Notes on the inverse function theorem Math 511, Spring 2018

Theorem 0.1 (Inverse Function Theorem). Suppose $\Omega \subset \mathbb{R}^{n}$ is an open set and that $F: \Omega \rightarrow \mathbb{R}^{n}$ is a continuously differentiable function on Ω. Suppose further that $F^{\prime}(a) \in L\left(\mathbb{R}^{n}\right)$ is an invertible transformation for some $a \in \Omega$. Denote $b=F(a)$.

1. There exist open sets $U, V \subset \mathbb{R}^{n}$ such that $a \in U, b \in V, F$ is one-toone on U and $F(U)=V$. In other words the restriction of F to U, denoted $F: U \rightarrow V$ defines a bijection.
2. If $F^{-1}: V \rightarrow U$ denotes the inverse map of the bijection above, then F^{-1} is continuously differentiable on V and $\left(F^{-1}\right)^{\prime}(y)=\left(F^{\prime}(x)\right)^{-1}$ where $y=F(x)$.

Proof. We first observe that if $A \in L\left(\mathbb{R}^{n}\right)$ is invertible and $b \in \mathbb{R}^{n}$ is any vector, then the mapping $x \mapsto A x+b$ defines a bijection from \mathbb{R}^{n} to itself with inverse given by $y \mapsto A^{-1}(y-b)$. Both mappings are the composition of a linear transformation with a translation and hence continuous. Since the inverse image of open sets under continuous maps are open, we know

$$
U \text { is open } \Leftrightarrow\{A x+b: x \in U\} \text { is open. }
$$

Consequently, it suffices to assume that $a=b=0$, that is $F(0)=0$, and that $F^{\prime}(0)=I$ is the identity. For if this is not the case, we can apply the theorem with these additional assumptions to $\tilde{F}(x):=\left(F^{\prime}(a)\right)^{-1}(F(x+a)-F(a))$, which is easily verified to be continuously differentiable on the open set $\left\{x \in \mathbb{R}^{n}: x+a \in \Omega\right\}$. It is then an exercise to see that the open sets U, V furnished by applying the theorem to \tilde{F} yield open sets about a and b for which the conclusion of the theorem hold for F.

From now on, we assume that $a=b=0$ so that $F(0)=0$ and that $F^{\prime}(0)=I$ with $0 \in \Omega$. Define $H: \Omega \rightarrow \mathbb{R}^{n}$ by $H(x)=x-F(x)$, so that $H(0)=0$ and H is verified to be continuously differentiable with $H^{\prime}(0)=0$.

By continuity, there exists $r>0$ such that $\overline{N_{r}(0)} \subset \Omega$ and $\left\|H^{\prime}(x)\right\|<\frac{1}{2}$ for $x \in \overline{N_{r}(0)}$. Since $\overline{N_{r}(0)}$ is convex, Theorem 9.19 in Rudin implies that

$$
\begin{equation*}
\left|H(x)-H\left(x^{\prime}\right)\right| \leq \frac{1}{2}\left|x-x^{\prime}\right| \tag{0.1}
\end{equation*}
$$

Next, recalling that $F(x)+H(x)=x$, we have that

$$
\begin{aligned}
\left|x-x^{\prime}\right| & =\left|F(x)+H(x)-\left(F\left(x^{\prime}\right)+H\left(x^{\prime}\right)\right)\right| \\
& \leq\left|F(x)-F\left(x^{\prime}\right)\right|+\left|H(x)-H\left(x^{\prime}\right)\right| \\
& \leq\left|F(x)-F\left(x^{\prime}\right)\right|+\frac{1}{2}\left|x-x^{\prime}\right|,
\end{aligned}
$$

and by rearranging the inequality, we have that

$$
\left|x-x^{\prime}\right| \leq 2\left|F(x)-F\left(x^{\prime}\right)\right| .
$$

This now shows that restricting F to $\overline{N_{r}(0)}$ yields an injective map, for if $F(x)=F\left(x^{\prime}\right)$ with $x, x^{\prime} \in \overline{N_{r}(0)}$, then $x=x^{\prime}$.

