Numerical Integration Scheme for md_serial.f

Evangelos Coutsias?
Department of Mathematics and Statistics

Paul M. Alsing'
Albuquerque High Performance Computing Center
University of New Mexico, Albuquerque, NM 87131

31 Aug 2000

Abstract

In these notes we detail the numerical integration scheme used to
translate and rotate molecules in the 3D molecular dynamics code
md_serial.f. We give details using the example of the H2O molecule
in the liquid state.

1 Introduction

The code md_serial.f numerically integrates Newton’s equations of motion
for the TIP4P model of water [1]. The integration scheme updates both the
translational and rotational motion of the molecules in 3D space. The trans-
lational motion is evolved with a velocity-Verlet scheme which is second order
accurate in At i.e. O(At?). The rotational motion is affected through the
use of quaternions [2]. The numerical update uses a variable order Adams-
Bashforth scheme (up to 4th order) coupled with Newton-Raphson step(s)
to solve the nonlinear quaternion angular velocity equations. The unique
feature of our incorporation of a Newton step is the analytical computation



of the quaternion Jacobian. Below we outline the details of the integration
scheme used to update the equations of motion from time ¢ to ¢ + At.

2 Equations of Motion

2.1 Translations

Newton’s equations of motion for the translational degrees of freedom have
the form
Na
mr; = f; = Z fij (1)
=157
where f,; is the force on molecule ¢ due to molecule j, f; is the total force
on molecule 7 due to all the other molecules and N, is the total number of
atoms. We write this as a first order system

b = % (3)

In our work we follow Rapaport[1] and scale all masses to the mass of the
water molecule which we set to unity, mo + 2myg = 1.

2.2 Rotations

For the rotational motion of the molecules, we must distinguish between two
frames of reference: the space-fized frame which is a fixed inertial reference
frame and the body-fized frame, which is a non-inertial frame affixed to the
body. We will refer to these reference frames as the body frame and the space
frame. Notationally, we will use capital case letters to indicate quantities in
the body frame and lower case letters to indicate the same quantites refered
to the space frame.

In the space-fixed frame the relevant equation of motion is the torque equa-
tion

Ne
’I’;’LZ‘:TiZ Z Tij, (4)
j=1j#i



where m = (my, mg, m3) is the angular momentum of the particle of particle
1, T;7 is the torque on particle 7 due to particle j and 7; = 7; X f, is the the
total torque on particle .

Often the torque equation Eq. (4) is considered in the body frame via trans-
formation between body-refered and space-revered velocities

d dM
am =|— +Q x m, (5)
dt dt

space body

where M = (M, My, Ms) is the angular momentum in the body frame and
Q = (21, Q9,€3) is the instantaneous angular velocity of the rotation in the
body frame. The utility of the body frame is that the principal axes are fixed
in this frame and, choosing these to be the axes of the body-fixed coordinate

system we may write
M =IQ, (6)

where Z = diagonal{[ly, I, I3} is the diagonal matrix (in the body frame)
of the principal moments of inertia {I;}. In the body frame Eq. (4) are the
Euler equations of rigid body motion with a typical component

1101 == T1 + (IQ - Ig) QQ Qg. (7)

Note that in Eq. (7) all quantities are in the body frame including the
torques T which are computed most easily in the space fixed frame, and
must be transformed into the body frame via a time dependent rotation
matrix Q(q(t))

= Q(g(t))T. (8)

The expression for Q(g(t)) (body-to-space rotation) in terms of the quater-
nions ¢ = (go, ¢1,92,93) = (g0, q) [3] (discussed in Section 4.2 below) is given
on page 14 of [2] and in Eq. (36) below.

Instead of using the Euler equations in the body frame, we follow Allen &
Tildesley [4] and use the torque equation Eq. (4) in the space frame, where
the torques are computed most easily. However, we have not bypassed the
problem of transforming quantities between the body and space frames, we
have just hidden it slightly. This is because, in order to compute the torques
T we must orient the molecules in physical space. We do this by applying
Q(q(t)) to a fixed, fiducial orientation of the molecules in the body frame,

T(t)smce = Q(q(t))R(O)body- 9)

3



Note that in order to accomplish this, we need to update the time dependent
rotation matrix Q(g(t¢)) via the equation

1
qg= ti (quaternion multiplication) (10)

where the unbold-face quantities ¢ and Q = (0, ) are quaternions and the
right hand side (rhs) indicates quaternion multiplication (see [2]) and Section
4.2 below.

