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1 IntroductionThe dynamical generation of vorticity through boundarylayer interactions near material walls is a fundamentalproblem in both scienti�c and applied 
uid dynamics.Although many of the problems of practical interest athigh Reynolds numbers require a full three-dimensional de-scription, there are important cases with moderately highReynolds number in the range 100-10,000 in which a twodimensional assumption is justi�ed. Experiments on com-plex boundary layer dynamics in which two-dimensionalityof the 
ow has been emphasized have been conducted instrati�ed 
uids [1, 2], rotating 
uids [3] and in 
ows inwhich special care was taken in initially generating a two-dimensional disturbance [4, 5].In this paper, we describe a spectral tau method for thesolution of the incompressible Navier-Stokes equations inbounded geometries. Special attention is given to avoidingthe serious accuracy degradation recently demonstrated [6]in high resolution polynomial approximations of high or-der spatial derivatives. The simplest geometry includingrigid boundaries is the periodic channel, which will be usedthroughout. We note, however, that the method is not re-stricted to this geometry. We have implemented similaralgorithms for the solution of 
ows in an annular geome-try [3, 7], and coordinate transformations based on rationalfunctions may also be applied [8].This paper is organized as follows: In Sec. 2, the ba-sic dynamical equations are introduced. We chose to solvethe incompressible Navier-Stokes equations in the vorti-city-stream function (!{ ) formulation. Compared to theprimitive variable approach, the !{ formulation reducesthe number of momentum equations from two to one, iteliminates the pressure from the calculations and the in-compressibility condition, r � u = 0, is satis�ed by con-struction. Section 2.1 contains equations for the viscousevolution of the total energy and enstrophy in the 
ow.These equations are used as accuracy checks of the code.The vorticity-stream function formulation of 
ows withno-slip boundary conditions leads to an overdeterminedPoisson equation relating vorticity to the stream function.1



2 ICOSAHOM 95In Sec. 3, the solution of this problem via the integralsolvability constraint method by Coutsias and Lynov [9]is brie
y discussed, and the accuracy of this method is in-vestigated by solution of the Orr-Sommerfeld eigenvalueproblem.Section 4 describes the implementation of the spectralscheme for the dynamical equations. Special attentionis given to the use of the invertible integration operatormethod [8] in the accurate and e�cient solution of thePoisson and Helmholtz equations. A fully discrete stabil-ity analysis of the scheme concludes this section.The pressure does not enter the Navier-Stokes equationsin the vorticity-stream function formulation, but an accu-rate determination of the pressure �eld is signi�cant for theinterpretation of the results. We have developed a methodfor determining the pressure �eld in a post-processing stepbased on the instantaneous vorticity �eld. This method,described in Sec. 5, avoids the traditional di�culties ofoverdeterminancy of the pressure Poisson problem and pre-serves the high accuracy obtained in the calculation of thevorticity.Section 6 contains two numerical tests of the code. The�rst test is an unstable Poiseuille 
ow with the same pa-rameters as in the Orr-Sommerfeld eigenvalue analysis, andthe second test is a vortex sheet roll-up between movingno-slip walls at high Reynolds number used for investiga-tion of the overall error of the scheme. Finally, Section 7includes some concluding remarks.2 Basic equationsFor two-dimensional, incompressible 
ows it is convenientto express the Navier-Stokes equations in the vorticity-stream function formulation;@!@t + [!;  ] = �r2!(1) r2 = �! ;where the scalar vorticity �eld, !, is given asr� u = !ẑ ;and the stream function ,  , is related to the velocity �eldby u = (u; v) = r � ẑ = �@ @y ; �@ @x� :The Jacobian, [!;  ], is de�ned as

[!;  ] = @!@x @ @y � @ @x @!@y :We note that the incompressibility condition is a priorisatis�ed in the vorticity-stream function formulation.The normalized dynamical equations are solved in a pe-riodic channel, D, with no-slip walls located at y = �1 anda periodic x-dependence of length Lx. At the impermeablewalls we assume no-slip boundary conditionsu(x; y = �1; t) = U�(t)x̂ ;where U�(t) signi�es the time dependent horizontal veloc-ity of the walls. In the vorticity-stream function formula-tion, these conditions becomeu(x; y = �1; t) = @ @y ����y=�1 = U�(t) ;(2)ensuring that the 
uid follows the moving wall, and (x; y = �1; t) = F�(t) ;(3)where F�(t) are arbitrary functions of time.As may be observed from these boundary conditions,we end up with a problem of an overdetermined Poissonequation in Eq.(1) unless proper constraints are imposedon the vorticity. In Sec. 3 we will return to this problemand devise a method for deriving the appropriate no-slipsolvability constraints for the vorticity.2.1 Energy and enstrophy evolutionIn the absence of viscosity, the Navier-Stokes equations, orrather the Euler equations, possess an in�nite number ofconserved quantitiesE = 12 ZD juj2 dS ; CG[!] = ZDG(!) dS ;where D is a planar domain, simply or multiply connected,with the velocity tangential at the boundaries. Here E isthe energy, and CG[!] are Casimir functionals with G(!)being an arbitrary measure of the vorticity. For the specialcase G(!) = !2 we write
 = ZD !2 dS;with 
 being the enstrophy.For �nite viscosity the temporal evolution of the energymay be derived for the present problem, yielding



