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SUMMARY

We present a method for the computer-based itera-
tive assembly of native-like tertiary structures of he-
lical proteins from a-helical fragments. For any pair of
helices, our method, called MATCHSTIX, first gener-
ates an ensemble of possible relative orientations of
the helices with various ways to form hydrophobic
contacts between them. Those conformations hav-
ing steric clashes, or a large radius of gyration of
hydrophobic residues, or with helices too far sepa-
rated to be connected by the intervening linking
region, are discarded. Then, we attempt to connect
the two helical fragments by using a robotics-based
loop-closure algorithm. When loop closure is feasi-
ble, the algorithm generates an ensemble of viable
interconnecting loops. After energy minimization
and clustering, we use a representative set of confor-
mations for further assembly with the remaining heli-
ces, adding one helix at a time. To efficiently sample
the conformational space, the order of assembly
generally proceeds from the pair of helices con-
nected by the shortest loop, followed by joining one
of its adjacent helices, always proceeding with the
shorter connecting loop. We tested MATCHSTIX on
28 helical proteins each containing up to 5 helices
and found it to heavily sample native-like conforma-
tions. The average rmsd of the best conformations
for the 17 helix-bundle proteins that have 2 or 3 heli-
ces is less than 2 Å; errors increase somewhat for
proteins containing more helices. Native-like states
are even more densely sampled when disulfide
bonds are known and imposed as restraints. We con-
clude that, at least for helical proteins, if the second-
ary structures are known, this rapid rigid-body
maximization of hydrophobic interactions can lead
to small ensembles of highly native-like structures.
It may be useful for protein structure prediction.

INTRODUCTION

For predicting the native structures of proteins, a useful compu-

tational strategy is to assemble known secondary structures into
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putative native tertiary structures, and then to use a scoring func-

tion to seek the best such chain packings. Our interest in this

approach was motivated by our recent use of an all-atom phys-

ical force field, Amber 96 (Cornell et al., 1995) with implicit

solvent (Onufriev et al., 2004), for scoring conformations that

have been generated via a folding-mechanism-inspired search

method called Zipping and Assembly (ZAM) (Ozkan et al.,

2007). When limited to these putative folding routes, ZAM found

the native structures of a test set of 8 out of 9 small globular pro-

teins to within about 2 Å root-mean-square deviation (rmsd) of

their experimental structures. More recently, we also tested

ZAM in the 7th community wide experiment on the Critical

Assessment of techniques for protein Structure Prediction

(CASP7) (Moult, 2005). ZAM found secondary structural ele-

ments relatively efficiently, but was slow to assemble those sec-

ondary structures into tertiary native-like conformations (M.S.

Shell, S.B. Ozkan, V. Voelz, G.A.W., and K.A.D., unpublished

data). Assembly was often bottlenecked by side-chain packing

and re-arrangements (Bromberg and Dill, 1994). Our interest

here is in more efficient ways to sample different possibilities

of assembling secondary structures into native-like tertiary

structures. We consider here only water-soluble a-helical pro-

teins, but we believe a similar approach with an appropriate

scoring function should also be useful for other types of second-

ary structure assemblies.

There has been much previous work in assembling tertiary

structures from secondary structural fragments (Fain and Levitt,

2003; Fleming et al., 2006; Hoang et al., 2003; Kolodny and

Levitt, 2003; Simons et al., 1997; Yue and Dill, 2000), especially

in helix packing (Bowie and Eisenberg, 1994; Cohen et al., 1979;

Crick, 1953; Fain and Levitt, 2001; Huang et al., 1999; Kohn et al.,

1997; Lupas et al., 1991; McAllister et al., 2006; Mumenthaler

and Braun, 1995; Nanias et al., 2003; Narang et al., 2005; Wolf

et al., 1997; Zhang et al., 2002). Yue and Dill (2000) used a set

of discrete helix-helix packing angles for tertiary structure

assembly. Zhang et al. (2002) used torsion angle dynamics and

predicted interhelical contacts as restraints for fold prediction.

The Floudas group (McAllister et al., 2006) has predicted primary

and helical-wheel interhelical contacts and then generated in-

terhelical distance restraints in a-helical globular proteins. Fain

and Levitt used a packing algorithm based on graph theory

and database-generated contact information (Fain and Levitt,

2001). Using a Ca-only protein model, the Scheraga group

(Nanias et al., 2003) generated native-like folds of a-helical pro-

teins by the global optimization of a Miyazawa-Jernigan-based

contact potential function (Miyazawa and Jernigan, 1996).

More recently, Narang et al. (2005) have used knowledge-based
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biophysical filters of persistence length and radius of gyration for

pruning out unlikely conformational candidates, followed by

Monte Carlo optimization of loop dihedrals, to bracket native-

like structures for small helical proteins.

Our approach is different, and has the following features:

(1) We do not rely on database-derived packing information,

such as helix-helix packing angles. Instead, we start with

canonical helices (backbone 4 = �57� and c = �47�) to

represent the helical fragments in the native structure,

with side-chain dihedrals sampled from a rotamer library

(Dunbrack, 2002; Dunbrack and Karplus, 1993).

(2) To seek optimal hydrophobic packing, we align the helices

as rigid-body cylinders by matching up every pair of inter-

helical hydrophobic residues subject to certain restraints.

(3) We then connect the two helices via their linking chain us-

ing a fast robotics-based analytic loop closure algorithm

(Coutsias et al., 2004, 2005) that generates an ensemble

of loop conformations for a given pair of aligned second-

ary structures. Our method incorporates probability-

weighted Sobol quasirandom sampling (Bratley and

Fox, 1988) of the Ramachandran accessible regions for

the f� j torsions, which further enhances the efficiency

in finding loop-closure solutions.

(4) The iterative assembly of additional helices is further

optimized by ordering the choices: adjacent helices con-

nected by short loops are assembled before helices sep-

arated by long loops. And, in later iterations, an adjacent

helix is joined to the pre-existing assembly (in case of two

adjacent helices, the one with the shorter loop is chosen).