2.3 Equations of Motion

Here we collect the equations of motion discussed above and used in our
codes

’i"i = 9, (11)
v = fi (12)
’l’i’Li = T, (13)
Q = IT'M,=T'Q 'm,, (14)
) 1

4G = §qz’9i- (15)

where Q71 = 9T (transpose) is the space-to-body rotation matrix.

3 Integration Scheme Implementation

In the following ™ = r(¢,,), etc... where t,, = nAt. The formulas below are
for the temporal update of a single particle; we drop the subscript labeling
the 7th particle.

Step 1. velocity-Verlet update of positions,
At
Pt =t 4 <'u” + f"—2 ) At (16)

Step 2. velocity-Verlet half-update of velocity using the forces computed

at time ¢,

At
"2 = " 4 ' (17)



Step 3. rth order Adams-Bashforth predictor step, to estimate the angular
momentum m* in the space frame at one full time step At. Note
Aty = At/d1(r) where d1(r) and the coefficients a(k, r) are given in Table 1,
r—1
m* = m"+ At Y alk,r)T" "
k=0

= m" 4+ At [a(0,7)T" + a(1, )" + ..+ a(r — 1,7)F([8)

Step 4. Transform the angular momentum from space frame to body
frame m — M using the predicted value m* above and the current values
q" of the quaternions in the space-to-body rotation matrix Q@ ~*(g").
Compute the angular velocity €2 in the body frame

Q=T'Q 'm (19)

Step 5. Forming the pure quaternion Q = (0, 2), advance the quaternion q
in time

1
q= 54 Qq) =: F'(¢)(quaternion multiplication). (20)

We can discretize the above equation implicitly in time using the
Adams-Bashforth corrector scheme as in Step 7 below:

("t — ™) /At = F(¢", ¢",...,¢" V), where F is a nonlinear function
(discussed below). The goal here is to solve this nonlinear equation for
¢"*!. This step is discussed in detail below in Section 4.1.

Step 6. Given ¢"*!, the values of the quaternions at t,.; = t, + At, we
can compute the forces and torques at time ¢,.;. For this computation we
must orient the molecules in the space frame from a static configuration in
the body frame with the time dependent rotation matrix Q(¢"*).

Step 7. rth order Adams-Bashforth corrector step: correct the values of
angular momentum m"*! in the space frame using the newly computed
values of the torques at time ¢,,,, and at previous time values. The
coefficients b(k,r) are given in Table 1,

r—2
m" = m"+ At Y bk, )T
k=—1
= m" + At [b(—1,7) 7" +b(0,7)T"
+b(1,7)T" 4 b(r — 2, 7“)7'”_(’"_2) | (21)

5



Coefficients: rth order Adams-Bashforth predictor-corrector scheme

Order r || d1(r) [ a(0,r) | a(1,r) [ a(2,r) | a(3,r) || b(-1,r) [ b(0,r) | b(1,r) | b(2,1) |
1 1 1 - - - 1 - - -
2 2 3 -1 - - 1 1 - -
3 12 23 16 ) - 3 8 -1 -
4 24 35 -99 37 -9 9 19 ) 1

Table 1: Coefficients for rth order Adams-Bashforth predictor (a coefficients)
-corrector (b coefficents) integration scheme. Note that the sum across the
rows for both the a and b coefficients individually should add up to d1(r).

At this point, we may choose an additional Newton step for ¢, so as to base
it entirely on the updated angular momentum. Currently not done. We
stress that the forces, torques and quaternions are computed by predicting
m*, updating ¢"*! through Newton step from predicted w™*!, at which
point space orientations are computed and forces and torques evaluated.
Then a corrected form of angular momentum, m™*?! is found.

Step 8. Complete the velocity-Verlet update of the velocity using the
forces computed at time ¢, 1,

At
,Un—l—l — vn+1/2 + j_-n—|—17 (22)

4 Newton Implicit Step

4.1 Outline of Method

In this section we solve the nonlinear quaternion equations Eq. (20) for
¢"*! as outlined previously in Step 5. We discretize Eq. (20) using the
Adams-Bashforth corrector as in Step 7 above

¢ = "+ Aty [b(=1,7)F(¢"") + b(0,7) F(q")
+ (1, r)F (g™ + ...+ b(r—2,7)F(¢" "), (23)

6




where F'is a nonlinear function of the ¢’s whos form will be explicitly
formulated below. As stated above, the goal is to solve the above implicit
nonlinear equation for ¢"**. Thus we can rewrite Eq. (23) as

