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The Schrödinger equation on Rn

Initial value problem for the Schrödinger equation

(i∂t +∆)u(t , x) = 0, u(0, x) = f (x), u(t , x) : R×Rn → C

Two fundamental properties

‖u(t , ·)‖L2(Rn) = ‖u(0, ·)‖L2(Rn) (mass conservation)

‖u(t , ·)‖L∞(Rn) ≤ cnt−
n
2 ‖u(0, ·)‖L1(Rn) (dispersive inequality)

Together, they yield Strichartz estimates

‖u‖Lp(R;Lq(Rn)) ≤ C‖f‖L2(Rn),
2
p

+
n
q

=
n
2
, p,q > 2
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Strichartz estimates with Sobolev regularity

‖u‖Lp(R;Lq(Rn)) ≤ C‖f‖Hs(Rn),
2
p

+
n
q
≥ n

2
− s (∗)

When equality holds in (∗), the estimate is scale-invariant.
Otherwise, there is a loss of derivatives.
Can combine estimates when s = 0 with Sobolev
embedding to get general case with s > 0
When s > 0, estimates are subcritical, they do not use the
full rate of dispersion
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Frequency localized estimates

Direct method: Littlewood-Paley decomposition

u =
∑
λ=2k

uλ, supp(ûλ(t , ·)) ⊂ {|ξ| ≈ λ},

Standard squarefunction estimate reduces Strichartz to

‖uλ‖Lp(Lq) ≤ Cλs‖uλ(0, ·)‖L2

Kernel of the solution map at frequency λ on satisfies a
refined dispersive inequality

Kλ(t , x , y) =

∫
ei(x−y)·ξ−it |ξ|2β(λ−1ξ) dξ

|Kλ(t , x , y)| ≤ C min(λn, t−
n
2 ) ≈ C(λ−2 + t)−

n
2 ≤ λ2αt−

n
2 +α
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Knapp example

High frequency Knapp example: solve eqn. w/ f̂ the
characteristic fcn of Γλ = {(ξ′, ξn) : |ξn − λ| ≤ λ

1
2 , |ξ′| ≤ λ

1
2 }

vλ(t , x) =

∫
Γλ

eix ·ξ−it |ξ|2dξ,

λ

ξn

ξ′ λ
1
2

λ
1
2

Γλ

Linearize the phase⇒ |vλ(t , x)| ≈ λ
n
2 over the set

{|x ′| � λ−
1
2 , |t | � λ−1, |xn − 2tλ| � λ−

1
2 }
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Knapp example, continued

|vλ(t , x)| ≈ λ
n
2 over the set

{|x ′| � λ−
1
2 , |t | � λ−1, |xn − 2tλ| � λ−

1
2 }

λ−1

λ−
1
2

xn = 2tλ

Computing the ratio forces 2
p + n

q ≤
n
2

‖vλ‖Lp
t (Lq

x )/‖vλ(0, ·)‖Hs ≥ cλ
1
2 ( 2

p + n
q−

n
2 )
, λ→∞

Strict inequality (equiv. s > 0) gives exponents which are
subcritical
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Schrödinger equations on Riemannian manifolds

Staffilani-Tataru, Burq-Gérard-Tzvetkov: local (small time)
parametrix constructions
Take a Littlewood-Paley decomposition, consider uλ(t , ·)
spectrally localized to frequencies ≈ λ = 2k ≥ 1
Speed of propagation is finite, but proportional to λ
A parametrix which inverts the eqn locally (in space) will
have bounded error over time intervals of size λ−1

A priori, this generates a loss of 1
p derivatives (|Iλ| ≈ λ−1)

‖uλ‖Lp([0,T ];Lq) =
( ∑

Iλ∈[0,T ]

‖uλ‖pLp(Iλ;Lq)

) 1
p ≤ CTλ

s+ 1
p ‖uλ(0, ·)‖L2
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Obstacle Problems

Let Ω = Rn \ K be a domain in Rn exterior to a compact
obstacle K with smooth boundary
Consider the initial value problem, with homogeneous BC

u(t , ·)|∂Ω = 0 (Dirichlet) or
∂u
∂ν

(t , ·)
∣∣∣
∂Ω

= 0 (Neumann)

The local and global structure of the boundary can affect
the flow of energy and dispersion
Energy propagates along broken bicharacteristics
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Gliding Rays

“Local" complications: points of convexity in ∂Ω

Broken rays reflect in the boundary several times,
complicating parametrix constructions
Two works of Ivanovici:

Whispering gallery modes provide a counterexample for a
range of exponents including the critical case ( 2

p + n
q = n

2 )

Strichartz estimates hold for domains with strictly concave
boundary (Melrose-Taylor parametrix)
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Trapped Rays

“Global" issues: obstacle may create trapped rays

Elliptic trapping→ no hope for scale-inv. estimates
Hyperbolic trapping→ some hope
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Non-trapping assumption

From here on, we work with a non-trapping assumption:
every unit speed broken bicharacteristic escapes a
compact subset in finite time
e.g. star-shaped obstacle

K
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Local Smoothing Estimates

Burq-Gérard-Tzvetkov: For non-trapping obstacles

‖ψu‖
L2([0,T ];Hs+ 1

2 (Ω))
≤ C‖f‖Hs(Ω), ψ ∈ C∞c (Ω) (LS).