Next, we have to show that F is surjective near the origin. We thus take $y \in N_{r / 2}(0)$ and want to show that there exists $x \in \overline{N_{r}(0)}$ such that $F(x)=y$. To this end, define $G(x):=x+y-F(x)=H(x)+y$ and observe that G has a fixed point in $\overline{N_{r}(0)}$ if and only if $F(x)=y$ has a solution on this set:

$$
x=G(x)=x+y-F(x) \Leftrightarrow 0=y-F(x) \Leftrightarrow F(x)=y .
$$

But G is easily observed to be a contraction since it is a translation of H

$$
\left|G(x)-G\left(x^{\prime}\right)\right|=\left|H(x)-H\left(x^{\prime}\right)\right| \leq \frac{1}{2}\left|x-x^{\prime}\right|
$$

This if we can show that $G\left(\overline{N_{r}(0)}\right) \subset \overline{N_{r}(0)}$, that is, $G: \overline{N_{r}(0)} \rightarrow \overline{N_{r}(0)}$, then G is a mapping from a complete metric space to itself, at which point the contraction mapping fixed point theorem shows that G has a unique fixed point in $\overline{N_{r}(0)}$. Indeed, it can be verified that a closed subset of a complete metric space defines a complete space on its own, or alternatively that any compact space is complete. Suppose $x \in \overline{N_{r}(0)}$, then applying (0.1) with $x^{\prime}=0$, we obtain

$$
|G(x)| \leq|H(x)|+|y|<\frac{1}{2}|x|+\frac{r}{2} \leq \frac{r}{2}+\frac{r}{2}=r,
$$

hence $G\left(\overline{N_{r}(0)}\right) \subset \overline{N_{r}(0)}$ and the second inequality is indeed strict since $y \in N_{r / 2}(0)$. Note that the latter point implies that if $x=G(x)$, then
in fact $|x|<r$, so in fact the solution to $y=F(x)$ is satisfied by some $x \in N_{r}(0)$.

The first part of the theorem is concluded by setting $V=N_{r / 2}(0)$ and $U=N_{r}(0) \cap F^{-1}\left(N_{r / 2}(0)\right)$, which define open sets since F is continuous. Moreover, the properties established above ensure that $F: U \rightarrow V$ is a bijection.

We now prove the second half of the theorem, that $F^{-1}: V \rightarrow U$ is continuously differentiable. Note that since $\left\|F^{\prime}(x)-I\right\|=\left\|H^{\prime}(x)\right\|<1 / 2$ on $U, F^{\prime}(x)$ is invertible for $x \in U$ by Theorem $9.8($ a) in Rudin. Here it is sufficient to show that if $y \in V$, then $\left(F^{-1}\right)^{\prime}(y)$ exists and is equal to $\left(F^{\prime}(x)\right)^{-1}$, where $y=F(x)$. Indeed, as soon as we establish that F^{-1} is differentiable on V, then we know that $x=F^{-1}(y)$ defines x as a continuous and function of y, so by continuity of inversion (Theorem 9.8(b)), $y \mapsto$ $\left(F^{\prime}\left(F^{-1}(y)\right)\right)^{-1}$ is the composition of continuous maps, which shows that F^{-1} is continuously differentiable. Alternatively, this can be seen by using matrices: since the entries of $\left(F^{\prime}(x)\right)^{-1}$ are rational functions of the entries of $F^{\prime}(x)$ and the partial derivatives $D_{j} f_{i}(x)$ are continuous functions, again there is continuous dependence of the entries of $\left(F^{-1}\right)^{\prime}(y)$ on y.

Recall that if $R(h):=F(x+h)-F(x)-F^{\prime}(x) h$, then $|R(h)|=o(|h|)$ as $h \rightarrow 0$. However, here we want to define h as a function k by the relation

$$
h=F^{-1}(y+k)-F^{-1}(y)=F^{-1}(y+k)-x
$$

which is a well defined injection for k such that $y+k \in V$. Hence $x+h=$ $F^{-1}(y+k)$, equivalently,

$$
F(x+h)=y+k=F(x)+k
$$

We now return the function $G=x+y-F(x)$ defined above. Recall that it is a contraction with constant $1 / 2$. Hence since

$$
G(x+h)-G(x)=x+h+y-F(x+h)-(x+y-F(x))=h-k
$$

we have that

$$
|h-k|=|G(x+h)-G(x)| \leq \frac{1}{2}|h|
$$

Hence

$$
|h| \leq|k|+|h-k| \leq|k|+\frac{1}{2}|h|
$$

or equivalently, $|h| \leq 2|k|$. This shows that $h \rightarrow 0$ as $k \rightarrow 0$ and that when $h \neq 0, \frac{1}{|k|} \leq \frac{2}{|h|}$.