"t — Atib(—1,7)F(¢"T) = ¢"+ At [b(0,7)F(¢") +b(1,7)F(¢") +
e b(r =2, T)F(q"’(rﬂ)) ],

= "+ A S:Q b(k,7)F(¢"™") (24)

Note that the lhs of Eq. (24) contains the terms that depend on future
value ¢"*! while the rhs of Eq. (24) depends on the current and past values
{¢"q" ", .}

The Newton method [5] works by writing

" =q" + ¢, (25)

where ¢* is our current estimate of ¢"*! and ¢ is the correction we add to
g* to get the next iterative improvement to ¢"*!. At the start of the
method we initialize ¢* to ¢". Inserting Eq. (25) into Eq. (24) and
expanding to first order in ¢ yields

D¢y = [Atib(—1,r)DF(q*) —1]¢
= ¢ — Atb(—1,7)F(¢") — ¢" — Aty Z b(k,")F(¢" ")  (26)

k=0

where DF(q*) is the Jacobian matrix of F evaluated at ¢* and D is the
matrix operator in the square brackets. DF'(¢*) will be computed in
Section 4.3 below. We can invert D above by LU decomposition, and solve
for ¢. We then add ¢ to the current value of ¢* to obtain the next estimate
of ¢"™1. If |¢| < € for some preset tolerance € we say the Newton iterations
have converged. Typically, this takes only a few steps, often as few as one.
If the Newton method has not converged, we set ¢* = ¢"!, reevaluate the
DF(q*) and the rhs of eq.26, and resolve for the next correction ¢. Note
that on the rhs of Eq. (26), only the terms ¢* — At1b6(—1,7)F(q*) which
depend on ¢* need to be updated every iteration. The rest of the terms on
the rhs are constant i.e. they are evaluated at {¢", ¢"',...,q" "2}



4.2 Quaternion notation and manipulations

In order to calculate the Jacobian DF'(¢*) in Eq. (26) above, we need to
find the explicit form of F'(g). This, in turn, requires us to convert
equations involving quaternion multiplication into ones involving ordinary
4 x 4 matrix multiplications of 4-vectors. Below, we follow the notes of [2],
an lay out the necessary ingredients for calculating the Jacobian in the next
section.

We define a quaternion ¢ as a 4-vector ¢ = (qo, q1, 42, 93) = (o, @) with the
obvious addition law and the fundamental multipication law given by

a = (ao,a), b= (bo,b)
a+b = (ag+by,a+b)
ab = (apby —a-b,apb+ bya + a x b) (27)

We also define the conjugate quaternion ¢¢, the norm of a quaternion N(q)
and the inverse quaternion ¢~! by

¢ = (g0,—q), (ab)" =ba" (28)
N = ¢+4q-q (29)
¢ (9,—9)
T N T N (30)

An important class of quaternion are the pure quaternions given by

Qo ={q¢le=(0,q)}. (31)

Pure quaternions can be considered as ordinary 3-vectors ¢ = (¢1, ¢2, 3)
which have been promoted to 4-vectors. Note for pure quaternions
a,b € Qp, Eq. (27) and Eq. (28) yields

a=(0,a), b=1(0,b)
ab = (—a-b,axb) (32)
a“ = (0,—a)=-a (33)

The utility of quaternions is that they can affect rotations without the
singularities of say, the Euler angles rotation matrices. For the 3-vector 7’



obtained by a rotation of the vector r via the orthogonal rotation matrix Q
we have

r' = (0,7), r=(0,7)
r'o= qrg, (34)
0,7) = (q,q) (0,7) (9, —q)
(0, Q(q) - 7). (35)

The rotation matrix @ is given by

B+aE—6—6G  2(@ae — wgs) 2(q195 + Q092)
Q(Q) = 2(‘11612 + QOQ3) qg - (J% + CI% - q§ 2(Q2Q3 - QOCh) . (36)
2(¢195 — 902) 20pep+en) E-F-¢E+4¢

Since Q is orthogonal we have o'= QT, where QT is ©Q with the signs of
the off-diagonal elements reversed.

