Notes on the inverse function theorem
Math 511, Spring 2018

Theorem 0.1 (Inverse Function Theorem). Suppose  C R"™ is an open set
and that F' : Q — R" is a continuously differentiable function on 2. Suppose
further that F'(a) € L(R™) is an invertible transformation for some a € .
Denote b = F(a).

1. There exist open sets U,V C R"™ such that a € U, b€V, F is one-to-
one on U and F(U) = V. In other words the restriction of F to U,
denoted F : U — V defines a bijection.

2. If F~1 1V — U denotes the inverse map of the bijection above, then
F~1 is continuously differentiable on V and (F~1)'(y) = (F'(x))™!
where y = F(x).

Proof. We first observe that if A € L(R™) is invertible and b € R" is any
vector, then the mapping x — Ax + b defines a bijection from R" to itself
with inverse given by y — A~1(y — b). Both mappings are the composition
of a linear transformation with a translation and hence continuous. Since
the inverse image of open sets under continuous maps are open, we know

Uis open < {Azx+b:x € U} is open.

Consequently, it suffices to assume that a = b = 0, that is F'(0) = 0, and that
F'(0) = I is the identity. For if this is not the case, we can apply the theorem
with these additional assumptions to F(z) := (F'(a)) " (F(z + a) — F(a)),
which is easily verified to be continuously differentiable on the open set
{zr e R" : x4+ a € Q}. It is then an exercise to see that the open sets U,V
furnished by applying the theorem to F yield open sets about a and b for
which the conclusion of the theorem hold for F'.

From now on, we assume that a = b = 0 so that F(0) = 0 and that
F'(0) = I with 0 € Q. Define H : Q — R™ by H(z) =  — F(z), so that
H(0) =0 and H is verified to be continuously differentiable with H'(0) = 0.



By continuity, there exists r > 0 such that N,(0) C Q and |[H'(z)|| < & for

x € N,(0). Since N,(0) is convex, Theorem 9.19 in Rudin implies that

1
[H(x) ~ ') < o — o] (0.1)
Next, recalling that F'(z) + H(z) = x, we have that

|z — 2’| = |F(2) + H(z) — (F(2') + H(2))|
< |F(z) = F(2')| + |H(z) — H(2')]

1
< [F(x) = @) + gle -,
and by rearranging the inequality, we have that
|z — 2’| < 2|F(z) — F(a')].

This now shows that restricting F' to N,(0) yields an injective map, for if
F(z) = F(2') with z,2" € N,(0), then 2 = 2.

Next, we have to show that F' is surjective near the origin. We thus
take y € N, /5(0) and want to show that there exists z € N,.(0) such that
F(z) = y. To this end, define G(z) := z+y— F(z) = H(z)+y and observe
that G has a fixed point in N,(0) if and only if F'(x) = y has a solution on
this set:

r=G@x)=z+y—Flz) e 0=y—F(x) & F(z) =y.

But G is easily observed to be a contraction since it is a translation of H

Iﬂ@—G@N=Uﬂ@—H@NS%@—fL

This if we can show that G(N,(0)) C N,(0), that is, G : N,(0) — N,(0),
then G is a mapping from a complete metric space to itself, at which point
the contraction mapping fixed point theorem shows that G has a unique
fixed point in N, (0). Indeed, it can be verified that a closed subset of a
complete metric space defines a complete space on its own, or alternatively
that any compact space is complete. Suppose x € N,(0), then applying
(0.1) with 2/ = 0, we obtain

1
G@)| < [H@)|+Iy] < 5ol + £ <

N3
N3

hence G(N;(0)) C N,(0) and the second inequality is indeed strict since
€ N,;/2(0). Note that the latter point implies that if z = G(z), then



in fact |z| < r, so in fact the solution to y = F(x) is satisfied by some
x € Ny(0).

The first part of the theorem is concluded by setting V' = N, /2(0) and
U = N;(0) N F~1(N,5(0)), which define open sets since F is continuous.
Moreover, the properties established above ensure that F' : U — V is a

bijection.
We now prove the second half of the theorem, that F~! : V — U is
continuously differentiable. Note that since ||F'(z) — I|| = ||H'(z)| < 1/2

on U, F'(x) is invertible for x € U by Theorem 9.8(a) in Rudin. Here
it is sufficient to show that if y € V, then (F~1)(y) exists and is equal
to (F'(x))~!, where y = F(z). Indeed, as soon as we establish that F~! is
differentiable on V', then we know that z = F~!(y) defines x as a continuous
and function of y, so by continuity of inversion (Theorem 9.8(b)), y —
(F'(F~Y(y)))~! is the composition of continuous maps, which shows that
F~1is continuously differentiable. Alternatively, this can be seen by using
matrices: since the entries of (F'(x))~! are rational functions of the entries
of F'(z) and the partial derivatives D, f;(x) are continuous functions, again
there is continuous dependence of the entries of (F~!)'(y) on y.