Analogous bounds in Rn due to Kato, Constantin-Saut,
Sjölin, Vega, and others
Wave packet at frequency λ should spend time ≈ 1

λ in

supp(ψ), taking L2 in time should yield a gain of
√

1
λ

LS reduces or eliminates losses that come from working
locally

Staffilani-Tataru: non-trapping metric perturbations of ∆
Burq et. al., Anton: estimates with a loss in domains
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Using local smoothing estimates

‖ψu‖
L2([0,T ];Hs+ 1

2 (Ω))
≤ C‖f‖Hs(Ω), ψ ∈ C∞c (Ω).

Deals with error terms that arise in localizing near ∂Ω

Consider uλ(t , ·) within a chart U which flattens ∂Ω

Take a space-time decomposition of the solution into sets
Iλ × U, |Iλ| ≈ 1

λ is a time interval

When dist(Iλ, Jλ) ≥ C
λ , solution over Iλ × U should have

almost no influence on the solution over Jλ × U
Independence of solution over these time intervals⇒
estimates with no loss of derivatives
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Small-time estimates

Bottom line: Matters are reduced to establishing
local/small-time (or semiclassical) estimates
For uλ(t , ·) concentrated in a chart U, t ∈ [0, λ−1]

‖uλ‖Lp([0,λ−1];Lq) ≤ Cλs‖uλ(0, ·)‖L2

Anton, B.-Smith-Sogge: Estimates with a loss
No loss estimates for Dirichlet BC’s

Planchon-Vega: Bilinear Virial identities which give
estimates for p = q = 4
Ivanovici: strictly concave boundary
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Our Result

Theorem (B.-Smith-Sogge): The scale-invariant Strichartz
estimates

‖u‖Lp([−T ,T ];Lq(Ω)) ≤ C‖f‖Hs(Ω),
2
p

+
n
q

=
n
2
− s,

hold for solutions in non-trapping exterior domains Rn \ K,
provided {

3
p + n

q ≤
n
2 n ≤ 3,

1
p + 1

q ≤
1
2 n ≥ 4

For compact domains, we have a loss of 1
p derivatives, (cp.

no boundaries: Burq-Gérard-Tzvetkov, Staffilani-Tataru )

‖u‖Lp([−T ,T ];Lq(Ω)) ≤ C‖f‖
Hs+ 1

p (Ω)
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The parametrix

Adapts a construction for the wave eqn. due to Smith-Sogge
Work in suitable coordinates that flatten the boundary, get
a variable coefficient problem
Reflect the coefficients and the solution in the boundary
Yields a PDE in an open set in Rn, but with rough
coefficients
Now perform a Littlewood-Paley decomposition of the
solution in frequency u = u0 +

∑
λ=2k uλ
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The parametrix

Speed λ rays reflecting at an angle θ should not return until
a time tθ ≈ λ−1θ

dist ≈ θ

For each θ = 2−j ∈ [λ−1/3,1], localize solution in frequency
again to sets

supp(ûλ,θ(t , ·)) ⊂ {|ξ| ≈ λ, |〈~ν, ξ/|ξ|〉| ≈ θ} (~ν = unit normal)

λ

λθ~ν

Matthew D. Blair Strichartz in Exterior Domains



Strichartz estimates on Rn

Exterior Domains
The Parametrix

The parametrix

Speed λ rays reflecting at an angle θ should not return until
a time tθ ≈ λ−1θ

dist ≈ θ

For each θ = 2−j ∈ [λ−1/3,1], localize solution in frequency
again to sets
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The parametrix

Have wave packet parametrix constructions up to time
≈ λ−1θ (at most one reflection in the boundary)
This yields Strichartz estimates over small slabs in
space-time Iθ × U, |Iθ| ≈ λ−1θ

Loss of θ−
1
p derivatives can be countered by gains in the

dispersive estimates

|Kλ,θ(t , x , y)| ≤ C(λ−2 + t)−
n−1

2 (λ−2θ−2 + t)−
1
2
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Energy critical equations in 3+1 dim.

Semilinear Schrödinger equation for Dirichlet BC:

(i∂t + ∆)v = ±|v |4v , v(t , ·)|∂Ω = 0

v(0, x) = g(x) ∈ H1(Ω)

Conservation Law: The following is conserved

E(v) =

∫
Ω

1
2
|∇xv(t , x)|2 ∓ 1

6
|v(t , x)|6 dx

H1(Ω) ↪→ L6(Ω), but the two spaces scale the same way,
places a premium on scale-invariant estimates
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Energy critical equations

We recover a recent result of Ivanovici-Planchon:
Theorem The energy critical equation is locally well-posed
on non-trapping exterior domains Ω = R3 \ K. If
‖g‖H1(Ω) ≤ ε, the solution exists globally in time

Formally, we have an L4
t L∞x estimate in n = 3

‖u‖L4([−T ,T ];L∞(Ω)) ≤ CT‖f‖H1(Ω)

Allows for iteration to a fixed point

‖∇(|v |4v)‖L1(L2) ≤ C‖v‖4L4(L∞)‖∇v‖L∞(L2)
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