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Abstract

We present a fast and efficient spectral method for computing the eigenvalues and eigenfunctions for a one-dimensional
piecewise smooth potential, as arises in the case of epitaxially grown semiconductor heterostructures. Many physical devices
such as quantum well infrared photodetectors and quantum cascade lasers rely upon transitions between bound and quasi-bound or
continuum states; consequently it is imperative to determine the resonant spectrum as well as the bound states. Instead of trying to
approximate radiation boundary conditions, our method uses a singular mapping combined with deforming the coordinate system
to a contour in the complex plane to construct semi-infinite elements of perfectly matched layers. We show that the PML elements
need not be based on a smooth contour to absorb outward-propagating waves and that the resonant eigenvalues can be computed to
machine precision. A fast means of computing inner products and expectations of quantum mechanical operators with quadrature
accuracy in the spectral domain is also introduced.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

With modern advances in epitaxial growth technology, it has become possible to fabricate a wide range of
semiconductor devices such as quantum well infrared photodetectors, semiconductor lasers, and resonant tunneling
diodes. These devices are all examples of heterostructures. Semiconductor heterostructures consist of many planar
layers of materials with differing electrical properties. The layer widths in such devices are on the order of nanometers
and consequently the behavior of electrons in these structures is described by quantum mechanics.

Two typical uses of heterostructures in optoelectronic devices, e.g. in photodetectors or photoemitters, involve
transitions of electrons between bound and continuum states. In photodetectors, photons promote electrons from
bound states to the continuum, whereas in photoemitters, photons are produced by electrons relaxing from the
continuum (see Fig. 1) into bound states [1]. The interaction between electrons and photons in such devices, is
modeled using time-dependent perturbation theory with Fermi’s Golden Rule [2]. This approach reduces the quantum
electrodynamics description of the process to the study of the Schrédinger equation for a single electron in a potential
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Fig. 1. Left: Electrons in bound states can be excited to the continuum by an incident photon. Right: Electrons in the continuum can relax to bound
states by emitting a photon.

well. Since the layers are thin compared to the lateral dimensions of the structure, the problem may be treated using the
one-dimensional Schrodinger equation in the direction normal to the planes, with a piecewise smooth potential. In this
approximation, the important quantities to compute are the eigenvalues and eigenfunctions for the time-independent
problem. One must typically compute many eigenfunctions and inner products to model change in electron energy
states due to photoabsorption or emission. For these cases, the continuum states are not square-integrable and must
be weighted by the spectral density function. Frequently in the literature, the spectral density function used is for the
free particle approximation, when it actually depends on the complex spectrum of the Schrodinger operator [3].
As a rule, the bound eigenfunctions and their energies are the easiest to compute. Computation of the spectral
density can be challenging, both as regards size and convergence. The four basic approaches are: constructing
approximate radiation conditions [4,5], shooting methods [6,7], introducing a complex “optical” potential [8], and
complex coordinate scaling [9—12]. One of the techniques that has been used to arrive at relevant properties of the
spectral density involves computation of eigenstates of the Schrodinger operator with complex energies, the so-
called resonance spectrum [13]. The corresponding resonant eigenfunctions exhibit exponential growth at infinity.
Thus, determining the optoelectronic properties of heterostructures requires the solution of two kinds of discrete
eigenproblems: the standard, bound state problem with square-integrable eigenfunctions and the resonant problem
with unbounded eigenfunctions. The spectral element method presented here provides a fast-converging sparse matrix
approximation to the Schrodinger eigenproblem. It affords a simple way to compute inner products in quadrature and
with the addition of semi-infinite absorbing layers, it is a trivial matter to resolve the resonant spectrum as well.