An accurate tau method for incompressible 
ows 3dEdt = ��
+ �Lx(U�(t)!� � U+(t)!+)��p ZD  dS ;(4)where !� is the vorticity along the moving walls at y = �1,respectively, and �p signi�es the pressure drop along oneperiodicity length of the channel. Using Eq.(1), we �ndthe temporal evolution of the enstrophyd
dt = � Z@D(r!2) � n̂ ds� 2� ZD(r!)2 dS ;(5)where n̂ is an outward pointing normal to the boundary,@D. We note that all terms originating from the interiorof the 
ow are always negative. Thus, the only way thetotal energy and enstrophy may increase is by productionat the boundary. These expressions are used as accuracytests for the numerical approximations. In these tests, wecompare the time derivatives obtained directly from thecode, based on time centered di�erences of E and 
 overthree consecutive time steps, with the instantaneous valuesdetermined by evaluation of the right hand sides of (4) and(5) at the center time step.3 Vorticity boundary conditionsAs discussed in Sec. 2, enforcing no-slip boundary condi-tions on the Navier-Stokes equations in the !- formula-tion leads to an overdetermined Poisson equation in Eq.(1).This problem has been addressed by several authors (see,e.g., [10, 11, 12]). Here, we will apply the method by Cout-sias and Lynov [9].The two unknown �elds are expanded in Fourier series� !(x; y) (x; y) � = 1Xj=�1� !̂j(y) ̂j(y) � exp�i 2�Lx j x� ;where subscript j indicates the Fourier mode-number.In this framework, the Neumann boundary conditions,Eq.(2), become@ ̂j(y)@y �����y=�1 = � U�(t) j = 00 j 6= 0 :(6)For the Dirichlet boundary conditions, Eq.(3), we obtain ̂j(�1) = � F�(t) j = 00 j 6= 0 :(7)In the following, we will split the treatment into two casesfor j 6= 0 and j = 0.

Introducing the Fourier expansion into the Poisson equa-tion (1) for j 6= 0 yieldsd2 ̂jdy2 � �2j  ̂j = �!̂j ;(8)where we have de�ned the coe�cient�j = 2�jLx :In Eq.(8) we have changed the y-derivative to an ordi-nary derivative, since time does not enter explicitly in thepresent discussion.Introducing the Dirichlet Green's function, Gj(yjs), wemay formally write the solution,  ̂j(y), to Eq.(8) subjectto the Dirichlet boundary conditions, Eq.(7), as ̂j(y) = Z 1�1 !̂j(s)Gj(yjs) ds :(9)The Neumann condition, Eq.(6), now requiresd ̂jdy ������1 = Z 1�1 !̂j(s) dGj(yjs)dy �����1 ds = 0 :(10)This provides necessary as well as su�cient conditionsfor solvability of Eq.(8) under the constraints posed byEqs.(6)-(7) for j 6= 0 (note that uniqueness follows fromthe uniqueness of the Dirichlet problem).Determination of the Dirichlet Green's function,Gj(yjs), may be accomplished by numerical approxima-tions. Although not a complicated task, the results caneasily be contaminated by signi�cant numerical errors, notto mention the derivative of the approximation. Theseproblems are further discussed in [9] and [13]. Here, wesimply note that it is possible do derive solvability con-straints e�ciently and with spectral accuracy. Expandingthe Fourier coe�cients, !̂j and  ̂j , in Chebyshev series� !̂ĵ j � = 1Xi=0 � !̂ij ̂ij �Ti(y) ;(11)where Ti(y) = cos(i cos�1 y) is the i-th order Chebyshevpolynomial of the �rst kind, the solvability constraints onthe vorticity expansion coe�cients take the form8j 6= 0 : 1Xi=0 B�ij !̂ij = 0 :(12)The coe�cients B�ij are independent of time and viscosity,so they may be precalculated prior to a numerical simula-tion. In fact, the coe�cients only depend on the geometryof the problem, i.e. Lx, besides the actual truncation of



4 ICOSAHOM 95the expansions. Thus, one may, once and for all, calculateB�ij with a very high truncation. These coe�cients maythen be applied to all problems with lower resolution for agiven Lx.For the Fourier mode j = 0, we note that the vorticitymust maintain a circulation, C, consistent with the veloc-ity of the walls, whereC � I@D u � dl = Lx(U�(t)� U+(t))= ZD ! dS = Lx Z 1�1 !̂0(y; t) dy :(13)Given !̂0(y; t), Galilean invariance of the Navier-Stokesequations allows both U+(t) and U�(t) to be shifted byproperly choosing a frame of reference. In the following,the choice U�(t) = �U+(t) is made.By integrating the x-component of the moment equationin primitive variables along the walls at y = �1 one obtainsthe constraints@!̂0@y ����y=�1 = � 1�Lx �p� 1� ddtU�(t) ;(14)where �p is the total pressure di�erence along a lengthof period of the channel. The two conditions in (14) areconsistent with the circulation requirement (13), so anytwo of the three conditions can be used as constraints. Wewill return to this issue in Sec. 4.2.2.When solving the Poisson equation for  during the si-mulation, Dirichlet boundary conditions are used for j 6= 0and Neumann conditions for j = 0. This leaves us thefreedom to choose  ̂00 = 0 :3.1 Solution of the Orr-Sommerfeld equa-tionIn order to study the accuracy of the solvability constraintsand ensure the consistency of the scheme, we now addressthe Orr-Sommerfeld equation in the vorticity-stream func-tion formulation. Assuming we may express (x; y; t) =  (y) + ~ (x; y; t)and !(x; y; t) = !(y) + ~!(x; y; t) ;we obtain, by linearizing Eq.(1) around the solutionu0 = @ @y = U(y) and v0 = �@ @x = 0 ;