Recall that if R(h) := F(x+h) — F(x) — F'(z)h, then |R(h)| = o(|h|) as
h — 0. However, here we want to define h as a function k by the relation

h=Fly+k) —F'(y)=F'(y+k) -z,

which is a well defined injection for k such that y + k& € V. Hence x + h =
F~Y(y + k), equivalently,

Flz+h)=y+k=F(z)+k.

We now return the function G = x+y— F(z) defined above. Recall that
it is a contraction with constant 1/2. Hence since

Glxz+h)—Glz)=x+h+y—F(x+h)—(z+y—F(z)) =h—k

we have that )
h = k| =|G(z +h) - G(z)| < S|h].

Hence 1
Al < [kl + |h = k| < k[ + 5[h|

or equivalently, |h| < 2|k|. This shows that h — 0 as kK — 0 and that when

1 - 2
0, <



We now conclude by considering
F= y +k) = F7Hy) — (F'(2)) "'k = h — (F'(2)) "'k
= —(F'(x)) ' (k = F'(2)h)
=—(F'(2))" Y(F(z + h) — F(z) — F'(z)h).
Hence

[F y + k) = F~H(y) — (F'(x) " k|
||

<2|[(F' ()74 < |(F(xz+h) = F(z) - F’(x)h)\>

|h]

and since h — 0 as k — 0, the right hand side of this inequality tends to 0
as k — 0. This concludes that F~!(y) is differentiable at y. O

Theorem 0.2 (Implicit Function Theorem). Suppose @ C R is an open
set and that F : Q — R™ is continuously differentiable. Let (x,y) denote
coordinates in R so that x € R", y € R™ and write the Jacobian matriz
of F'(z,y) in block form as F'(z,y) = [4£ %—I;] where

ofi ... Oh ofh ... Oft
oF _ |7 Tl ar |\
0r  Nop . ok W on . o
0x1 Oxn, oy1 Oym

OF OF . . oF
so that %, By aren xn and n x m matrices respectively. If % defines

a invertible transformation in L(R™) at the point (a,b), where F(a,b) = 0,
then there exist neighborhoods Vi, Wy with a € Vy C R™ and b € Wy C R™
and a continuously differentiable mapping G : Wy — Vi with the property
that F(xz,y) = 0 for (x,y) € Vo x Wy if and only if © = G(y). In other
words, F~1(0) N Vo x Wy is the graph of G,

F7H0) N Vo x Wo = {(G(y),) : y € Wo} .

Proof. Define H : Q — R"™™ by H(z,y) = (F(z,y),y) so that H is contin-
uously differentiable and the (n 4+ m) x (n 4+ m) Jacobian matrix of H'(a,b)

in block form is

s @D G

0m><n Ime

, (0.2)

where 0,,,xr, is an m x n matrix of all zeros and I,,,x,, denotes the m xm iden-
tity matrix. Thus by taking determinants det(H'(a, b)) = det(g—i(a, b)) # 0,

4



which shows that H'(a,b) is invertible. Alternatively we can check that
H'(a,b) is invertible by taking any vector (h, k) € R™™ in the null space of
H'(a,b) and verifying that (h,k) = (0,0). Indeed, conflating the matrices

%v %—5 with the linear transformations they define, we have

(0.0 = /(0. b)(0, ) = (G @, + G 0,0k
and hence £ = 0 by matching the R"" entries, and after inserting this into
the R™ entries, yields 0 = %—i(a, b)h and hence h = 0.

The inverse function theorem now furnishes neighborhoods U, W with
(a,b) € U and (0,b) € W such that H : U — W is bijection with continu-
ously differentiable inverse. Shrinking U if necessary, we may assume it has
the product structure Vy x Vi where V; C R™?, Vi C R™ are open in their
respective spaces.

We now write H (z,y) = (A(z,y), B(z,y)) where A : W — 1 and
B : W — Vi. Hence

(z,y) = H(H }(z,y)) = H(A(z,y), B(z,y))
= (F(A(z,y), B(z,y)), B(z,y)).