Spectral methods have been most popular in the field of computational fluid dynamics [14], although they are
especially well suited to quantum mechanical eigenvalue problems. Even so, the literature for spectral methods
in quantum mechanics is relatively limited. More commonly, finite difference [4] schemes or shooting methods
such as the transfer matrix approach [6,7] have been employed in computing eigenvalues and eigenfunctions for
quantum mechanical potentials. Spectral methods have been employed to compute eigenfunctions for atomic [15]
and oscillator [16] potentials with great success. Here we introduce a spectral element approach based on Lanczos’s
tau method [17] with the Legendre basis for solving the one-dimensional time-independent Schrodinger equation
(TISE) with arbitrary piecewise smooth potentials in unbounded domains. This approach allows for a numerically
robust and fast computation of the eigenvalues and eigenvectors of the Hamiltonian operator for potentials with
an arbitrary number of discontinuities typified by epitaxially grown quantum semiconductor devices. The spectral
method offers a substantial advantage over shooting methods in that it is possible to simultaneously compute as many
eigenfunctions and eigenvalues as desired. While this is also true for finite difference schemes, we shall see that for
a given tolerable error, the spectral method requires matrices which are usually orders of magnitude smaller than the
corresponding finite difference matrices. Since the energy band profile of an epitaxially grown structure is piecewise
smooth, spectral element methods guarantee exponential convergence of the solution [19], whereas finite difference
methods will converge only algebraically.

The method of discretization on elements of finite length is the Legendre tau method. This approach is preferred
over collocation and Galerkin approximations for three reasons: the flexibility in imposing boundary conditions, ease
of treating variable coefficients, and the availability of integration preconditioners [20,21] which gives rise to a quasi-
banded eigenvalue problem. In semiconductor heterostructures, the potential profile is typically well approximated
by a low order polynomial or rational function wherever it is continuous. For this situation, the eigenvalue problem
will be sparser than for a collocation or Galerkin discretization. This becomes important for modeling structures with
many different layers such as superlattices and vertical cavity surface emitting lasers, as the sparse eigenvalue problem
can be more rapidly solved with the numerical library ARPACK [22].
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Our multi-domain approach combined with singular mapping allows one to treat the asymptotic regions exactly as
any other elements. By deforming the coordinates to a contour in the complex plane, we can find a trajectory along
which the resonant eigenfunctions decay and have a convergent expansion which allows the efficient computation of
the resonant spectrum.

In Section 2, the basic Legendre tau formulation is introduced for the one-dimensional Schrodinger equation
with a smooth potential. Section 3 generalizes the approach to the case where the potential has discontinuities by
decomposing the domain with spectral elements. Section 4 deals with the Schrodinger problem on the whole line as
well as the resolution of resonant states through complex scaling. Finally, a method for computing scattering states
and inner products is described.

2. Formulation

The TISE in one dimension is

‘7&%&*”’”}‘”(”:”“)' M

Scaling out the physical constants leads to the standard form and we get the Sturm-Liouville problem:

d d A _0 _ mo _ZmOV A—szE )
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(x)
The transformation x = 2";_“;[’ maps a domain [a, b] onto the unit interval [—1, 1]. The Schrédinger eigenproblem
is then solved numerically using Lanczos’s tau method [17] which is described in detail below. Let N be the order of
truncation so that on the unit interval the Legendre—Gauss—Lobatto (LGL) nodes are

o | (= x) Py () =00 <k <N} 3)

The known functions p(x) and ¢(x) are sampled at the LGL nodes and are expanded in terms of Legendre
polynomials [19]:

N
gy () =) 4, P; (). €5
j=0

The values that g(x) takes at the LGL nodes are stored in a column vector q. The vectors of nodal values and
expansion coefficients are related by the Legendre Vandermonde matrix qy = Vq, whose elements are V;; = P;(x;).
The functions p(x), g(x) and w(x) have convolution matrix representations [20] of the form

N
Q=>iP; ©)
=0

where the P; are computed from the Legendre recurrence relation [23] (j + DP;j41 = (2j + DXP; — jP;_; where
Py = I and P; = X are the identity and x-convolution matrices. The entries of X are obtained from the Legendre
recurrence [20]. Writing the EVP as a matrix equation,

