(0)
...

. . .
...

D1fm(0) . . . Dnfm(0)


has some k × k minor with nonvanishing determinant. By permuting coor-
dinates in Rn and Rm, we may assume that this minor is in the upper left
corner, that is,

det

D1f1(0) . . . Dkfk(0)
...

. . .
...

D1fk(0) . . . Dkfk(0)

 6= 0. (0.3)

Indeed, as before, such permutations can be absorbed into ϕ,ψ. It is thus
natural to denote coordinates (x, y) ∈ Rn where x ∈ Rk, y ∈ Rn−k and
similarly (v, w) ∈ Rm where v ∈ Rk, w ∈ Rm−k. We now write

F (x, y) = (Q(x, y), R(x, y))

where Q : Ω→ Rk, and R : Ω→ Rm−k are both continuously differentiable
maps.

Now define ϕ : Ω→ Rn by ϕ(x, y) = (Q(x, y), y). Using similar notation
to (0.2) as in the proof of the implicit function theorem, ϕ′(0, 0) is invertible
since

det
(
ϕ′(0, 0)

)
= det

[
∂Q
∂x (0, 0) ∂Q

∂y (0, 0)

0(n−k)×k I(n−k)×(n−k)

]
= det

(
∂Q

∂x
(0, 0)

)
6= 0.

since the last quantity is (0.3). The inverse function theorem now furnishes
open sets U, Ũ containing 0 such that ϕ : U → Ũ is a bijection such that
ϕ,ϕ−1 are continuously differentiable. Shrinking Ũ if necessary, we may
assume that it is convex.

We now write

ϕ−1(x, y) = (A(x, y), B(x, y)) A : Ũ → Rk, B : Ũ → Rn−k,

with A,B continuously differentiable. Observe that by the definition of ϕ,

(x, y) = ϕ(A(x, y), B(x, y)) =
(
Q
(
A(x, y), B(x, y)

)
, B(x, y)

)
.
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Thus by matching entries, we have that B(x, y) = y which implies that

ϕ−1(x, y) = (A(x, y), y) and x = Q(A(x, y), y).

We now may write for some Rm−k-valued function R̃, continuously dif-
ferentiable on Ũ

F ◦ ϕ−1(x, y) = F (A(x, y), y) = (Q(A(x, y), y), R(A(x, y), y)) = (x, R̃(x, y)).

Hence

(F ◦ ϕ−1)′(x, y) =

[
Ik×k 0k×(n−k)

∂R̃
∂x (x, y) ∂R̃

∂y (x, y)

]
. (0.4)

But by the chain rule, for (x, y) ∈ Ũ , (F ◦ ϕ−1)′(x, y) has rank k. Indeed,

(F ◦ ϕ−1)′(x, y) = F ′(ϕ−1(x, y))(ϕ−1)′(x, y),

and since F ′(z) has constant rank with (ϕ−1)′(x, y) is invertible, this is the
composition of a rank k map with an invertible map, which yields a rank
k linear mapping. But given (0.4), the first k columns of (F ◦ ϕ−1)′(x, y)

are linearly independent, which means that ∂R̃
∂y = 0 on Ũ since otherwise,

the matrix would have rank larger than k. But since Ũ is convex, we have
that R̃ is independent of y (cf. Theorem 9.19 and its corollary), that is
R̃(x, y) = S(x) for some continuously differentiable function S defined on
the open set

Ṽ := {x ∈ Rk : (x, 0) ∈ Ũ}.

This now shows that (F ◦ ϕ−1)(x, y) = (x, S(x)).
We finally define for v ∈ Ṽ , w ∈ Rm−k, ψ(v, w) = (v, w−S(v)). This de-

fines a continuously differentiable bijection with explicit inverse ψ−1(s, t) =
(s, t+ S(s)), which satisfies

(ψ ◦ F ◦ ϕ−1)(x, y) = ψ(x, S(x)) = (x, S(x)− S(x)) = (x, 0),

where the latter entries in the last two expressions are in Rm−k. Defining
V to be the open set V := {(v, w) ∈ Rm : v ∈ Ṽ }, the proof is now
concluded.
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