For our purposes we are interested in writing quaternion multiplications in
terms of ordinary 4 x 4 matrix multiplication acting on a 4-vector. For any
two quaternions a and g we define the 4 X 4 matrices A;, and A as the
action of a on ¢ via

aqg = Ap-gq, a operates on ¢ from the left (37)
ga = Ag-q, a operates on ¢ from the right (38)

Recall that matrix multiplication (the rhs of the above) always acts from
the left on a 4-vector ¢ = (qo, g1, ¢2,g3)T (i.e. ¢ as a column vector). In

Eq. (37) the quaternion multiplication a ¢ has a acting from the left on ¢
translating into the 4 x 4 matrix Ay, acting on ¢ as a column 4-vector. In
Eq. (38) the quaternion multiplication ¢a has a acting from the right on ¢
translating into the 4 x 4 matrix Ar acting on ¢ as a column 4-vector. For
a = (ag, a1, ag, az) the matrices Ay, and Ag are given by

ay —a; —a9 —asg ay —ap —a9 —asg
air Qo asg  —a2 a G —az G2
Ap = . Ap = . (39)
a9 —asg Qo aq (5} as Qo —a
as a2 —a41 Qo az —az a1 Qo

An extremely important rule to remember when performing these
operations is all quaternion operations must be completed first, before
ordinary 4 X 4 matriz multiplications can be carried out.



The equation of main concern for us is Eq. (20) in Step 5. Using the above
rules we can write this as

1
S —Q
q 2q

1
where the rotation generator matrix (g is given by

0 —Q —Qp —Qs
a0 9 —o
Qe=10q, 0, 0 o (41)

Q3 Q =0 0

Note that we need to distinguish between 3 types of angular velocity
Omegas; (1) the 3-vector Q = (24,09, 23), (2) the pure quaternion
Q= (0,9) and (3) the rotation generator matrix Q5 given by Eq. (41)
above.

4.3 Calculating the Jacobian

We are now in a position to determine the form of the function F' in

Eq. (30) and to compute its Jacobian DF, which are both needed for the
Newton-Raphson computation of ¢"*! in Step 5 in Section 4.1. First, to
determine F' we use Eq. (40) written in the form

Q = I, (¢"mq) (42)
i = 300= (T @ ma)}k = F (o (43)

In the above we have defined the (pseudo-)inverse of the moment of inertia
matrix in the body frame as the 4 x 4 matrix (hence the subscript 4),

0 0 0 O
L o5t 0 o0
0 0 0 I

The parentheses () in Eq. (42) and Eq. (43) separate the quaternion
multiplication (¢°m ¢) from the matrix multiplication by Z; .

10



To compute the Jacobian DF (with respect to g only; m is kept fixed
throughout this calculation) we consider the first order variation of F. We
drop the fraction 1/2 and consider the variation A(g€2). Our goal is to
write this as some 4 x 4 matrix acting on the column 4-vector Ag. We have

AgQ) = AgQ+qAQ (quaternion multiplication)
= QrAq+ QrAL, (matrix multiplication) (45)

In Eq. (45) we have defined the 4 x 4 matrix @)1 formed from ¢ (see

Eq. (39)) via ¢ AQ — QpAQ, where we have quaternion multiplication on
the lhs of the — and matrix multiplication on the rhs. Note that the first
term in Eq. (45) is in the form we desire, i.e. matrix multiplication of the
column 4-vector Ag. Consider the second term in Eq. (45), in particular
AQ. From Eq. (43) we have

AQ = A[Z;'(¢°mq)]
= I, '[¢°mAq+ A¢°mg]

= I;'lg"mAg — Ag® {m°q}]

= I '[¢*mAg — Ag{g"m}]

= I;'[{(¢°m) Aq} — {(¢°m) Aq}] (46)
where in the third line of Eq. (46) we have used the fact the m is pure so
that m = —m®. In the fourth line we used the rightmost equality in

Eq. (28), namely (ab)¢ = b%a® with a — ¢¢ and b — m. In the fifth line we
use this rule again, but now with ¢ — (¢m) and b — Aq. We now observe
that the last line in Eq. (46) involves the difference of a quaternion and its
conjugate. From the leftmost equality of Eq. (28) we have for an arbitrary
quaternion p, p — p® = 2(0, p). Using this fact, the last line of Eq. (46) can
be written simply as

AQ = 2771 {(¢" m) Ad}. (47)

The reason for this is as follows. From the form of Z; ' in Eq. (44), i.e. the
zeros in the Oth row and column, we see that when Z; ' acts on an arbitary
quaternion p we obtain

Z, ' (po, p) = (0,7 'p) (48)

where Z7! = diag(I7 ', I, !, I;") is the usual 3 x 3 inverse of the moment of
inertia matrix in the body frame. Let us identify p = {(¢°m) Aq} in