This process is repeated until all helices are assembled.

This iterative assembly of given secondary structures, in the

two steps of combining the helices then linking the loops, imple-

mented in the algorithm called MATCHSTIX, is much more effi-

cient in sampling native-like conformations than other methods,

such as the backbone dihedral rotation of the loop residues

(Narang et al., 2005; Ozkan et al., 2007) or anisotropic-net-

work-model sampling (Atilgan et al., 2001; Ozkan et al., 2007).

MATCHSTIX follows a greedy conformational search strategy;

this largely circumvents the multicomponent combinatorial

explosion problem and brings into feasibility the assembly of

multiple helices even in all-atom representations of proteins.

Details of the method are described in the Experimental

Procedures.

RESULTS

Assembly of Multihelical Protein Structures
We have tested MATCHSTIX on a set of 28 helical proteins each

consisting of up to five helices. Five of these proteins contain

disulfide bridges. This set of proteins partially overlaps with

previous test sets (Nanias et al., 2003; Narang et al., 2005; Zhang

et al., 2002). Hence we can make some comparisons of our

method with those sets. To evaluate the quality of the sampling

and scoring, the top 1, 5, 20, and 50 structures from the last

assembly step are analyzed and the rmsd of the most native-

like structure among them is calculated relative to the native

conformation for Ca atoms of the helical residues.
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The results are summarized in Table 1 and Figure 1. For calcu-

lating rmsd and for calculating a quantity we call Rh, the all-atom

radius of gyration of hydrophobic residues, we consider only the

helical residues, because loops, especially the longer ones, are

often floppy and not well defined in the known structures, and

it turns out that their detailed structure doesn’t strongly affect

the performance of the packing algorithm. We find that for two

helix and three helix bundles, sampling often explores low

rmsd conformations (about 2 Å or smaller) that tend to rank in

the top 20 or better. For four- and five-helix bundle proteins,

native-like conformations are also frequently sampled, but the

errors are somewhat worse, with the lowest rmsds being in the

3–5 Å range and among the top 50 conformations.

The final ranking of the conformations corresponding to cluster

centroids depends on the cutoff distance for the clustering.

A larger cutoff gives a smaller number of clusters and generally

improves the positional ranking of native-like conformations.

However, the lowest rmsd structuresmay be filteredout as a result

of using a larger cutoff. As an example, for the 69-residue 3-helix

bundle 2A3D, a 2 Å cutoff gives 784 conformations with the lowest

rmsd (2.29 Å) ranking at position 30. Increasing the cutoff to 3 Å re-

duces the ensemble size from 784 to 134, and the lowest rmsd

increases from 2.29 to 2.50 Å with its improved ranking at position

9. For both cutoffs, the lowest Rh conformation has an rmsd of

9.86 Å. In Table 1, we use the clustering cutoff n�1 Å for an n-helix

protein which does not have any SS bonds. For the five disulfide-

containing proteins, due to the significant reduction in population

by imposing the Cb-Cb distance restraint between the disulfide-

bonded pair, we have used smaller clustering cutoffs of 1.5 Å

and 2.0 Å for three helix and four helix proteins respectively.

Comparison with Other Methods
Other groups have also previously developed helix packing

methods (Nanias et al., 2003; Narang et al., 2005; Zhang et al.,

2002). We cannot make a full comparison because of the incom-

plete overlap of their test sets with ours. However, we are able to

make a few comparisons. First, the loop torsion sampling (LTS)

method (Narang et al., 2005) samples the backbone torsion

angles of the loop residues to generate a diverse set of relative

orientations of the helices. Since it works with all-atom protein

models, a direct comparison can be made with our approach.

Whereas the performance of our method improves for longer

loops, the LTS method works best with short loops. Table 2 com-

pares them. For LTS, the rmsds tend to be in the range of 4 Å,

whereas rmsds from our method tend to be in the range of less

than 2 Å. In addition, the present method is more efficient

computationally. For the three-helix bundle protein 1GVD, with

2.8 GHz Xeon processors, our method takes about 20 CPU

hours, compared to about 200 CPU hours for LTS.

In another approach, the Scheraga group packed helices using

a coarse-grained potential (Nanias et al., 2003), where each

amino acid is represented by its Ca atom. A simplified energy

function was used to capture the pairwise interaction between

two residues from two helices. Their treatment of the loop was

limited to requiring that the ends of the two helices to be linked

must be smaller than the maximal loop length. The helices were

treated as rigid bodies, and best helix packing orientations are

generated by global optimization of the potential energy. Given

the simplicity of their protein model and energy function, it is
ll rights reserved
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Table 1. Assembly Results

PDB

Code

Chain

Length

Number of

Helices

Assembly

Order

Lowest Rmsd (Å)

Top 1 Top 5 Top 20 Top 50 All

2HEP 36 2 1-2 2.52 1.41 (3) 1.41 (3) 1.27 (32) 1.27 (32)

1RPO 56 2 1-2 2.22 1.52 (3) 1.52 (3) 1.52 (3) 1.52 (3)

1BDD 47 3 2-3-1 3.58 2.84 (2) 2.58 (9) 1.58 (25) 1.58 (25)

1DV0 32 3 1-2-3 4.55 3.77 (3) 1.92 (19) 1.92 (19) 1.89 (51)

1GVD 40 3 1-2-3 1.53 1.53 (1) 1.51 (13) 1.51 (13) 1.51 (13)

1IDY 39 3 1-2-3 6.61 3.70 (5) 1.93 (6) 1.93 (6) 1.81 (67)

1PRB 42 3 2-3-1 1.50 1.50 (1) 1.50 (1) 1.50 (1) 1.50 (1)

1PRV 38 3 1-2-3 4.96 3.54 (5) 2.03 (13) 2.03 (13) 2.03 (13)

1G2H 32 3 1-2-3 1.80 1.80 (1) 1.80 (1) 1.80 (1) 1.66 (53)