We now conclude by considering

$$
\begin{aligned}
F^{-1}(y+k)-F^{-1}(y) & -\left(F^{\prime}(x)\right)^{-1} k=h-\left(F^{\prime}(x)\right)^{-1} k \\
& =-\left(F^{\prime}(x)\right)^{-1}\left(k-F^{\prime}(x) h\right) \\
& =-\left(F^{\prime}(x)\right)^{-1}\left(F(x+h)-F(x)-F^{\prime}(x) h\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \frac{\left|F^{-1}(y+k)-F^{-1}(y)-\left(F^{\prime}(x)\right)^{-1} k\right|}{|k|} \\
& \quad \leq 2\left\|\left(F^{\prime}(x)\right)^{-1}\right\|\left(\frac{\left|\left(F(x+h)-F(x)-F^{\prime}(x) h\right)\right|}{|h|}\right)
\end{aligned}
$$

and since $h \rightarrow 0$ as $k \rightarrow 0$, the right hand side of this inequality tends to 0 as $k \rightarrow 0$. This concludes that $F^{-1}(y)$ is differentiable at y.

Theorem 0.2 (Implicit Function Theorem). Suppose $\Omega \subset \mathbb{R}^{n+m}$ is an open set and that $F: \Omega \rightarrow \mathbb{R}^{n}$ is continuously differentiable. Let (x, y) denote coordinates in \mathbb{R}^{n+m} so that $x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}$ and write the Jacobian matrix of $F^{\prime}(x, y)$ in block form as $F^{\prime}(x, y)=\left[\frac{\partial F}{\partial x} \frac{\partial F}{\partial y}\right]$ where

$$
\frac{\partial F}{\partial x}=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{n}}{\partial x_{1}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}}
\end{array}\right], \quad \frac{\partial F}{\partial y}=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial y_{1}} & \cdots & \frac{\partial f_{1}}{\partial y_{m}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{n}}{\partial y_{1}} & \cdots & \frac{\partial f_{n}}{\partial y_{m}}
\end{array}\right]
$$

so that $\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}$ are $n \times n$ and $n \times m$ matrices respectively. If $\frac{\partial F}{\partial x}$ defines a invertible transformation in $L\left(\mathbb{R}^{n}\right)$ at the point (a, b), where $F(a, b)=0$, then there exist neighborhoods V_{0}, W_{0} with $a \in V_{0} \subset \mathbb{R}^{n}$ and $b \in W_{0} \subset \mathbb{R}^{m}$ and a continuously differentiable mapping $G: W_{0} \rightarrow V_{0}$ with the property that $F(x, y)=0$ for $(x, y) \in V_{0} \times W_{0}$ if and only if $x=G(y)$. In other words, $F^{-1}(0) \cap V_{0} \times W_{0}$ is the graph of G,

$$
F^{-1}(0) \cap V_{0} \times W_{0}=\left\{(G(y), y): y \in W_{0}\right\}
$$

Proof. Define $H: \Omega \rightarrow \mathbb{R}^{n+m}$ by $H(x, y)=(F(x, y), y)$ so that H is continuously differentiable and the $(n+m) \times(n+m)$ Jacobian matrix of $H^{\prime}(a, b)$ in block form is

$$
H^{\prime}(a, b)=\left[\begin{array}{cc}
\frac{\partial F}{\partial x}(a, b) & \frac{\partial F}{\partial y}(a, b) \tag{0.2}\\
0_{m \times n} & I_{m \times m}
\end{array}\right],
$$

where $0_{m \times n}$ is an $m \times n$ matrix of all zeros and $I_{m \times m}$ denotes the $m \times m$ identity matrix. Thus by taking determinants $\operatorname{det}\left(H^{\prime}(a, b)\right)=\operatorname{det}\left(\frac{\partial F}{\partial x}(a, b)\right) \neq 0$,
which shows that $H^{\prime}(a, b)$ is invertible. Alternatively we can check that $H^{\prime}(a, b)$ is invertible by taking any vector $(h, k) \in \mathbb{R}^{n+m}$ in the null space of $H^{\prime}(a, b)$ and verifying that $(h, k)=(0,0)$. Indeed, conflating the matrices $\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}$ with the linear transformations they define, we have

$$
(0,0)=H^{\prime}(a, b)(h, k)=\left(\frac{\partial F}{\partial x}(a, b) h+\frac{\partial F}{\partial y}(a, b) k, k\right),
$$

and hence $k=0$ by matching the \mathbb{R}^{m} entries, and after inserting this into the \mathbb{R}^{n} entries, yields $0=\frac{\partial F}{\partial x}(a, b) h$ and hence $h=0$.