the equations @~!@t + U 00 @ ~ @x + U @~!@x = �r2~! ;(15) r2 ~ = �~! :(16)As boundary conditions we obtain~ (x;�1; t) = @ ~ @y �����y=�1 = 0 ;(17)assuming that we consider only stream-wise perturbationswith non-zero wave-numbers. Following the standard pro-cedure for temporal stability analysis we express the per-turbations as~! = e�t[!c(y) cos(�kx) + !s(y) sin(�kx)] ;~ = e�t[ c(y) cos(�kx) +  s(y) sin(�kx)] ;where k 2 N+ is the wave number along the channel, � =2�=Lx is the aspect ratio and � = �r + i �i 2 C expressesthe complex frequency of the initial perturbation. For �r >0 we have temporal instability, and for �r < 0 we havetemporal stability of the initial perturbation.Introducing these expressions into Eqs.(15)-(17) givesthe Orr-Sommerfeld eigenvalue problem. By this proce-dure the eigenvalue problem is expressed as two coupledsecond order di�erential equations. This form is di�er-ent from the single fourth order equation obtained in theclassical pure stream function formulation (see, e.g., [14]).Our formulation o�ers the opportunity to compare resultsobtained either by applying the four boundary conditionson the stream function, as in the usual approach, or theDirichlet boundary conditions on the stream function andthe solvability constraints on the vorticity.In order to solve the Orr-Sommerfeld equation, we followthe pioneering work by Orszag [14]. Thus, we approximateall unknowns by truncated Chebyshev series as0BBBB@  c(y) s(y)!c(y)!s(y)U(y) 1CCCCA � MXi=00BBBB@  ̂cî si!̂ci!̂sîUi 1CCCCATi(y) :Due to the even-odd symmetry of the Orr-Sommerfeldequation it is su�cient to consider the even Chebyshevmodes, only. However, for simplicity we have have chosennot to take advantage of this property.Introducing these expansions yields the following set ofequations for each Chebyshev mode (i);



An accurate tau method for incompressible 
ows 5�� �D2i !̂c � (�k)2!̂ci �+ �kCi(Û ; !̂s)+�kCi(D2Û ;  ̂s) = ��!̂ci�� �D2i !̂s � (�k)2!̂si �� �kCi(Û ; !̂c)��kCi(D2Û ;  ̂c) = ��!̂si(18) D2i  ̂c � (�k)2 ̂ci + !̂ci = 0D2i  ̂s � (�k)2 ̂si + !̂si = 0 ;where k is the stream-wise mode-number. For convenience,we have introduced the symbolsD2i f̂ = 1ci MXp=i+2p+i even p(p2 � i2)f̂p ;for the second order spectral di�erential operator,D2, [16],and Ci(f̂ ; ĝ) = 12ci MXm=�M f̂jm�ijĝjmjcjm�ijcjmj ;for the convolution operator [14]. Here f̂ = (f̂0; : : : ; f̂M )T ,ĝ = (ĝ0; : : : ; ĝM )T , and c0 = 2, ci = 0 for i < 0 and ci = 1for i > 0.In this context, the four boundary conditions (17) onthe stream function becomeMXi=0(�1)i ̂ci = 0 ; MXi=0(�1)i ̂si = 0 ;(19) MXi=0(�1)i+1i2 ̂ci = 0 ; MXi=0(�1)i+1i2 ̂si = 0 ;(20)Alternatively, we may enforce the vorticity constraints (7)and (12) as MXi=0(�1)i ̂ci = 0 ; MXi=0(�1)i ̂si = 0 ;(21) MXi=0 B�ik!̂ci = 0 ; MXi=0 B�ik!̂si = 0 :(22)De�ning the eigenvector of the problem asx = (!̂c0; : : : ; !̂cM ; !̂s0; : : : ; !̂sM ;  ̂c0; : : : ;  ̂cM ;  ̂s0; : : : ;  ̂sM )T ;Eq.(18) may be recast as a generalized eigenvalue problem;Ax = �Bx ;

where A and B are 4 � 4 general block-matrices of orderM + 1, given asA = 2664 Q4 Q2 0 Q3�Q2 Q4 �Q3 0I 0 Q1 00 I 0 Q1 3775 ;B = 2664 �I 0 0 00 �I 0 00 0 0 00 0 0 0 3775 :(23)Here I is the identity matrix and the block matrices arede�ned by row, i, asQ1i = D2i � (�k)2Ii Q3i = �kCi(D2i Û ; �)Q2i = �kCi(Û ; �) Q4i = ��Q1i :The boundary conditions are applied as tau-conditions, in-cluded in the two bottom rows of the submatrices.Applying the boundary conditions on the stream func-tion only is done by putting the Neumann conditions,Eq.(20), in the bottom rows of submatrix A13 and A24.The Dirichlet conditions, Eq.(19), are applied in the sub-matrices A33 and A44.Alternatively, enforcing the vorticity constraints is per-formed by applying the Dirichlet boundary conditionson the stream function, Eq.(21), in the submatrices A33and A44, and the solvability constraints on the vorticity,Eq.(22), in the submatrices A11 and A22.The actual eigenvalue calculations are performed usingthe QZ-algorithm [15] on a SUN Sparc 2 in double precisionand a 
oating point accuracy of 10�16. To select actualeigenvalues from spurious ones, the calculation is done forincreasing number of modes in the expansions, and onlyeigenvalues which vary by a small amount, O(10�4), whenincreasing M are considered as being adequately resolved.For comparing the two di�erent types of boundary con-ditions, we consider the standard test case of a Poiseuille
ow with a velocity pro�le given asU(y) = U0(1� y2) :(24)We set the channel length, Lx = 2� (i.e. � = 1:0), k = 1,U0 = 1:0 and Re = 1=� = 10000. For this case, it is wellknown that only one linearly unstable mode exists. Orszag[14] found the frequency and the growth rate of this modeto be �i = 0:23752649 �r = 0:00373967 ;to within one part in 108. He approached the problem in away similar to what is done here, but kept the fourth-orderoperator in the stream function formulation.