1X9B 45 3 1-2-3 8.60 2.21 (2) 2.21 (2) 2.21 (2) 2.21 (2)

1ENH 46 3 2-3-1 4.15 4.15 (1) 3.97 (8) 1.92 (34) 1.92 (34)

1FEX 50 3 2-3-1 6.07 6.07 (1) 2.67 (10) 2.67 (10) 2.67 (10)

1LRE 66 3 1-2-3 8.93 4.16 (2) 2.96 (19) 2.96 (19) 2.96 (19)

2A3D 69 3 2-3-1 9.86 9.75 (4) 2.50 (17) 2.29 (30) 2.29 (30)

1I6Z 112 3 1-2-3 5.93 5.93 (1) 2.91 (8) 2.91 (8) 2.91 (8)

1EIJ 59 4 1-2-3-4 6.98 5.09 (2) 5.09 (2) 5.09 (2) 3.82 (154)

2EZH 59 4 1-2-3-4 7.35 4.07 (5) 3.56 (10) 3.21 (47) 2.42 (143)

1POU 69 4 1-2-3-4 11.3 9.28 (3) 5.87 (18) 4.22 (42) 3.75 (261)

2MHR 91 4 1-2-3-4 8.20 3.14 (5) 2.14 (8) 2.14 (8) 2.14 (8)

1R69 60 5 2-3-1-4-5 6.70 5.24 (2) 5.24 (2) 4.0 (43) 3.54 (85)

2CRO 60 5 1-2-3-4-5 9.65 7.42 (4) 4.01 (12) 4.01 (12) 4.01 (12)

2ICP 72 5 1-2-3-4-5 11.1 5.73 (4) 5.10 (17) 5.10 (17) 4.09 (185)

1LPE 138 5 1-2-3-4-5 5.22 5.22 (1) 5.22 (1) 4.59 (23) 4.54 (74)

1HP8 54 [3] 3 1-2-3 5.44 3.77 (5) 2.77 (8) 2.45 (30) 2.29 (149)

1ERY 32 [2] 3 2-3-1 2.21 2.21 (1) 1.69 (9) 1.69 (9) 1.69 (9)

1C5A 63 [3] 4 4-3-2-1 6.72 3.79 (3) 2.49 (17) 2.49 (17) 2.04 (103)

1GH1 69 [2] 4 2-3-4-1 7.57 3.21 (2) 3.21 (2) 3.21 (2) 3.13 (96)

1J0T 58 [2] 4 1-2-3-4 6.64 4.83 (4) 3.24 (8) 2.73 (28) 2.73 (28)

The last five columns list the lowest rmsd structures and their Rh ranking (in parentheses) among the top 1, 5, 20, 50, and all the sampled conforma-

tions. The second column lists chain lengths excluding termini nonhelical residues, with the number of disulfide bridges in square brackets. For the

fourth column, each helix is numbered by its relative position to the N terminus.
remarkable that their method could reproduce native-like folds of

dozens of helical proteins as local energy minima of the energy

function. A direct comparison between their method and ours is

difficult both because of the different protein models used

(coarse-grained versus all-atom) and because of the different

treatment of loop residues (implicit versus explicit). Nonetheless,

the results from the two methods on a set of seven helical proteins

that we tested in common are listed in Table 2 for reference. For

the five three-helix bundles, the average rmsd of the most native-

like structures is 2.37 Å and 3.1 Å for our method and theirs

respectively, while their method is better for the four and five helix

proteins. Hence, in this limited test, the quality of predictions

appears to be equivalent. A useful aspect to our approach is

that it retains full atomic detail, including in the loops.

Proteins Containing Disulfide Bonds
We also tested our method on five proteins having disulfide

bonds. For these proteins, we have imposed SS bond restraints

as described in the Experimental Procedures, and the final
Structure 16, 125
assembly results are summarized in Table 3. Some general

observations can be made about these tests: (1) Near-native

configurations are sampled even more densely when native SS

bond restraints are imposed; and (2) These near-native struc-

tures appear among the top 20 or 50 conformations indicating

that Rh ranking can still serve as a useful filter.

To assess the effects of SS bond restraints, we have also run

tests by ignoring the SS bonds and not imposing any restraints.

The results are summarized in Table 3. The absence of the SS

bond restraints leads to a much larger conformational space

which also makes the search for near-native structures more

difficult. As a result, we observe bigger rmsd values for the

best structures sampled in the absence of SS bond restraints.

To find the lowest rmsd and its Rh ranking as shown in Table 3,

the final conformations from the last iterative assembly step

have been clustered with clustering cutoffs of 1.5 and 2.0 Å for

the three helix and four helix proteins respectively, and the

centroids are kept as representative conformations and are

ranked by Rh.
7–1266, August 6, 2008 ª2008 Elsevier Ltd All rights reserved 1259

www.ncbi.nlm.nih.gov
www.ncbi.nlm.nih.gov
www.ncbi.nlm.nih.gov
www.ncbi.nlm.nih.gov
www.ncbi.nlm.nih.gov
www.ncbi.nlm.nih.gov
www.ncbi.nlm.nih.gov
www.ncbi.nlm.nih.gov
www.ncbi.nlm.nih.gov
www.ncbi.nlm.nih.gov
www.ncbi.nlm.nih.gov
www.ncbi.nlm.nih.gov
www.ncbi.nlm.nih.gov
www.ncbi.nlm.nih.gov
www.ncbi.nlm.nih.gov
www.ncbi.nlm.nih.gov
www.ncbi.nlm.nih.gov
www.ncbi.nlm.nih.gov
www.ncbi.nlm.nih.gov
www.ncbi.nlm.nih.gov
www.ncbi.nlm.nih.gov
www.ncbi.nlm.nih.gov
www.ncbi.nlm.nih.gov
www.ncbi.nlm.nih.gov
www.ncbi.nlm.nih.gov
www.ncbi.nlm.nih.gov
www.ncbi.nlm.nih.gov
www.ncbi.nlm.nih.gov


Structure

Iterative Assembly of Helical Proteins
DISCUSSION

Not surprisingly, our computational assembly and sampling

method performs better on proteins having fewer helices (2–3)

than on proteins having more (4–5). The sampling quality is not

very sensitive to the number of amino acids in the protein, but

it decreases significantly with the number of helices that are as-

sembled, because of the exponential growth in conformations

with helix number. The predictions also depend, to some extent,

on the fold. We obtain good structures for the four-helix bundle

protein 2MHR (91 residues), which has the up-down-up-down

motif with parallel helices. The lowest rmsd structure is 2.1 Å

away from the native conformation and ranks eighth among

more than 400 conformations.