Identifying both sides of the R™ identities here, we obtain B(z,y) = y and
inserting this into the R™ identities, we obtain that

z = F(A(z,9),y)

We now simply define G(y) := A(0,y) and Wy :=={y € R™ : (0,y) € W}nW;
so that G : Wy — Vy. It is verified that Wy is open. Thus

(‘Tay) eFil(O)m‘/O X WO@H(«T,y) = (an) and (flf,y) € Vb X WO

and by the definitions above, the latter is equivalent to (z,y) = H~1(0,y) =
(G(y),y) when (z,y) € Vo x Wy. O

Theorem 0.3 (Rank Theorem). Suppose Q1 C R™ and Q9 C R™ are open
subsets of their respective spaces and that F : 01 — Qo is a continuously
differentiable map. Suppose further that F'(z) has constant rank for every
z € Q1. Then given zy € Qq, there exist neighborhoods U,V of zy, F(20)
respectively and bijections ¢ : U — @(U), ¥ : V. — (V) such that both
p, ¥ and their inverses are continuously differentiable with the property that

FWU)CV and

(woFogofl) (x1,...,xk,$k+1,...,$n) = (xl,...,xk,o,...,())

where in the last expression, the last m — k entries vanish.



Proof. Similar to the proof of the inverse function theorem, we may assume
that zo = 0 and F(29) = 0 as any needed translations can be absorbed in
p, 1. Moreover,

D1f1(0) ... Dynfi(0)
F'(0) = : :

has some k X k minor with nonvanishing determinant. By permuting coor-
dinates in R™ and R™, we may assume that this minor is in the upper left
corner, that is,

D1f1(0) ... Dgfr(0)
det : . : # 0. (0.3)
D1 fx(0) ... Dyfi(0)

Indeed, as before, such permutations can be absorbed into ¢, . It is thus
natural to denote coordinates (x,7) € R™ where z € R*¥ y € R** and
similarly (v,w) € R™ where v € R*, w € R™"*. We now write

F(r,y) = (Q(z,y), R(z,y))

where Q : Q — R¥, and R : Q — R™ % are both continuously differentiable
maps.

Now define ¢ : 2 — R" by ¢(z,y) = (Q(z,y),y). Using similar notation
to (0.2) as in the proof of the implicit function theorem, ¢'(0,0) is invertible
since

29Q 9Q
de (10,0 = dor [ OO FOV | o (02,0))
O(n—k)xk I(n—k:)x(n—k’) x

since the last quantity is (0.3). The inverse function theorem now furnishes
open sets U, U containing 0 such that p:U — U is a bijection such that
¢, 0! are continuously differentiable. Shrinking U if necessary, we may
assume that it is convex.

We now write

o Nz,y) = (A(z,y),B(z,y)) A:U—-R' B:U—-R"F,

with A, B continuously differentiable. Observe that by the definition of ¢,

(v.9) = ¢(A(2, ). B@,)) = (Q(Alw,9), B(x,9)), B(x,)).



Thus by matching entries, we have that B(z,y) = y which implies that

Soil(xay) = (A(xvy)ay) and z = Q(A(a:,y),y)

We now may write for some R™ *-valued function R, continuously dif-
ferentiable on U

Fogo_l(:ﬁ,y) = F(A(.I‘,y),y) = (Q(A(x,y),y),R(A(x,y),y)) = (w,R(x,y)).
Hence

Tpxe  Opx (n—k:)] (0.4)

o —1/$ — Z
Foe™)(@y) [%f(w,y) Gz, y)

But by the chain rule, for (z,y) € U, (F o ¢~!)(z,y) has rank k. Indeed,

(Foe™)(z,y) = F'(¢  (z,9) (¢ ) (2,y),

and since F’(z) has constant rank with (¢ 1) (z,y) is invertible, this is the
composition of a rank k& map with an invertible map, which yields a rank

k linear mapping. But given (0.4), the first & columns of (F o o HY(x,y)

are linearly independent, which means that %1; = 0 on U since otherwise,

the matrix would have rank larger than k. But since U is convex, we have
that R is independent of y (cf. Theorem 9.19 and its corollary), that is
R(x,y) = S(x) for some continuously differentiable function S defined on
the open set
Vi={zxeRF:(2,0)cU}.

This now shows that (F o o~ 1)(z,y) = (z, S(x)).

We finally define for v € V, w € R™ % 4)(v,w) = (v,w—S(v)). This de-
fines a continuously differentiable bijection with explicit inverse ¢ ~!(s,t) =
(s,t 4+ S(s)), which satisfies

(Yo Fop™)(z,y) = ¥(z,S(x)) = (z,5(z) - S(z)) = (2,0),

where the latter entries in the last two expressions are in R™F. Defining
V' to be the open set V := {(v,w) € R™ : v € V}, the proof is now
concluded. O