6 ICOSAHOM 95M �i �r "28 0.2375725805 0.0037438270 2E-0332 0.2375578883 0.0037060035 4E-0536 0.2375268225 0.0037340707 4E-0540 0.2375259476 0.0037391415 5E-0644 0.2375264073 0.0037396184 6E-0748 0.2375264823 0.0037396728 9E-0852 0.2375264879 0.0037396698 6E-0956 0.2375264888 0.0037396708 1E-0960 0.2375264888 0.0037396706 1E-1064 0.2375264888 0.0037396706 3E-1168 0.2375264888 0.0037396706 5E-1072 0.2375264888 0.0037396706 5E-1076 0.2375264888 0.0037396706 1E-1180 0.2375264859 0.0037396727 4E-0984 0.2375264882 0.0037396710 3E-0988 0.2375264905 0.0037396694 3E-09Table 1: Frequency, �i, and growth rate, �r, for the Orr-Sommerfeld problem at Re = 1=� = 10000, k = 1; � = 1:0and U0 = 1:0 As boundary conditions are used the fourconditions on the stream function. " = j�M � �M�2j2shows the convergence of the eigenvalue corresponding tothe �rst unstable mode for increasing M .In Table 1 we show the result of the eigenvalue calcula-tion with the boundary conditions given by Eqs.(19)-(20).We observe excellent agreement with the results reportedin [14], but also note that for M > 76 the solution is con-taminated by round-o� errors.In Table 2 we show the results of stability calculationswith the boundary conditions enforced through the vor-ticity constraints. Again we observe excellent agreementwith previously published results. This clearly proves theconsistency between the two types of boundary conditions.It seems that enforcing the solvability constraints leads toslightly more accurate results for large number of modes(M). This may be due to better conditioned matrices whenthe solvability constraints are applied as opposed to theNeumann type boundary conditions, thereby reducing thee�ects of round-o� errors. We are able to calculate theunstable eigenvalues with an accuracy of O(10�10).4 ImplementationHaving developed consistent solvability constraints for thevorticity, we proceed now by presenting a full implemen-tation of a spectral scheme for solving Navier-Stokes equa-tions in a two-dimensional channel. Additionally, we willaddress the issues of solution of implicit problems, the de-termination of the initial vorticity distribution, and thequestion of full discrete stability of the proposed scheme.

M �i �r "28 0.2375702251 0.0037455732 2E-0332 0.2375586386 0.0037057074 4E-0536 0.2375267517 0.0037342618 4E-0540 0.2375259549 0.0037390797 5E-0644 0.2375264096 0.0037396332 7E-0748 0.2375264811 0.0037396693 8E-0852 0.2375264882 0.0037396706 7E-0956 0.2375264888 0.0037396706 5E-1060 0.2375264888 0.0037396706 2E-1164 0.2375264888 0.0037396706 3E-1168 0.2375264888 0.0037396706 7E-1172 0.2375264888 0.0037396706 4E-1176 0.2375264888 0.0037396706 2E-1080 0.2375264889 0.0037396706 3E-1084 0.2375264888 0.0037396705 1E-1088 0.2375264887 0.0037396706 1E-10Table 2: Frequency, �i, and growth rate, �r, for the Orr-Sommerfeld problem at Re = 1=� = 10000, k = 1; � = 1:0and U0 = 1:0. As boundary conditions are used the Dirich-let boundary conditions for the stream function and thesolvability constraint for the vorticity. " = j�M � �M�2j2shows the convergence of the eigenvalue corresponding tothe �rst unstable mode for increasing M .4.1 General descriptionWe approximate the two unknown variables, ! and  , bya truncated Fourier-Chebyshev expansion, i.e.� !(x; y; t) (x; y; t) � �MXi=0 N=2Xj=0�� !̂cij ̂cij � cos�2�jLx x�+(25) � !̂sij ̂sij � sin�2�jLx x��Ti(y) ;where !̂cij ; !̂sij ;  ̂cij and  ̂sij are the expansion coe�cients.In the remaining part we will use, !̂ij and  ̂ij as symbolsfor both cosine and sine-modes, as their treatment will beequivalent. Also, we will use !̂ and  ̂ as symbols for thefull matrices of unknown expansion coe�cients.This recasts Eq.(1) into@!̂@t + [!̂;  ̂] = �r2!̂r2 ̂ = �!̂ ;with boundary conditions given by Eqs. (6)-(7). The Ja-cobian, [�; �], becomes a two-dimensional convolution in



An accurate tau method for incompressible 
ows 7mode space. However, in order to avoid the signi�cantcomputational load required to calculate the convolution,the derivatives are calculated in mode space, whereas theconvolution is done in point-space, where it amounts toa pointwise multiplication. Immediately after transform-ing the Jacobian back to mode-space, it is fully de-aliasedusing the 2/3-rule.For time integration of the spectral equation, the pres-ence of a nonlinear convective term and a linear di�usiveterm o�ers itself to semi-implicit time integration. Wehave chosen to apply a fully corrected 3rd order predictor-corrector Adams-Bashforth scheme for the convective termand a backward Euler for the di�usive term. This leads toa full scheme for advancing one time step, (n), asr2 ̂n = �!̂n(P): �1� ��tr2� !̂� =!̂n + �t12 �23Fn � 16Fn�1 + 5Fn�2�r2 ̂� = �!̂�(26)(C): �1� ��tr2� !̂n+1 =!̂n + �t12 �5F � + 8Fn � Fn�1� ;where P and C denote the predictor and the corrector step,respectively, �t is the time step andFn = �[!̂n;  ̂n] :In the next two sections we will address the problemsof how to solve the two implicit equations and discuss thestability of the full discrete scheme.4.2 Solution of the implicit problemsAs seen in the previous section, our scheme requires a Pois-son and Helmholtz equation to be solved twice in everytime step. This puts signi�cant requirements on the e�-ciency and accuracy of the methods applied to solve theseimplicit equations.For the present scheme we have applied some recent re-sults by Coutsias et al. [8] by which both problems may bereduced to operations on well-conditioned tri-diagonal ma-trices. In order to understand the idea behind the schemes,we leave for a moment the full two-dimensional problemsand consider the simple one-dimensional Poisson equation@2u@x2 = f ; u(�1) = 0 ;(27)where u = u(x); f = f(x) and x 2 [�1; 1].