It is possible that the assembly order that we have adopted

might bias our structures away from certain topologies, by ex-

Figure 1. Cartoon Representation of the

Native, Red, versus the Lowest Rmsd Struc-

tures Assembled, Blue, for the 28 Proteins

listed in Table 1

Figure produced with Pymol (DeLano, 2002).

cluding for example some arrangements

where a certain helix is wedged between

two helices that our algorithm might pref-

erentially bring into contact first. Such

topologically frustrated arrangements

might be better explored by a fully combi-

natorial approach based on exhaustive

exploration of all possible contact graphs,

like the approach of Fain and Levitt (2001).

The performance of Rh is shown in Fig-

ure 2. The figure shows that while the Rh

criterion is not good enough to uniquely

pick out native structures, it is a useful

filter for identifying relatively small en-

sembles within which the native structure

can be found. One example is the three-

helix bundle 2A3D. Among the sampled

conformations, the most compact struc-

ture (9.86 Å rmsd from native) has helices

1, 2, and 3 packed in a counterclockwise

fashion when viewed from the N-terminal

along the first helix. The lowest rmsd

conformation (2.3 Å relative to native)

however, has the three helices packed

in a clockwise fashion. The difference in

Rh between the two conformations is

only 2%. Another example is the five-helix

bundle protein 2ICP, whose lowest Rh

conformation has a nonnative packing.

Though the near-native conformations

may not have the lowest Rh score, they

generally appear among the top-ranking

conformations in our test set.

Further improvements in our method

may be possible by going beyond Rh as

a simple measure of initial quality. This becomes necessary

when dealing with proteins with more than one hydrophobic

core, or when the protein structure is held together predomi-

nantly by forces other than the hydrophobic effect as in the

case of interhelical SS bonds. This is illustrated in Figure 2 by

the results on three proteins containing SS bonds. One example

is the three-helix bundle 1HP8, which has three interhelical disul-

fide bridges. The disulfide bonds hold the protein in a nonoptimal

conformation, relative to a simple compactness criterion, with the

third helix pointing away from the other two helices. Another

example is the four-helix bundle 1J0T. As can be seen in Figure 2,

although the native state of 1J0T ranks poorly compared to

the sampled conformations, the most native-like conformation

(rmsd 2.7 Å) can still rank near the top at position 28. In this

work, we have imposed SS bond restraints to cut down

on the conformational search space, and are able to sample
1260 Structure 16, 1257–1266, August 6, 2008 ª2008 Elsevier Ltd All rights reserved
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native-like conformations. But a better scoring function is clearly

needed to improve the ranking of the best sampled structures.

Another challenge to the simple Rh scoring function is posed

by proteins with long loops. For example, the three-helix bundle

protein 1FEX has a 10-residue loop connecting helix 1 and helix

2. This long loop is structured in its native conformation with

several hydrogen bonds. In this work, we have not explored

the diverse conformations of long loops, but have focused only

on the packing of helices. Our calculation of rmsd and the Rh

does not include loop residues, but an improved method might

result from including them.

Our secondary structures were given as input and taken to

have canonical a-helical structures. This is essential for the pur-

pose of testing an assembly algorithm. However, had our

purposes been different, starting secondary structures could

have been obtained, instead, from other sources. The starting

secondary structures could also be obtained from all-atom mo-

lecular dynamics simulations (Ho and Dill, 2006; Ozkan et al.,

2007) or from secondary structure prediction servers (Cuff and

Barton, 1999; Jones, 1999; Rost et al., 2004), both of which

can successfully predict helices. A previous study (Nanias

et al., 2003) showed that the final assembled structures are not

very sensitive to the secondary structure assignments. Our tests

also indicate that, at least for the set of proteins we considered,

the assembly performance is mainly determined by the hydro-

phobic core and not sensitive to the conformational details of

the loop residues.

Conclusions
We have presented an iterative assembly algorithm for con-

structing native-like tertiary structures from individual helical

fragments. We show that the method is much faster and more

Table 2. Assembly Performance Comparisons

PDB

Code

Chain

Length

Number of

Helices

Lowest Rmsd (Å)

Present

Method

Torsion

Sampling Ca Model

1BDD 47 3 1.58 4.21

1GVD 40 3 1.51 4.89

1DV0 32 3 1.92 4.74

1HP8 54 3 2.45 4.20

1IDY 39 3 1.93 3.36

1PRV 38 3 2.03 3.87

2EZH 59 4 3.21 4.40

1PRB 42 3 1.50 4.08 2.9

1G2H 32 3 1.80 3.4

1FEX 50 3 2.67 3.4

1LRE 66 3 2.96 3.4

1I6Z 112 3 2.91 2.5

1EIJ 59 4 5.09 4.6

1LPE 138 5 4.59 3.4

Performance comparisons among the present assembly method,

the loop torsion sampling method (Narang et al., 2005), and a coarse-

grained model (Nanias et al., 2003). The last three columns list the lowest

rmsd relative to the native among the top 50, 100, and 50 structures,

respectively.
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efficient at sampling native-like structures for two and three helix

bundles than the previous methods for which we can make a di-

rect comparison. Moreover, the present method can be used

directly with all-atom physical force fields, as we have done

here, and does not require a first coarse-grained step. The

best structures (i.e., lowest rmsd) among the top 1, 5, 20, 50,

and all sampled conformations average respectively 4.7, 3.6,

2.2, 2.1, and 2.0 Å rmsd for the Ca atoms of the helical residues

for the 17 two and three helix bundles. Errors are somewhat

larger for proteins with more helices, where there may be advan-

tage to coarse-graining on a simpler energy landscape (Nanias

et al., 2003).