{—(b;;a)zD[PD]—i-Q}ﬁ:kﬁ (6)
where the differentiation operator has discretized as the D matrix. It is often desirable to convert to integration-
preconditioned form [21], which improves the convergence, but more importantly renders the generalized
eigenproblem more sparse, which is of particular value when using a sparse eigenvalue solver such as ARPACK [22].
Two important identities are DX — XD = I and Bj;jD = Ij;; where Byj; is the integration matrix and is the
pseudoinverse of D. We use the notation A, for the matrix A with the first n rows set to zero. To convert to integrator
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Fig. 2. Left: Convergence of the first eigenvalue of —u”" = Au with u(£1) = 0 using three-, five-, and seven-point centered differences versus

integration-preconditioned Legendre tau and Legendre collocation as a function of matrix size (grid points or polynomials). Right: Convergence of
the third eigenvalue as a function of nonzero matrix elements.

form, the second derivative must be brought to the left of P; to do this, the necessary identity is PD = DP — P’. The
prime notation indicates

N
P => P, p=Dp.
j=0

(M

The integration B2} matrix is then applied twice and letting

Lp) =

2
(b — a)z [P[Z] + B[z]P/] + B[z]Q (8)

we obtain the generalized eigenvalue problem (GEVP), Lz = AB[Zz]ﬁ. Now we must impose the two tau conditions
since the DE is second order. This is accomplished by inserting Dirichlet operators for the endpoints into the first
two rows of L. These operators are described in the next section. The GEVP is solved numerically using the QZ
algorithm [18].

To demonstrate the convergence, we show the absolute error versus polynomial truncation for an infinite potential
well on the unit interval. The convergence of the tau, collocation, and finite difference (FD) schemes for the ground
state makes the advantage of spectral methods immediately apparent. Fig. 2 demonstrates the convergence of the
integration-preconditioned tau (IP-tau) method and collocation method with three-, five-, and seven-point FD schemes.
One advantage of FD schemes is that although the matrix may be very large, it generally has banded or quasi-banded
form, and consequently the matrix tends to be sparse. The sparsity of the FD matrices will generally not depend on
the variable coefficients p and g of the discretized BVP. This is not the case with the IP-tau method, as the bandwidth
of the matrices will increase as the variable coefficients increase in polynomial order. For heterostructure problems,
this effect is typically small. With the availability of sparse solvers [22], a fairer comparison of the spectral and FD
schemes is convergence as a function of matrix sparsity. This is demonstrated in the right plot in Fig. 2.

3. Multiple elements

While the spectral method produces optimal results approximating smooth functions, in most practical
heterostructures, the potential is only smooth within a given epitaxial layer with potential discontinuities in the
band edge corresponding to material interfaces. Legendre polynomials will converge to a discontinuous function
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in the Ly sense but not in L, due to the Gibbs phenomenon [19]. Although there exist methods for filtering out
Gibbs phenomena [24] and restoring spectral convergence, heterostructure problems are most efficiently solved using
spectral elements since the discontinuities have known fixed locations. When there are multiple elements, there is a
different discretized Hamiltonian operator for each element. A global solution is obtained by requiring that each local
solution and its derivative equal the next local solution at the interface between elements.

Consider a discontinuous potential well

q : —-1=<x<0
gx)=1q2 : 0=x=<1 )
oo x| >1

letting for example g; = 0 and g = 100. This gives two DEs where the solutions are coupled through boundary
conditions at x = 0:

d2
{—@ + 611,2} ui2(x) = Aup2(x)