In constructing an approximate solution to this problem,using a Chebyshev tau method, we look for solutions toLM û = f̂ ;where � u(x)f(x) � � MXi=0 � ûîfi �Ti(x) ;such that û = (û0; : : : ; ûM )T 2 QM0 � spanfTigMi=0 andf̂ = (f̂0; : : : ; f̂M )T 2 QM�20 . In this case LM = D2,which is the second order di�erentiation matrix as givenin e.g. [16]. This operator has, in the absence of boundaryconditions, a strict upper triangular form. Applying theboundary conditions as tau conditions in the lowest tworows results in a non-singular matrix problem. Solution ofthis problem by direct methods, e.g. Gaussian elimination,requires O(M3) operations. Additionally, for increasingresolution, M , this problem becomes ill-conditioned and,thus, introduces signi�cant numerical errors, which mayinhibit dynamical studies where the Poisson equation issolved repeatedly.For these reasons, we approach the problem di�erently.Following [8], we assume that QM0 = N (D2)�QM2 whereN (D2) signi�es the null-space of the operator, D2. Theapproximate solution to Eq.(27) may be obtained asû = ûp + 1Xk=0�k êk ;(28)where ûp 2 QM2 is a particular solution, êk = (êk0 ; : : : ; êkM )Tand spanfêkg1k=0 = N (D2) spans the null-space of the op-erator, i.e. it is a basis for the homogeneous solutions.We will later return to the determination of the two con-stants, �k. By identifying these di�erent spaces, we obtainthat the operator, ~D2 : QM2 ! QM�20 , is a 1-1 mappingin the restricted domain with a uniquely de�ned inverse,~D�2 : QM�20 ! QM2 . We may conveniently term the in-verse operator an integration operator. As shown by Cout-sias et al. [8], this operator can be determined from the re-cursion relations of the orthogonal polynomial family. Forthe Chebyshev basis, it has the elements for 8i 2 [2; : : : ;M ]~D�2ij = 8>><>>: ci�24i(i�1) j = i� 2� 12(i2�1) j = i14i(i+1) j = i+ 20 otherwise ;(29)i.e. it is simply a tri-diagonal matrix, with the �rst tworows being zeros. Having identi�ed the integration opera-tor allows us to derive an algorithm for solving the Poissonequation in O(M) operations.



8 ICOSAHOM 95The particular solution in Eq.(28), may be foundstraightforwardly as ûp = ~D�2f̂ :(30)In order to obtain the full solution, we need to identify thenull-space of the operator. We assume that êk = �̂k + q̂k,where êk 2 QM0 , q̂k 2 QM2 and �̂k signi�es a vector ofzeroes with the k'th position being one. This is simply theChebyshev transform of Tk. Since êk is a null-vector to theoperator, ~D2, we obtain8k 2 [0; 1] : D2êk = D2(�̂k + q̂k) = 0 ;or ~D2q̂k = 0 ;since D2�̂k � 0. In this simple example, this equation onlyhas the trivial solution. Thus, we obtain the null-space ofthe operator as ê0 = �̂0 ; ê1 = �̂1 :The complete solution may them be written, using Eq.(28),as û = ûp + �0�̂0 + �1�̂1 :Introducing the boundary conditions, we obtain the twounknown constants as the solution to a 2� 2 system;x = �1 : MXi=0 ûpi (�1)i + �0 � �1 = 0x = 1 : MXi=0 ûpi + �0 + �1 = 0 :As we have seen, once the particular solution is found inO(M) operations using Eq.(30), the remaining part of thesolution amounts to solving a 2�2 system. As shown in [8],the conditioning of the integration operator is very good,leading us to the conclusion that the full problem may besolved with very high accuracy even at high resolution.4.2.1 Poisson's equationFollowing the approach outlined in the previous part of thepaper, we will now derive an algorithm, based on the inte-gration operators, for solving the two-dimensional Poissonequation in a channel geometry.Expanding the unknowns in a truncated Fourier(N)-Chebyshev(M) series yields the following problem for 8j 2[0; : : : ; N=2]

�D2 � (j�)2I�  ̂j = �!̂j ;(31)where � = 2�=Lx is the aspect ratio, I is the identitymatrix and  ̂j = ( ̂0j ; : : : ;  ̂Mj)T , !̂j = (!̂0j ; : : : ; !̂Mj)T .Thus, all the Fourier modes decouple, and we have to solveN independent equations of the form given by Eq.(31).The boundary conditions were derived in Sec. 3 asj = 0 :  ̂00 = 0 ; MXi=0(�1)i+1i2 ̂i0 = U�(t)(32) j 6= 0 : MXi=0(�1)i ̂ij = 0 :We now introduce �̂j = ~D2 ̂pj , �̂j 2 QM�20 , leading to anapproach for obtaining the particular solution ashI� (j�)2 ~D�2i �̂j = �!̂j(33)  ̂pj = ~D�2�̂j :We note that all matrices are tri-diagonal matrices suchthat the problem may be solved e�ciently by forward sub-stitution. The only remaining part is to identify the null-space of the operator. Similar to what was done for theone-dimensional Poisson problem, we assume, êkj = �̂k+q̂kj ,such that�D2 � (j�)2I� êkj = �D2 � (j�)2I� (�̂k + q̂kj ) = 0 )(34) h ~D2 � (j�)2Ii q̂kj = (j�)2�̂k :Assuming �̂kj = ~D2q̂kj one obtains the schemehI� (j�)2 ~D�2i �̂kj = (j�)2�̂k(35) q̂kj = ~D�2�̂kjêkj = �̂k + q̂kj :Contrary to the simpler case of the one-dimensional Pois-son equation, we cannot obtain the null-vector by analyt-ical means. However, one should note that the null-vectormay be calculated in a preprocessing stage. Since all op-erations only involve well-conditioned tri-diagonal bandedmatrices the eigenvectors spanning the null-space may befound with high accuracy.Introduction of the boundary conditions is done by ap-plying Eq.(28). The treatment may conveniently be split