Our method is robust in the following respects. First, its perfor-

mance is not sensitive to small variations in the secondary struc-

ture assignments. For example, the length of a long loop may be

shortened by assigning helical conformations to some loop res-

idues, and this in general does not change the final structures at

the end of the assembly. Similarly for one or two residue loops

(e.g., 1X9B), one can extend the loop length by a few residues

and still sample native-like structures in its final, top-ranked

conformations. This is consistent with the fact that the tertiary

structure is largely determined by the hydrophobic core of

residues (hydrophobic effect), and can allow fluctuations in sec-

ondary structures of certain residues not participating in the

hydrophobic core. Second, the helical packings are generally

insensitive to the structures of the loops generated between

them. We believe that these computational methods may be

useful in all-atom physical protein-structure prediction and

refinement for helical proteins.

EXPERIMENTAL PROCEDURES

In order to assemble helical fragments into tertiary folds that have a compact

hydrophobic core, we start with n helical fragments to be assembled along

with n–1 connecting loops. We assume canonical backbone torsions for the

helical residues. Since the loop closure algorithm requires a minimum of six

variable backbone torsions (i.e., at least three loop residues), it is necessary

to extend tight turns of one or two residues to a loop of at least three residues

by shuffling the adjacent helical residues to the loop. Given a loop with k back-

bone ðf� jÞ torsion pairs, k�3 of these are chosen to lie in the Ramachandran

regions of their corresponding residues, while the remaining three pairs,

belonging to residues used as pivots for loop closure, are set by the algorithm

to satisfy closure constraints. Since these must also be screened for Rama-

chandran compatibility in order for the resulting loops to be viable, we do

not allow any of the pivot residues to be a proline. Thus, a loop that is closable

by our algorithm needs to include at least three non-proline residues. The iter-

ative assembly starts with the two helical fragments connected by the shortest

loop. For each subsequent iteration, one adjacent helix is chosen along with

Table 3. Effect of Disulfide Bond Restraints

PDB

Code

Chain

Length

Number of

Helices

Assembly

Order

Lowest Rmsd (Å)

SS

Restraint

No

Restraint

1HP8 54 3 1-2-3 2.29 (149) 3.29 (335)

1ERY 32 3 2-3-1 1.69 (9) 2.04 (10)

1C5A 63 4 4-3-2-1 2.04 (103) 2.68 (389)

1GH1 69 4 2-3-4-1 3.13 (96) 3.90 (94)

1J0T 58 4 1-2-3-4 2.73 (28) 3.83 (20)

Effect of SS bond restraints on best assembled structures. The Rh rank-

ings of the lowest rmsd structures are in parentheses.
–1266, August 6, 2008 ª2008 Elsevier Ltd All rights reserved 1261
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the connecting loop. If there are two adjacent helices, the one with the shorter

connecting loop is chosen. The process is repeated till all helical fragments are

assembled and all loops are joined. For n helical fragments, the assembly will

finish in n�1 iterative steps.

The backbone and side chain geometries of the helical fragments are chosen

as follows. The bond lengths and bond angles are set to their canonical values

as used in the InsightII molecular modeling suite (http://www.accelrys.com/

products/insight/). The canonical backbone torsions of 4 = �57� and c = �47�

are used for all helical residues at the outset. For this work, we take secondary

structure information from the native structure according to the DSSP definition

(Kabsch and Sander, 1983). For NMR ensembles, we use the minimized average

structure as the native conformation. The side-chain dihedrals of each helical

fragmentare sampled froma rotamer library (Dunbrack, 2002;DunbrackandKar-

plus, 1993); details are given below. The number of side-chain conformations of

a given helical fragment is mainly determined by its associated loop length and to

a lesser degree by the iteration cycle. This is because, for short loops, only a very

small percentage of the sampled conformations can be loop-closed, and conse-

quently a large and diverse sample isneeded togenerate sufficient loop closures.

For example, if the first iteration cycle has a three residue loopor four residue loop

including a proline, we use seven or five side-chain conformations for each of the

two helical fragments (i.e.,49or25pairs for the two different loop lengths, respec-

tively) before weuse MATCHSTIX togeneratea diverseset of relative orientations

for each helix pair. On the other hand, if the first iteration cycle has a longer loop,

three side-chain conformations for each helix can be used. For later iteration

cycles and also longer loops, the side-chain conformations for the added single

helix is reduced to twoat the secondassemblycycle,andone at the thirdand later

iterations for the assembly of four or more helices.

Figure 2. Performance of the Scoring Func-

tion Rh

The scoring function Rh versus rmsd for a two

helix bundle (1RPO), three three-helix bundles

(2A3D, 1ERY, 1HP8), a four helix bundle (1J0T),

and a five helix bundle (2ICP). Three proteins con-

tain disulfide bridges (1ERY, 1HP8, 1J0T), and SS

bond restraints have been imposed during confor-

mational sampling. Red dots are sampled confor-

mations; blue dot denotes the native conformation

at rmsd zero. Note that for most cases Rh of the

native is among the smallest of all sampled confor-

mations, with the exception of certain proteins

containing disulfide bonds. Both Rh and rmsd

are in Angstroms.

The reason for the decreasing number of side-

chain conformations of the single helix at each

subsequent assembly cycle is because of the

rapidly increasing number of partially assembled

conformations with which the helix must pair up.

These partially assembled structures not only

have a diverse range of helix backbone arrange-

ments, their side-chain dihedrals have also been

modified in diverse ways during energy minimiza-

tion. If we keep more side-chain conformations for

the single helix, we will need to cut down on the

number of partially assembled conformations for

sake of computational efficiency. Exactly how

many conformations are kept for each assembly

cycle depend on the resolution and diversity of

the final assembled structures in terms of relative

rmsd, and this is explained in the following section.