The inverse function theorem now furnishes neighborhoods U, W with $(a, b) \in U$ and $(0, b) \in W$ such that $H: U \rightarrow W$ is bijection with continuously differentiable inverse. Shrinking U if necessary, we may assume it has the product structure $V_{0} \times V_{1}$ where $V_{0} \subset \mathbb{R}^{n}, V_{1} \subset \mathbb{R}^{m}$ are open in their respective spaces.

We now write $H^{-1}(x, y)=(A(x, y), B(x, y))$ where $A: W \rightarrow V_{0}$ and $B: W \rightarrow V_{1}$. Hence

$$
\begin{aligned}
(x, y) & =H\left(H^{-1}(x, y)\right)=H(A(x, y), B(x, y)) \\
& =(F(A(x, y), B(x, y)), B(x, y)) .
\end{aligned}
$$

Identifying both sides of the \mathbb{R}^{m} identities here, we obtain $B(x, y)=y$ and inserting this into the \mathbb{R}^{n} identities, we obtain that

$$
x=F(A(x, y), y)
$$

We now simply define $G(y):=A(0, y)$ and $W_{0}:=\left\{y \in \mathbb{R}^{m}:(0, y) \in W\right\} \cap V_{1}$ so that $G: W_{0} \rightarrow V_{0}$. It is verified that W_{0} is open. Thus

$$
(x, y) \in F^{-1}(0) \cap V_{0} \times W_{0} \Leftrightarrow H(x, y)=(0, y) \text { and }(x, y) \in V_{0} \times W_{0}
$$

and by the definitions above, the latter is equivalent to $(x, y)=H^{-1}(0, y)=$ $(G(y), y)$ when $(x, y) \in V_{0} \times W_{0}$.

Theorem 0.3 (Rank Theorem). Suppose $\Omega_{1} \subset \mathbb{R}^{n}$ and $\Omega_{2} \subset \mathbb{R}^{m}$ are open subsets of their respective spaces and that $F: \Omega_{1} \rightarrow \Omega_{2}$ is a continuously differentiable map. Suppose further that $F^{\prime}(z)$ has constant rank for every $z \in \Omega_{1}$. Then given $z_{0} \in \Omega_{1}$, there exist neighborhoods U, V of $z_{0}, F\left(z_{0}\right)$ respectively and bijections $\varphi: U \rightarrow \varphi(U), \psi: V \rightarrow \psi(V)$ such that both φ, ψ and their inverses are continuously differentiable with the property that $F(U) \subset V$ and

$$
\left(\psi \circ F \circ \varphi^{-1}\right)\left(x_{1}, \ldots, x_{k}, x_{k+1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{k}, 0, \ldots, 0\right)
$$

where in the last expression, the last $m-k$ entries vanish.

Proof. Similar to the proof of the inverse function theorem, we may assume that $z_{0}=0$ and $F\left(z_{0}\right)=0$ as any needed translations can be absorbed in φ, ψ. Moreover,

$$
F^{\prime}(0)=\left[\begin{array}{ccc}
D_{1} f_{1}(0) & \ldots & D_{n} f_{1}(0) \\
\vdots & \ddots & \vdots \\
D_{1} f_{m}(0) & \ldots & D_{n} f_{m}(0)
\end{array}\right]
$$

has some $k \times k$ minor with nonvanishing determinant. By permuting coordinates in \mathbb{R}^{n} and \mathbb{R}^{m}, we may assume that this minor is in the upper left corner, that is,

$$
\operatorname{det}\left[\begin{array}{ccc}
D_{1} f_{1}(0) & \ldots & D_{k} f_{k}(0) \tag{0.3}\\
\vdots & \ddots & \vdots \\
D_{1} f_{k}(0) & \ldots & D_{k} f_{k}(0)
\end{array}\right] \neq 0
$$

Indeed, as before, such permutations can be absorbed into φ, ψ. It is thus natural to denote coordinates $(x, y) \in \mathbb{R}^{n}$ where $x \in \mathbb{R}^{k}, y \in \mathbb{R}^{n-k}$ and similarly $(v, w) \in \mathbb{R}^{m}$ where $v \in \mathbb{R}^{k}, w \in \mathbb{R}^{m-k}$. We now write

$$
F(x, y)=(Q(x, y), R(x, y))
$$

where $Q: \Omega \rightarrow \mathbb{R}^{k}$, and $R: \Omega \rightarrow \mathbb{R}^{m-k}$ are both continuously differentiable maps.