11



Eq. (46). We can then write the last line of Eq. (46) as

AQ = szl[(pm p) - (va _p)]a
= I,'[(0, 2p)],
= 2(0,I""-p),
= 27, '(po, P), (49)
where in the last line we have used Eq. (48). This final result of Eq. (49) is
Eq. (47).
The importance of Eq. (47) is that we have Aq isolated on the far rhs of the

expression. We can now turn the quaternion multiplication of ¢“m on Agq
into matrix multiplication to obtain

AQ=2T;1- Q5 - My - Ag (50)

where M, is the left-matrix formed from m = (0,m). Substituting Eq. (50)
into Eq. (45) yields the expression for the Jacobian

1 1
DF(q)- Aq=A(¢Q) = 5[ +2QL - I, - Qu- Mu] - Ag. (51)
Finally the operator D in Eq. (26) is given explicitly by the expression
D = [At;b(—1,7)DF(q*) — 1]
= Atob(—1,7)[Qr+2QL T, - Q% - My] — 1. (52)

where Aty = At;/2. At each stage of the Newton step, the ), and Qg
matrices in the square brackets in Eq. (52) are evaluated at ¢*.

Then, eq.(26) becomes:

{Atab(—1,7) [Qn(07) + 2Qu(¢) T Q5 (¢) ML) — 1} ¢ = ¢"= Atyb(—1,7) F(q")

or

D¢ =Ri(q") + Ro

where
Ri(q") :=q* — At10(—1,7)F(q")
and L
Ro=—q" — Aty Z b(k,r)F(¢" ")
k=0

so that R, is updated at each iteration while R, is fixed.

12



5 The TIP4P model

The previous discussion applies to an arbitrary molecular calculation for
which the moments of inertia and mutual interactions are specified. We
give here the specifications for the TIP4P model of a water molecule that
we are using, together with the calculation of pair-interaction energy, forces
and torques.

5.1 Model specifications

The Lennard-Jones potential is given by (with r} the usual spatial
coordinate of the center of mass of the i-th molecule with respect to an
arbitrary origin O fixed in space):

vy =1e{(3)"- (7))

with corresponding force on particle ¢ due to particle j given by

12 6 r—
p=ntho(2) - (o))
g Tij Tij Tij

where r; ; = |r; — r;| (magnitude of vector pointing from j to 7). Now € has
units of energy=force x L and ¢ has units of length. Thus ¢/o has units of
force. Also, torque 7 :=r' x f’ has units of energy.
We therefore measure:

all distances in units of 0 r=1'/0

all energies in units of eV — V/e

all forces in units of ¢/o:  f(r') — f(r)

all torques in units of e: T=rxf sorxf=r

Thus sigma and epsilon never appear explicitly in our formulations. From

Rapaport [1], p. 207 mo = 16mpg and in reduced units we have the mass of
the water molecule as my,0 = mo + 2my = 1. The unit of time is fixed by
setting E = 1/2mv? and writing this as € & mo?/t?, i.e. t = y/mo?/e. Thus

dimensionless time is given by t = ¢'/,/mo?/e. For water Rapaport [1] uses

€ = 0.155 kcal/mole = 1.08'* erg/molecule
o = 3.154 Angstroms
unit of time = 1.667'%s

13



In the body frame the water molecule is oriented so that the center of
mass CM is located at the origin, the Oxygen nucleus O lies along the
negative Z-axis at the point Rp = aez, and the two Hydrogen nuclei, HY
and H® lie on the YZ-plane, at locations Ry = dey + yez and

Ry = —dey + vey respectively. The TIP4P model represents the
electrical properties of the H,O molecule by placing a negative charge of
—2q at the point R, = fez and a positive charge of +q at each of the
hydrogen nuclei. The dimensionless distances are a = —0.0206, 5 = 0.0274,
v =0.165 and § = 0.240. Here q is the electron charge. In the
dimensionless units employed here we have ¢*/¢y = 183.5. The canonical
arrangement in the body frame is shown in Fig. 1.

(-.165,.24,0) (.165,24,0)
H2@), 4q :

N

/!

% Lone pair 1

Figure 1. The molecule in the body frame

Also, the principal moments of inertia are:
Iy =.0034 , I,=.0064 , I3 =1:+1% .
The ellipsoids of inertia and kinetic energy are shown in Fig. 2.