We find that the native-likeness of the final

assembled structures is not sensitive to the num-

ber of side chain assignments for each single helix

except for very short loops. In fact, for a number of

3-helix bundles, the final ensemble contains low

rmsd conformations even if only a single side chain conformation for each of

the three helices is used. This may be understood from two aspects. (1) Energy

minimization after loop closure has redistributed the side-chain conformations.

(2) The native state does not adopt a single side-chain conformation but rather

undergoes dynamic fluctuations. Both X-ray and NMR protein structures

exhibit large side-chain conformational entropies (Zhang and Liu, 2006).

During the assembly process, we treat these helical fragments as rigid bod-

ies, except for the minor distortion caused by energy minimization after loop

closure. The energy minimization is done to remove (mainly minor) atomic

steric clashes. Our assembly process for helical proteins, as it is implemented

in the algorithm MATCHSTIX is divided into 4 stages: (1) We align two helical

fragments, absent the connecting loop, and keep the compact conformations

as measured by Rh; (2) We connect the loop; (3) We minimize the energy,

cluster the conformations, and retain a representative set of conformations;

and (4) We iterate steps 1–3 until all fragments are assembled.

MATCHSTIX: An Algorithm for the Iterative Assembly

of Helical Proteins

A. Rigid-Body Alignment to Match Up Hydrophobic Residues

In the first step, we align two helices to achieve good hydrophobic matching

between them. The cylindrical geometry of a canonical a helix can be speci-

fied by the N–Ca–C backbone atoms of any one hydrophobic residue in the

helix. The origin of each coordinate system is located at the intersection of

the cylindrical axis and the circular cross-section containing the Ca atom of

the residue (see Figure 3). The axis of the cylinder defines the x axis that points

from the N terminus to the C terminus, the z axis points from the origin to the

given Ca atom, and the y axis is defined such that x-y-z forms a right-handed
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Cartesian coordinate system. The initial alignment between the two coordi-

nate systems is such that the two cylindrical axes are parallel with a separation

of 10 Å along the z direction, with the two residues facing each other (i.e., the

two z axes are antiparallel). In other words, the origin of the second coordinate

system O2 is at (0, 0, 10 Å) relative to the first coordinate system. This orien-

tation brings the hydrophobic patches from the two helices into contact. From

this initial orientation, rotations and translations are used to generate a distri-

bution of relative orientations. For translational moves, O2 can vary within

a cube centered at the initial position of O2 and of size 10 Å, 12 Å, and 10 Å

along the x1, y1, and z1 directions of the first coordinate system, respectively.

A full range of angular distribution is generated by rotating around x1, y1, and

z1 with angles in the range �90–90�, �45–45�, and �90–90�, respectively. By

trying to match up every pair of hydrophobic residues from the two helical

fragments, a wide range of relative orientations with hydrophobic contacts

are generated.

The conformations that are generated in this way are pruned based on three

criteria:

(1) There are no severe steric clashes. The minimal heavy-atom dis-

tance between the two peptide fragments is required to be no less

than 2.5 Å, which is slightly smaller than a typical hydrogen bond

length.

(2) The loop can close. The distance of the connecting ends of the two frag-

ments must be smaller than the maximal loop length for the given

sequence of loop residues.

(3) There is sufficient hydrophobic compactness. We determine the hydro-

phobic radius of gyration, Rh, for all atoms of the hydrophobic helical

residues. We keep only those structures having hydrophobic amino acids

tightly clustered in space, in order to ultimately lead to a hydrophobic core

for the whole protein. For this purpose, we impose an upper cutoff of 5 Å for

the minimal heavy atom distance between the two peptide fragments.

Note that optimal hydrophobic packing for a final assembled structure al-

lows for less than optimal packing for the partial structures. For example,

to assemble a four-helix bundle protein in three iterative steps, the top

20%, 15%, and 10% of the most Rh compact conformations are retained

for the 1st, 2nd, and 3rd iterations, respectively.

Figure 3. Starting Point for MATCHSTIX

The Ca carbons of two hydrophobic residues are placed 10 Å apart, facing

each other. The cylinders are aligned, and coordinate axes are defined from

this configuration. The cylinders are then translated and rotated rigidly and

randomly. This procedure is then performed for every possible different

hydrophobic pairing.
Structure 16, 1257
To match up a pair of hydrophobic residues from two helical fragments by

rigid body translation and rotation, we use six-dimensional Sobol quasirandom

sampling to generate trial orientations. Not every pair of hydrophobic residues

can be matched up and satisfy the above three constraints, especially for short

loops. For this reason, up to a maximum of 100 trial conformations for each

residue pair are examined until one feasible structure is found. This method

avoids wasting too much time on many unbridgeable residue pairs. We cycle

through all hydrophobic residue pairs for one or more times until a specified

number of relative orientations are obtained.

The number of feasible relative orientations thus generated depends on the

loop length, due to the low closure rate for short loops. We typically generate

up to ten thousand conformations from all helix pairs and all possible hydro-

phobic residue pairs for a three residue loop or four residue loop with a proline

loop residue for the first assembly iteration. For later iterations, two hundred

conformations are generated for every pair of helical fragments.

For proteins containing interhelical disulfide bonds, further pruning is possi-

ble by requiring that the Cb-Cb distance of the bonded residues be smaller

than 8 Å.

These structures produced by MATCHSTIX all have good hydrophobic

compactness and exhibit a diverse arrangement of side-chain packing.

Next, they are subjected to loop closure.

B. Closing the Loops

After assembling the helices into an ensemble of favorable structures, we then

connect the two helices via the linking loop region of the chain, using a loop

closure method we have described previously (Coutsias et al., 2004, 2005).