Now define $\varphi: \Omega \rightarrow \mathbb{R}^{n}$ by $\varphi(x, y)=(Q(x, y), y)$. Using similar notation to (0.2) as in the proof of the implicit function theorem, $\varphi^{\prime}(0,0)$ is invertible since

$$
\operatorname{det}\left(\varphi^{\prime}(0,0)\right)=\operatorname{det}\left[\begin{array}{cc}
\frac{\partial Q}{\partial x}(0,0) & \frac{\partial Q}{\partial y}(0,0) \\
0_{(n-k) \times k} & I_{(n-k) \times(n-k)}
\end{array}\right]=\operatorname{det}\left(\frac{\partial Q}{\partial x}(0,0)\right) \neq 0 .
$$

since the last quantity is (0.3). The inverse function theorem now furnishes open sets U, \tilde{U} containing 0 such that $\varphi: U \rightarrow \tilde{U}$ is a bijection such that φ, φ^{-1} are continuously differentiable. Shrinking \tilde{U} if necessary, we may assume that it is convex.

We now write

$$
\varphi^{-1}(x, y)=(A(x, y), B(x, y)) \quad A: \tilde{U} \rightarrow \mathbb{R}^{k}, B: \tilde{U} \rightarrow \mathbb{R}^{n-k}
$$

with A, B continuously differentiable. Observe that by the definition of φ,

$$
(x, y)=\varphi(A(x, y), B(x, y))=(Q(A(x, y), B(x, y)), B(x, y))
$$

Thus by matching entries, we have that $B(x, y)=y$ which implies that

$$
\varphi^{-1}(x, y)=(A(x, y), y) \text { and } x=Q(A(x, y), y)
$$

We now may write for some \mathbb{R}^{m-k}-valued function \tilde{R}, continuously differentiable on \tilde{U}

$$
F \circ \varphi^{-1}(x, y)=F(A(x, y), y)=(Q(A(x, y), y), R(A(x, y), y))=(x, \tilde{R}(x, y)) .
$$

Hence

$$
\left(F \circ \varphi^{-1}\right)^{\prime}(x, y)=\left[\begin{array}{cc}
I_{k \times k} & 0_{k \times(n-k)} \tag{0.4}\\
\frac{\partial \tilde{R}}{\partial x}(x, y) & \frac{\partial \tilde{R}}{\partial y}(x, y)
\end{array}\right] .
$$

But by the chain rule, for $(x, y) \in \tilde{U},\left(F \circ \varphi^{-1}\right)^{\prime}(x, y)$ has rank k. Indeed,

$$
\left(F \circ \varphi^{-1}\right)^{\prime}(x, y)=F^{\prime}\left(\varphi^{-1}(x, y)\right)\left(\varphi^{-1}\right)^{\prime}(x, y),
$$

and since $F^{\prime}(z)$ has constant rank with $\left(\varphi^{-1}\right)^{\prime}(x, y)$ is invertible, this is the composition of a rank k map with an invertible map, which yields a rank k linear mapping. But given (0.4), the first k columns of $\left(F \circ \varphi^{-1}\right)^{\prime}(x, y)$ are linearly independent, which means that $\frac{\partial \tilde{R}}{\partial y}=0$ on \tilde{U} since otherwise, the matrix would have rank larger than k. But since \tilde{U} is convex, we have that \tilde{R} is independent of y (cf. Theorem 9.19 and its corollary), that is $\tilde{R}(x, y)=S(x)$ for some continuously differentiable function S defined on the open set

$$
\tilde{V}:=\left\{x \in \mathbb{R}^{k}:(x, 0) \in \tilde{U}\right\} .
$$

This now shows that $\left(F \circ \varphi_{\tilde{V}}^{-1}\right)(x, y)=(x, S(x))$.
We finally define for $v \in \tilde{V}, w \in \mathbb{R}^{m-k}, \psi(v, w)=(v, w-S(v))$. This defines a continuously differentiable bijection with explicit inverse $\psi^{-1}(s, t)=$ $(s, t+S(s))$, which satisfies

$$
\left(\psi \circ F \circ \varphi^{-1}\right)(x, y)=\psi(x, S(x))=(x, S(x)-S(x))=(x, 0),
$$

where the latter entries in the last two expressions are in \mathbb{R}^{m-k}. Defining V to be the open set $V:=\left\{(v, w) \in \mathbb{R}^{m}: v \in \tilde{V}\right\}$, the proof is now concluded.