(10)
ur(—1) =0, wux(+1)=0
u1(0) = u2(0),  u}(0) = u5(0).
Writing (10) as a matrix eigenproblem gives
Li 26 = AB%0;
§_u; =0, 6 ;up=0 (11
S —48_G =0
avily —av_ty = 0.
The Dirichlet and Neumann operators are row vectors defined as
81 =[Po(xo) Pi(x0) Pa(x0) -+ PyG9)] =1[1 1 1 1 1 1 -]
§_=[Poxy) Pi(xy) Px(xy) -+ PyGy)] =1 -1 1 =1 1 1 -] (12)
vy =[Py(x0) P{(x0) Py(xo) -+ PyGxp)] =10 1 3 6 10 15 .-
v_ = [P(;(xN) P{(xy) Py(xy) --- P,’\,(xN)] = [O 1 -3 6 —10 15 ]

Typically the elements will not be of the same length and the effective masses in the two regions may be different, so
the Neumann operators must be scaled accordingly. Now the equations in (10) can be written as a GEP:

d_ 0

5, | —s_ | [ & .

L | o _ Bh | 0 (fh) (13)
0 | 8+ |\ o By ) e )

—V4 v_ u

0 | Ly

This approach generalizes to any number of elements where matching conditions on the solution and its derivative are
imposed at the interfaces. In general, the left matrix of the pencil (13) will be block tridiagonal and the right matrix
will be block diagonal. It should also be mentioned that although we have chosen the same polynomial truncation for
each element, this is by no means necessary. Typically, one may wish to use a larger truncation with longer elements
or in elements where the wavefunction is expected to oscillate rapidly over space.

4. Unbounded domains

There are several approaches to handling the unbound domain problem. For exponentially decaying functions,
simple domain truncation will typically work. Unfortunately, if the domain is truncated too close to the region of
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interest, it will affect the local solution, whereas if it is truncated too far away, it will require more polynomials to
resolve the overall behavior. For the eigenvalue problem, each bound eigenfunction decays at a different rate, so there
is no best distance at which to truncate the domain. Some authors have avoided this problem by imposing a radiation
condition at the exterior boundary instead of a simple Dirichlet condition. By using the dispersion relation for the
Schrodinger equation, one can write a Robin condition which depends on the eigenvalue. Unfortunately, since the
equation is parabolic, there will be a square-root dependence on energy in the exact boundary operator. Shibata [4]
uses a linear least-squares fit to the group velocity in the boundary condition. That approach is improved somewhat
by using a bi-linear Padé approximant [5] instead; however, the eigenproblem is weakly ill-posed with respect to such
radiation conditions. Due to the square-root singularity, no low order polynomial or rational approximation will give
a good fit over a wide range of energies. Even a bi-cubic Padé approximant can produce eigenvalues with an error as
large as 10% and this is at the expense of tripling the size of the system. Instead, we propose using semi-infinite PML
elements to absorb all outward-propagating waves. This approach is detailed in the next two sections.

4.1. Rational mapping for bound states

Now we consider an approach [25] which maps the semi-infinite intervals (—oo, —R] and [+R, 00) to the
unit interval (see Fig. 3). This is accomplished using a rational map. Let y_ : [—oo,—R] + [—1,1] and
V4 : [+R, +o0] = [—1, 1]. These maps and their inverses are

R +3
ve=22 (22 ) 51, x=REED (14)
XER I F ys
The mapped derivatives are
o Lgerpl, £ 1 )d+ BN (1)
ox 4RETV o0 w2 8R2 ¥ er2VET Y g

One can then construct a three-element scheme similar to (13) where there will be one sub-matrix each for the right
and left asymptotic regions and a sub-matrix for the quantum well element. The matchings of the Dirichlet conditions
and Neumann conditions are exactly as before because the mappings are precisely linear at the points x = +=R. We
then implement this approach and examine the convergence of the first and third eigenvalues of a finite potential
well with depth gop = 100 and width L = 2. The integrator-preconditioned operators for the left (—) and right (4)
asymptotic regions are

_ 1 4 _i_ 3 2 3 2
Li=-———FXFD"+ —BXFD"+ B gl Rz(X:FI) (16)

16R

whereas the operator for the quantum well is simply —I. The left-hand side of the resulting matrix pencil is