14



H2
Y 085 ';lu
E l” ".l Ml | .m

Figure 2. The ellipsoids of inertia and kinetic energy

Using eq.(9), at each instant, all body coordinates are converted to space
coordinates, so that

r, =1+ Qi(t)R, ,

where the index v ranges over the locations O, cn, H") and H®. Thus, we
use r,, . to denote the vector from location y on the j-th molecule to
location v on the i-th molecule. Then, the total potential between i-th and
j-th molecules is given by

o 12 o 6
s = ) ()|
T0,,0; T0;,0;

1
— 4q2
rcni,cnj
2 1 1 1 1
+ 2 + + +
TC""’HJ(I) Tc"i’HJ@ THZ-(I),cnj TH,-(2),cnj

- q2[ 1 1 1 1 ]
T @) T 4@ T2 ) T L@ 4@
B H Y H H H H® H

Here and in the sequel an expression of the form ®;; will denote the
computation of some function ® (force f, potential energy V', torque )
induced on the molecule i due to the molecule j.

15



5.2 Binary interactions: energy and force calculation

The calculation of the mutual forces among the N particles in the system
requires the evaluation of (N — 1)? pair interactions. In this calculation
care must be taken to count each pair-interaction only once. We introduce,
following the convention introduced in the previous section, the force f
on the site u of molecule i due to the site v on molecule j. Since in this
model the pairwise potentials are all binary and central there holds the
relationship:

isVj

f

BiVj — _ij i

The algorithm for the pairwise force f,; ,, computes all interactions for each
(i,7) such that 1 <7 < N —1 while i + 1 < j < N (taking advantage of the
relationship 5.2). Since there are 4 sites on each molecule, (the center for
the vanderWaals interaction at O;, the center of negative charge cn; and the
two hydrogen nuclei Hi(l) and Hi(Z)), there are a total of 10 interactions
among sites (1 vanderWaals and 9 point charge interactions). These
pairwise forces are then accumulated, by summing over all interactiond for
a given site. The efficient calculation of torques (see next section) requires
the computation of the total force on site y of molecule i due to all other
molecules, given by the sum:

fui = Z Z fui,Vj

i#i v
while the total force on molecule i is found by evaluating one further sum:

£;=>f,,i=1,...,N.
"

5.3 Torque calculation

For the torque calculation we need to evaluate expressions:
= Zrm x £, .
1

The simple, planar geometry of the molecule can be used to advantage
here. If we recall that the Y and Z axes in the body frame of the i-th

16



molecule are given by the second and third columns of the rotation matrix,
Qs and Qs ;, we have

T, = I‘oi X fOi + rcni X fcni =+ rHi(l) X in(l) —+ rH;(2) X in(2)

= aQs; X fo, + BQs; X fen, + (7Q3,i + 6Q2;) X foo + (7Qs; — 0Q24) X fe

= Q3,i X C\ffOi + 5fcni + ’Y(le(l) + in(2)) + 692,1' X (in(l) — in(g))

The conventions used in calculating the forces and torques are shown in
Fig. 3.

(-.165,.24,0) (.165,.24,0)
) &)

&=
Lone pair 1

Figure 3. Force calculation conventions

References

[f] alsing@ahpcc.unm.edu

[f] vageli@math.unm.edu

17



[1] Rappaport, D.C.; The Art of Molecular Dynamics Simulation
Cambridge Univ. Press, New York, Chapter 8, pp. 191-221, 1995.

[2] E. A. Coutsias and L. Romero, The Quaternions with applications to
Rigid Body Dynamics, notes from Dynamical Systems Seminar, UNM
Math. Dept. and Center for Advanced Study, Jan. 1999.

[3] In our codes we use the Rapaport [1] notation
q = (q1,92,93,94) = (g, q4). Although all formulas are easily translated
via qy <> qu, it is often too easy to make coding mistakes when trying
to transcribe formulas from one notation to the other. In these notes,
we adhere to the notation ¢ = (qo, ¢1, g2, g3) = (o, g) to agree with the
notation in [2].

[4] Allen, M.P., & Tildesley, D.J., Computer Simulation of Liquids ,
Oxford Science Publ., New York, pp. 84-90, 1987.

[6] W. H. Press, S.A. Teukolsky, W.T. Vetterling, and B.R. Flannery,
Numerical Recipes in Fortran, Section 9.6, Newton-Raphson Method
for Nonlinear Systems of Equations, Cambridge Univ. Press, (1992).

18