An accurate tau method for incompressible 
ows 9into zero and non-zero Fourier modes.Fourier mode j 6= 0:Following Eq.(32) we obtainMXi=0  ̂pij + �0 MXi=0 ê0ij + �1 MXi=0 êkij = 0(36) MXi=0(�1)i ̂pij + �0 MXi=0(�1)iê0ij + �1 MXi=0(�1)iêkij = 0 :Note that summation over the null-vectors may be done aspreprocessing. Thus, calculating the two constants �0 and�1 is an O(M) operation.Fourier mode j = 0:In this case the problem becomes equivalent to the examplein the beginning of this section. Thus, q̂k0 � 0. Since wechoose  ̂00 = 0 we obtain the solution ̂0 =  ̂p0 + �1�1 :As a consequence we are only able to specify the value of ̂0(y) at one boundary which is in full accordance withwhat we found in Sec. 3. As the problem is overdeter-mined, we will give two di�erent ways, which, however,are fully consistent.Using the Neumann conditions leads to�1 = U�(t)� MXi=0(�1)i+1i2  ̂i0 :(37)Alternatively, one may apply the two constraints simulta-neously by adding the two expressions to obtain a condi-tion restricting the odd coe�cients�1 = 12 �U+(t)� U�(t)�� M�1Xi=1i odd i2 ̂pi0 :(38)As it has been shown, it is possible to construct the schemesuch that all operations are performed using banded ma-trices. This reduces the total operation count to O(MN)as compared to the direct method being an O(M3N) oper-ation. In addition to this, all matrices are well-conditionedand the boundary conditions do not introduce any addi-tional round-o� error into the problem as is often the casewhen using traditional tau methods.In the absence of the boundary conditions, the tri-diagonal form of the Poisson equation presented here is

equivalent to that proposed in [16]. However, we wishto emphasize that this particular tri-diagonal form hereis shown to be a consequence of the three term recurrencerelation for the Chebyshev polynomial and not of the spe-ci�c geometry. Similar banded operators may be obtainedfor all polynomials obeying such a recurrence relation.4.2.2 Helmholtz' equationThe scheme for the Helmholtz equation is very similarto that of the Poisson equation. Consider the Helmholtzequation approximated by a Fourier-Chebyshev series��D2 � (1 + �(j�)2)I� !̂j = f̂j ;(39)for 8j 2 [0; : : : ; N=2], where � = ��t. As for the Pois-son problem, all Fourier modes decouple. The solvabilityconstraints for the vorticity were derived in Sec. 3 asj = 0 : MXi=0(�1)i+1i2!̂i0 = � 1�Lx �p� 1� ddtU�(t) or� C2Lx = U�(t)� U+(t) = MXi=0i even !̂i0i2 � 1(40)j 6= 0 : MXi=0 B�ij !̂ij = 0 :As for the Poisson problem, direct solution leads to anill-conditioned problem for large resolution. We introduce�̂j = ~D2!̂pj leading to an approach for obtaining the par-ticular solution ash�I� (1 + �(j�)2) ~D�2i �̂j = f̂j(41) !̂pj = ~D�2�̂j :We note in particular that all matrices are tri-diagonalmatrices such that the problem may be solved e�cientlyby forward substitution. The only remaining part is toidentify the null-space of the operator. We de�ne the null-vector as êkj = �̂k + q̂kj , to obtain��D2 � (1 + �(j�)2)I� q̂kj = (1 + �(j�)2)�̂k :(42)Assuming �̂kj = ~D2q̂kj one obtains the scheme



10 ICOSAHOM 95h�I � (1 + �(j�)2) ~D�2i �̂kj = (1 + �(j�)2)�̂k(43) q̂kj = ~D�2�̂kjêkj = �̂k + q̂kj :Similar to the two-dimensional Poisson equation, we haveto �nd the null-vector by solving the problem numerically.Again, this may be done in a preprocessing stage of thecomputation, with high accuracy. We �nd that due to theappearance of the parameter, �, which may vary signi�-cantly for di�erent computations, it is necessary to equili-brate the matrices prior to solving the problem by forwardsubstitution. This is done in order to obtain maximumaccuracy.As for the treatment of the Poisson equation, we splitthe treatment of the solvability constraints into zero andnon-zero Fourier modes.Fourier mode j 6= 0:Following the approach given by Eq.(28), the solvabilityconstraints given in Eq.(40) for 8j 2 [1; : : : ; N=2] are en-forced asMXi=0 B+ij !̂pij + �0 MXi=0 B+ij ê0ij + �1 MXi=0 B+ij êkij = 0MXi=0 B�ij !̂pij + �0 MXi=0 B�ij ê0ij + �1 MXi=0 B�ij êkij = 0 :(44)Note again that summation over the null-vectors may beperformed as preprocessing.Fourier mode j = 0:As stated in Eq.(40), we have three consistent conditionsfrom which we may choose two. We have chosen the con-ditions MXi=0i even !̂pi0i2 � 1 + �0 MXi=0i even ê0i0i2 � 1+�1 MXi=0i even ê1i0i2 � 1 = � C2Lx(45) M�1Xi=1i odd i2!̂pi0 + �0 M�1Xi=1i odd i2ê0i0 + �1 M�1Xi=1i odd i2ê1i0 =