§_
84 | —6-
L_
vy | —v_
lL.hs. = —vi | v_ (17)
—I
-84 | 6
8
L,

and the right-hand side is simply block diagonal with three B[zz] blocks. The exact eigenvalues have been computed
using the Newton—Raphson method. Additionally, we have computed X1 3 using domain truncation where an element
of length L = 15 has been placed on either side of the quantum well. Fig. 4 demonstrates that both methods converge;
however, the rational map gives spectral convergence whereas the truncated domain approach provides algebraic
convergence. Both methods are limited to the calculation of bound states, as the Dirichlet conditions imposed by
domain truncation will discretize the continuous spectrum into real bound states and destroy the resonances [13].
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Fig. 3. Complex spectrum for the square finite potential quantum well. The domain is split into two semi-infinite elements and a finite element
with 20 Legendre polynomials per element. On the left, no coordinate rotation is applied and only the bound states are resolved. On the right, the
coordinates are rotated in the exterior elements by % to obtain semi-infinite PML regions and the complex eigenvalues are resolved. Note: The
pseudo-spectrum can be identified by its movement with respect to the scaling parameter 6.
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Fig. 4. Left: Absolute error of the first and third eigenvalues with rational mapping compared to domain truncation. For domain truncation, L = 15.
Right: Absolute error of the first resonance for different coordinate rotations.

The rational mapping does not immediately work for unbound states since it will map a function which oscillates
periodically on an infinite interval to a finite interval, thereby creating a function which has an essential singularity at
a point in the domain. For unbound states we extend the mapping approach.

4.2. Computing resonances with complex coordinate deformations

For open quantum systems, it is possible for the Hamiltonian to have discrete complex eigenvalues embedded in the
continuous spectrum. These resonances give rise to maxima in the spectral density. Typically, the resonant eigenvalues
are denoted as E,, = e, —il},, where I, = hi/t, and 1, is said to be the expected lifetime of the resonant state. These
resonant states determine the spectral density function, or density of states, which appears as the weight for transitions
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between states. For the purely bound case, the spectral density function is

p(E) =) 8(E — En) (18)

where 6(E — E,) is the Dirac distribution. When resonant states are present, the delta distribution is generalized
through the well-known relation

1 1
li - —in8(E — Ey). 19
D E—E, +ic P(E—En> imd( n) (19

Consequently, for the resonant states, I' = 0 and the delta functions will be broadened into Lorentzian functions.

1 I,

S(E—Ep) —> ——"
( W E e+ I

(20)
If the coordinate x is taken along the real axis, the eigenfunctions diverge at large distances with oscillatory
exponential growth. Since the coordinates are not a quantum mechanical observable, the spectrum is not affected
by solving the eigenvalue problem along a different contour in the complex plane. This approach was first employed
in quantum chemistry using coordinate rotation; see [26] and references therein. The standard example is the radial
equation for the Coulomb potential where the r is replaced by re’. Complex coordinate rotation works well if the
potential has a simple analytic continuation in the complex plane. For potentials which are locally complicated but
asymptotically simple, Simon [9] introduced the method of complex exterior scaling, which has the form

if x < Rop

X
Ro+ (¢%)(x — Ry) ifx > Ry. @D

r(x) = {
This method is extremely easy to use since it only requires multiplying the derivative matrix by the complex scalar
e~1% More recently, some authors [10—12] have recommended using a differentiable contour instead, as the point of
non-analyticity in the above contour has been reported to lead to stability and convergence problems. On choosing a
smooth contour such as a hyperbola, the Schrédinger operator can become much more complicated. In our experience,
numerical problems arising from the method of complex exterior scaling are a consequence of using a centered
difference discretization across the point of non-analyticity, Rg. This trouble does not appear if spectral elements are
used, provided that the point Ry occurs at the boundary between elements. If this is the case, spectral convergence is
recovered.