Our loop-closure algorithm follows previous work (Dodd et al., 1993; Go and

Scheraga, 1970; Wedemeyer and Scheraga, 1999) but is more general in

allowing for loops of arbitrary length (R3 peptides) and arbitrary nonplanar

peptide bond structure. Our method requires that there must be at least six in-

tervening torsions whose axes form three distinct coterminal pairs and whose

values are degrees of freedom for the loop. All other internal degrees of free-

dom of the loop (bond lengths, angles, and remaining torsions) can be fixed

to any arbitrary value. For this study, bond lengths and bond angles are set

to their canonical values as in the InsightII molecular modeling suite (http://

www.accelrys.com/products/insight/), while the remaining torsions can be

sampled, and they are restricted to the Ramachandran-accessible (Lovell

et al., 2003; Ramachandran et al., 1963) regions.

Our algorithm is considerably simpler to program than more general robotic

algorithms, such as that of Lee and Liang (1988) that removes the coterminal

axes restriction. Like Lee and Liang (1988), our method leads to a robust for-

mulation in terms of multivariate polynomials, that are solved by converting

to an ideally dimensioned 16 3 16 generalized eigenvalue problem. However,

because of the simplicity, our method is preferable for most situations related

to modeling protein backbones for which, with the exception of proline, each

residue adds two flexible torsions, 4 and c, at each of the Ca atoms.

In our scheme, we assume that the loop, N-1 residues long, is to bridge two

residues (the anchors), R0 and RN, whose positions are fixed in space. Then:

(1) Select 3 residues, Ra, Rb, Rc, with 1%a<b<c%N� 1. These are the

pivots for loop closure and their f, c torsions will be chosen automatically

to close the loop. None of these may be a proline.

(2) Break the loop into four segments, R1/Ra, Ra/Rb, Rb/Rc and

Rc/RN�1 (here Ri stands for ith residue but can be also thought as the Car-

tesian coordinate vector for the Ca atom of that residue). For each of these,

set all of their internal degrees of freedom to predetermined values. The six

torsions and three bond angles about the pivots are not introduced at this

stage.

(3) Attach the first and last segments to the corresponding anchor residues

elongating the end chains to R0/Ra and Rc/RN. These two chains are

now fixed in space, and their end residues, the pivot residues Ra and Rc,

are the new anchors.

(4) With the residues Ra and Rc now fixed, form a triangle whose three

sides have lengths La = kRb � Rak, Lb = kRc � Rbk, and Lc = kRa � Rck. If

this triangle is feasible (i.e., the three sides obey the various triangle

inequalities), then the loop closure problem is solvable in principle, or

else the particular combination of the free parameters is rejected.

(5) If the triangle above is feasible, we proceed with formulating the gener-

alized loop closure equations. The details of this step can be found in
–1266, August 6, 2008 ª2008 Elsevier Ltd All rights reserved 1263
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Figure 4. Comparison of Two Measures of

Compactness: Rg and Rh

Comparison between Rg (radius of gyration) and

Rh (radius of gyration of all the atoms of hydropho-

bic helical residues) for a set of 140 simulated

compact structures for a two-helix bundle protein

(PDB ID: 1RPO). (Left) The rmsd running average,

which is a measure of the overall native-likeness of

top-ranked conformations. (Right) The rmsd run-

ning minimum or the lowest rmsd in the top-

ranked structures. The red and green curves

correspond to the Rg and Rh metrics, respec-

tively, whereas the blue curve corresponds to a

hypothetical perfect metric by which the conformations rank in ascending order of their rmsd relative to native. It is seen that the Rh metric is closer to the perfect

metric than Rg especially in the top-ranked conformations. Rmsds are in Angstroms.
Coutsias et al. (2004, 2005). In our formulation the atom Rb lies in a circle

about the axisðRc;RaÞ. Assuming its location is known, the other two chains

can be rotated about their respective axes, ðRa;RbÞand ðRb;RcÞ, so that the

bond angles (N, Ca, C) at each of the three pivot atoms have prescribed

values. Thus our algorithm involves three unknown angles and three con-

straints. Setting these completely fixes all atoms in space. In general, there

can be as many as 16 alternative conformations produced by this algo-

rithm. As the solutions appear in the form of the roots of a real polynomial

of degree 16, there can be at most 16 real roots, corresponding to physi-

cally realizable conformations. If any real solutions exist there is always

an even number of them, often considerably fewer than the maximum 16.

(6) The torsions at the pivot dihedrals are now screened and only loops, all

of whose torsions are in the Ramachandran regions (Lovell et al., 2003;

Ramachandran et al., 1963), are kept as possible leads.

(7) The loops that satisfy Ramachandran conditions are fit with side chains

from the probability-sorted, backbone-dependent Dunbrack rotamer li-

brary, bbdep02.May.sortlib, freely available at http://dunbrack.fccc.edu/

bbdep/bbdepdownload.php (Dunbrack and Karplus, 1993). The c angles

for each side chain are chosen with probabilities from the rotamer library’s

values. If the assignment leads to a steric clash, the rotamers are resampled

until the clash is removed or until a preset limit is reached. For this study we

allowed up to 50 resamplings. Setting that limit to higher values had no ap-

preciable effect on producing viable structures. The resulting complete

protein is screened for steric clashes among loop atoms or between the

loop and either of the protein fragments to which it connects.

(8) Conformations that pass the steric test are kept as possible alternatives

for energy minimization.

The purpose of these steps is neither to find native loop conformations, nor to

sample extensively, but merely to generate loop conformations that are closed

and sterically viable. Hence, unlike a search for native loop conformations, our

loop closure problem gets easier for longer loops. Smaller loops can have con-

straints that are challenging to satisfy. Hence, for short loops, we allow flexibil-

ity in the c angle at R0 and/or the 4 torsion at RN, thus enlarging the set of end

poses and increasing the probability of choosing values for which the loop is

closable. Sometimes even for larger loops, it can be difficult to find acceptable

leads, if there are partial confinements (e.g., proteins 1FEX and 1HP8). It is

therefore desirable to sample the space of the free torsions uniformly and at

ever-increasing resolution, until all components of the solution set are located.