1�Lx �p� 12� ddt �U+(t) + U�(t)� ;(46)Equation (45) restricts the even modes by ensuring con-sistency between the circulation and the vorticity, andEq.(46), obtained by adding the two Neumann conditions,restrains the odd modes of the vorticity. Again, we endup with a 2� 2 system which has to be solved in order toobtain the remaining constants.4.3 Initial vorticity distributionThe code is initialized by choosing a vorticity distributionat t = 0. This initial vorticity distribution must, natu-rally, sastisfy the no-slip boundary conditions (12). If thecoe�cients !ij(t = 0) and B�ij are considered as the com-ponents ofM dimensional vectors for �xed j 6= 0, then theinitial guess for e!ij(t = 0) has to be projected onto a planecontaining the vectors B+ij and B�ij . Since B+ij and B�ij aregenerally not mutually orthogonal, the two vectorsbeij = B+ij +B�ij2 and boij = B+ij �B�ij2(47)are introduced. These two vectors are orthogonal to eachother [9].The projection of the initial guess for e!ij(t = 0) onto thetrue no-slip !ij(t = 0) is then performed by Gram-Schmidtorthogonalization!ij = e!ij � e!ij � beijkbeijk2 beij � e!ij � boijkboijk2 boij :(48)In order for this projection scheme to give reasonable re-sults, the initial guess e!ij should not be to far from sat-isfying the no-slip constraints (12). This can typically beachieved by choosing a zero-order distribution which givesrise to a 
ow parallel to the walls and adding an arbitrary,but not too large pertubation.4.4 Asymptotic stability of the discreteschemeAs we aim at performing long time integration of theNavier-Stokes equations using the scheme described in theprevious sections, we need to address the issue of temporalstability of the scheme.The emphasis will be on asymptotic stability of thescheme (t!1; �t �xed) and not on the Lax-Richtmeyerstability (�t ! 0; t �xed). The concept of asymptoticstability is normally considered to be of main interest forpractical purposes [16].



An accurate tau method for incompressible 
ows 11In order to perform the stability analysis, we linearizeEq.(1) around a linear velocity pro�leu = (y; 0) :This recasts Eq.(1) into the linear form@!@t + y @!@x = �r2! ;subject to the solvability constraints on the vorticity asderived in Sec. 3. Since the linear shear is unconditionallystable in the continuous case, this has to be true also forthe fully discrete approximation.We continue by expanding in a truncated Fourier-Chebyshev series to obtain two equations for the cosineand sine modes, respectively, for each Fourier mode j 2[0; : : : ; N=2],@!̂cj@t + (j�)Y!̂sj = � �D2 � (j�)2I� !̂cj(49) @!̂sj@t � (j�)Y!̂cj = � �D2 � (j�)2I� !̂sj :(50)Here !̂cj = (!̂c0j ; : : : ; !̂cMj)T and likewise for !̂sj , � = 2�=Lxis the aspect ratio of the channel, D2 is the 2nd orderChebyshev spectral di�erential operator and the convolu-tion operator, Y, is given as [16]Yij =8<: cj 12 j = i� 112 j = i+ 10 otherwise ;for 8i 2 [0; : : : ;M ], where c0 = 2, cj = 1 for j > 0 andcj = 0 for j < 0.For the semi-implicit predictor-corrector scheme givenin Eq.(26), we obtain the following discrete approximationL̂j !̂�j = !̂nj � �t12 (j�)Ŷ �23!̂nj � 16!̂n�1j + 5!̂n�2j �(51) L̂j !̂n+1j = !̂nj � �t12 (j�)Ŷ �5!̂�j + 8!̂nj � !̂n�1j � ;(52)where we have introducedŶ = Y � 0 I�I 0 � , and L̂j = Lj � I 00 I � ;being the 2(M+1)�2(M+1) convolution operator and thediscrete Helmholtz operator, Lj = I � ��t[D2 � (j�)2I],respectively, for each Fourier mode. We assume that thesolvability constraints for the vorticity, as given by Eq.(40)