4.3. Scattering states and tunneling

Scattering states belong to the continuous spectrum and for a one-dimensional problem, they can be thought
of as right- or left-propagating waves. Unlike resonances, scattering states are physical solutions, but are not true
eigenfunctions since they do not satisfy two-point boundary conditions. Traditionally, the scattering states and
tunneling probability have been computed using shooting by approximating the potential as piecewise constant [6] or
linear [7]. Here we use the same approach, except that the spectral method is optimal because instead of approximating
the potential as piecewise constant or linear, any piecewise smooth function is allowed.

Here we describe how to compute the right-propagating scattering wavefunction for a single element.
Generalization to multiple elements is similar to the case for the eigenvalue problem discussed previously and this can
be solved rapidly since it is a block-tridiagonal system. Both the solution and its derivative are prescribed as boundary
values at the right endpoint of the domain. This radiation condition arises from the asymptotic plane-wave behavior
of the solution which leads to an initial value problem. Using the scaled functions and parameters as before,

uED =1, WD =ike, kg = /A —qrr. (22)

To compute the Legendre expansion coefficients for the solution, one must solve the integration-preconditioned system

8 1
vy o= | ik (23)
—Ipp; + B, [Q — AT 0
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The approach is similar for left-propagating solutions, except that initial values are imposed at the left endpoint and
ik, is replaced by —ik;. Once the solution vector, @ [2] is computed, the reflection and tunneling probabilities are
calculated from

2

(kd— —v w1 RO, (24)

ROy = (ik/6_ +v)a

5. Numerical inner products

Frequently in quantum mechanics, one is interested in computing inner products such as a transition probability or
the expectation value of an operator. Here we show that when the spectral tau method is used to compute the expansion
coefficients for the eigenfunctions of the Hamiltonian, inner products can be computed rapidly with quadrature
accuracy without requiring a transformation to point space. Now suppose one wishes to compute the inner product

+1
(u|v) =/ u*(x)v(x) dx. (25)
-1
The numerical integration is carried out using
(u | v) =a"M¥v (26)

where M is just the Legendre mass matrix, which is diagonal, with entries m j; = 21% In modeling optoelectronic
devices, photoabsorption and emission are computed by finding the matrix elements of the momentum operator.
Using the Legendre tau discretization, this computation is extremely fast and accurate and can be performed for many
transitions simultaneously. For the momentum operator, the momentum matrix is simply

(s | p|uiy=in0 MDU. (27)

Here U is a set of computed eigenvectors. For a multi-element scheme, the inner products are computed element by
element. Remarkably, no additional error is introduced in numerically computing the momentum matrix elements, as
the Legendre—Gauss—Lobatto quadrature is exact for polynomials of order 2N — 1.

6. Concluding remarks

We have presented a fast and efficient method for solving the TISE for an arbitrary semiconductor heterostructure.
By expanding in terms of orthogonal polynomials, we obtain a matrix representation of the Hamiltonian from
which we may simultaneously compute as many eigenfunctions and eigenvalues as desired. This offers a substantial
advantage over more prevalent shooting methods as we do not need to hunt for eigenvalues because that work
is performed by a matrix eigensolver routine. For all examples, the MATLAB® function eig was used to obtain
eigenvalues and eigenvectors. We have also shown that the spectral method requires much smaller matrices than
the finite difference method to achieve comparable error. Frequently, the spectral matrix size is orders of magnitude
smaller. Integration preconditioning was introduced into the Schrédinger eigenproblem, giving a sparse quasi-banded
structure to the matrices.

The spectral element method was then extended to incorporate unbounded domains through rational mapping. The
mapping demonstrated superior convergence over the more traditional domain truncation approach. We discussed the
phenomena of resonances and the difficulties of computing them. Using a complex coordinate scaling for the end
elements, we showed that one may solve the TISE on a new contour that need not be differentiable. Additionally, the
scattering states and tunneling probability were shown to be easily obtainable by formulating a spectral element initial
value problem. Finally, we demonstrated that one may easily compute inner products and expectations of operators in
the spectral domain using simple matrix vector multiplication.
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