Here we use Sobol quasirandom sampling (Bratley and Fox, 1988), a number-

theoretic algorithm that generates a sequence of k points that is nearly uni-

formly distributed in an (N-4)-dimensional unit hypercube, independent of k.

Its key advantage is that to increase sampling resolution one simply adds

new points to the existing ones, without affecting the near-uniformity and qua-

sirandomness of the sequence. In our implementation, the Ramachandran re-

gions for each residue corresponding to ð4;jÞ pairs with higher than 5% prob-

ability for each residue are pixelated into 5� squares. These squares are

rearranged along a linear dimension, so that to each pixel there corresponds

an interval of length pðf;jÞ/M, with M the total number of pixels and p a mea-

sure of the probability of finding a torsion pair at a given position in the Rama-

chandran plot (Lovell et al., 2003). A unit hypercube of dimension equal to the
1264 Structure 16, 1257–1266, August 6, 2008 ª2008 Elsevier Ltd A
number of sampled residues is constructed in this way, and points in it (pixel

(N-4)-tuples) are chosen with the Sobol algorithm. We use a maximum of 200

trial backbone loop conformations for each loop closure. A larger number of

trial conformations can be used, at the expense of more computing time

wasted on nonclosable loops. Although we could close more loops if we

were to allow perturbations of u torsions or bond angles, we would be introduc-

ing strains which might lead to significant distortions when we minimize energy.

For canonical backbones, we find that the shortest loop closure problem, i.e.,

for three residue loops, imposes severe restrictions on the relative poses of the

end bonds (N1 � Ca1 and Ca3 � C3) for which closed loops can be found at all:

fixing the distance of the two end Ca atoms ðCa1 � Ca3Þ to a range where clo-

sure is possible in principle, we find solutions for at most 20% of the end poses

at best (when Ca1 � Ca3is in the range of 5.5 to 6.5 Å), and this number falls off

to zero quickly outside this range. Allowing a 10–20 degree strain in the u

torsions does not alter this result considerably. Of course, for longer loops

this restriction becomes gradually less significant, however it is still a lot easier

to close loops if the end points are at a distance that is a certain fraction of the

maximum length attainable by the loop in extended conformation.

C. Energy Minimization and Clustering

Such closed-loop conformations found in this way generally still have minor

steric clashes or energetically unfavorable side-chain conformations. So, we

then subject these conformations to energy minimization. We use the energy

minimizer in the Amber9 molecular modeling software package (Case et al.,

2005). We use the Amber ff96 all-atom force field (Cornell et al., 1995) with

the generalized Born implicit solvent model (Onufriev et al., 2004). We use

30 steps of steepest descent followed by 30 steps of conjugate gradient

minimization for each conformation.

For proteins with disulfide bonds, the pruned conformations from MATCH

STIX based on a Cb-Cb distance cutoff generally do not have the correct disul-

fide-bridge (SS) geometry. This can be corrected by Amber energy minimiza-

tion, whose energy function has terms associated with SS bridges.

The number of loop-closed, energy-minimized conformations grows rapidly

for each subsequent iteration, due to the exponentially growing conformation

space with the helix number. To keep a manageable size of seed conforma-

tions for the next iteration, we cluster the top 1000 most compact structures

and use the cluster centroids as representative structures. The compactness

is measured by Rh, the radius of gyration of all atoms of the hydrophobic

helical residues of the energy-minimized structures. The clustering procedure

is used to remove highly similar conformations.

For efficiency, we use an approximately linearclustering method whosepseu-

docode is as follows: for a given cutoff and an ordered list L of the conforma-

tions, the first conformation is assigned to the first cluster and removed from L.

While L is not empty:

c = 1st conformation from L

for cluster k of the existing clusters:

if distance between c and 1st member of k < cutoff:

add c to cluster k as its last member

break out of the loop

end

end
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if c is not added to any of the existing clusters:

assign c to a new cluster

end

remove c from L

end

The clustering time is roughly proportional to the number of conformations

to be clustered, if most of them resemble one another within the cutoff dis-

tance. We measure the distance between two conformations by the Ca

rmsd of the helical residues. As a rule of thumb, the distance cutoff for the as-

sembly of n helices can be taken as n�1 Å. Slightly smaller rmsd cutoffs of 1.5

and 2 Å are used for disulfide-bridge-containing three and four helix bundles,

respectively, to compensate for the smaller sample size after the Cb-Cb dis-

tance screening. The cluster centroids, defined as the conformation with the

smallest Rh within each cluster, are fed as seed conformations for the next

iteration. Note that the side chains of these seed conformations could have

quite different torsion angles after energy minimization.

D. Iteration until All Components Are Assembled

Having determined how two particular helices are assembled with each other,

we then bring in each additional helix, one at a time, and repeat the process

above. The order of assembly can directly affect the quality of the final assem-

bled structures. The way we choose which helices should start the process at

the outset is by finding the neighboring helices that have the shortest connect-

ing linker between them, as the conformational search space associated with

a short loop is relatively small. In the same way, for later assembly iterations,

the helix that is connected to the partially assembled structure with a shorter

loop is chosen.

We have used Rh as a simple metric to determine the nativeness of the as-

sembled structures. While assessing nativeness in b sheets may also require

a measure of hydrogen bonding, a-helical packings are simpler. We simply

measure their hydrophobic cores, using the radius of gyration of hydrophobic

residues, Rh. An alternative measure previously proposed is simply the radius

of gyration, Rg (Fleming et al., 2006; Narang et al., 2005). We compare Rh to Rg

here, to assess their discrimination power. Figure 4 shows the running average

and running minimum of Ca rmsd plotted against the number of top-ranked

structures for a two-helix bundle protein (PDB ID: 1RPO). It is clear that Rh

is a better discriminator for these helical packings than Rg for selecting

near-native conformations. A related recent study (Lin et al., 2007) found

that including hydrophobic potential of mean force in the AMBER force field

can significantly improve the predictive power of the energy function.
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