are introduced in Lj as tau conditions. We have also in-troduced the 2(M + 1) vector !̂nj = [(!̂cj ; !̂sj )n]T .The operations necessary to perform the predictor step,Eq.(51), may now conveniently be written in the formAx� = Pxn ;wherex� = (!̂�0 ; !̂n0 ; !̂n�10 ; : : : ; !̂�N=2; !̂nN=2; !̂n�1N=2 )T , andxn = (!̂n0 ; !̂n�10 ; !̂n�20 ; : : : ; !̂nN=2; !̂n�1N=2 ; !̂n�2N=2 )Tare 3(M + 1)(N + 2) long vectors. Both A and P are(N=2+1)� (N=2+ 1) block diagonal matrices where eachsubmatrix has the order 3(M + 1)� 3(M + 1).In a similar manner we may express the correction step,Eq.(52), on matrix form asAxn+1 = Cx� ;Combining these two expressions leads toAxn+1 = Cx� = CA�1Pxn :Assuming xn = ��n we obtain the generalized eigenvalueproblem of O(3(M + 1)(N + 2))Axn = �CA�1Pxn ;by which we may show stability of the fully discrete schemeprovided j�j � 1. The eigenvalue problem may be solvedusing the QZ-algorithm. To limit the size of the ac-tual computation, the eigenvalue problem for each Fouriermode may be treated separately.In Figure 1 we show a typical spectrum obtained forM = N = 24, �t = 0:10, Lx = 2� and Re = 1=� = 100.This clearly con�rms that the total scheme is asymptoti-cally stable and no numerical instabilities are introducedthrough the approximation of the continuous stable shear
ow.We observe that once the viscous boundary layer is re-solved, which happens approximately forM � pRe ;the stability of the explicit part of the time integrationis well characterized by the Courant-Friedrichs-Levy crite-rion CFL = jumaxj�t�xmin � 1 :A detailed discussion on the use of the CFL condition inspectral schemes is given in [17].
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Figure 1: Characteristic eigenvalue spectrum for the fully discrete stability analysis for M = N = 24, Re = 1=� = 100,Lx = 2� and �t = 0:1. Left: The spectrum around the unit circle. Right: Detail of the spectrum close to the unit circle.For the case shown in Fig. 1, the CFL-criterion requires�t � 0:125, which is supported by our results. We observethat as �t increases, eigenvalues from the left half-planemoves towards the unit circle. In Fig. 1 we have used�t = 0:1 and the scheme remains stable, but increasingthe time step slightly implies that eigenvalues cross theunit circle and as a result the scheme becomes unstable.5 Calculation of pressure �eldThe traditional approach of calculating the pressure is bytaking the divergence of the momentum equation and en-forcing the condition of incompressibility leading to thePoisson problem: r2p = r � (�u � ru) :(53)The boundary conditions are found by considering the mo-mentum equation at the boundaries. Assuming 
uid ad-hesion (no-slip) at the walls, the momentum equationut + u � ru = �1�rp+ �r2ugives rpj@D = �U 0(t) + � r2u��@Dwhere U(t) is the wall velocity. This expression for thegradient of p gives rise to both Neumann and Dirichletconditions on p, which leads to too many boundary con-ditions on the pressure. This problem can be overcome

in a number of ways. However, there remains a seriousaccuracy issue. If the Navier-Stokes equations are solvedin primitive variables, second-order derivatives of the ve-locity �eld must be calculated. If the ! �  form is used,then third-order derivatives must be taken since the com-putation of the velocity involves already a computation ofr . Of course things are not necessarily drastically bad,since the stream function is calculated from the vorticity inspectral space by inverting the Laplace operator, and thisprocedure is smoothing. However, the problem of comput-ing third derivatives can still be serious [6].In our alternative approach, we avoid the issues relatedto overdeterminacy by rewriting the momentum equationin the formut + !ẑ� u = �r�p� + 12u2�� �r! � ẑso that, introducing the dynamic pressureP = p+ 12�u2;we obtain 1�rP = �r ( t + �!)� ẑ� !r :Again, at �rst sight, calculating  t involves high deriva-tives since r2 t = �!t = [!;  ]� �r2!:



An accurate tau method for incompressible 
ows 13However, this relation can be written asr2 ( t + �!) = [!;  ]This computes the lumped quantity  t + �! which, afterall, is what appears on the right hand side of the pressuregradient equation. Thus, the need to consider anything but�rst derivatives in the pressure calculation is eliminated.This leads to the following algorithm for the pressurecomputation:� Given a vorticity �eld !� Find the values of the j-th Fourier mode of ! at walls,for j 6= 0:!̂j(y = �1) = !̂�j = MXi=0(�1)i!̂ij ; j 6= 0� Find  by solving the Poisson problems:r2 ̂j = �!̂j ;  ̂j(y = �1) = 0 ; j 6= 0r2 ̂0 = �!̂0 ; d ̂0dy �����y=�1 = U�(t)� Compute the Jacobian [!;  ]� Compute the quantity  t + �!:Solve r2 ( t + �!) = [!;  ]subject to the boundary conditions� ̂j;t + �!̂j����y=�1 = �!̂�j ; j 6= 0@@y � ̂0;t + �!̂0����y=�1 = � �p��Lx� Finally, compute !r � Now consider the dynamic pressure P = p + 12�u2which satis�es:1�rP = �r ( t + �!)� ẑ� !r The right hand side is known, to an accuracy of thesame order as the rest of the quantities involved in thecode.We may compute the dynamic pressure in mode spaceby inverting either the x- or the y-component ofthe gradient. Each computation should produce the

Fourier-Chebyshev expansion of P except for the cor-responding 0-mode (i.e. inverting the x-componentgives no information about the 0-Fourier mode, and,similarly, the y-component will yield no informationabout the 0-Chebyshev mode). Combining both com-putations we recover P . The two expansions thusconstructed should agree on the non-zero modes.The di�erence of these two independent computationsprovides an upper estimate for the accuracy of thescheme.6 Numerical testsIn previous papers [9, 18], the high accuracy of our methodin calculations at moderate Reynolds numbers up to Re �3000 was demonstrated and close agreement with experi-mental results were shown.Here, we will report results obtained by our code forhigher Reynolds number 
ows in order to demonstrate thecapabilities of the method.6.1 Unstable Poiseuille 
owIn the �rst example, we report results from direct simula-tions of a Poiseuille 
ow at Re = 10; 000 and � = 2�=Lx =1:0. These parameters correspond exactly to the eigenso-lutions obtained for the Orr-Sommerfeld equation studiedin Sec. 3.1. As we know the solution of the linearized prob-lem with high accuracy, this procedure may be viewed asa thorough test of the full scheme and interdependenciesof the spatial and temporal resolution.In order to extract the unstable mode, we apply the al-gorithm by Buneman [19] which allows for calculating thefrequency and growth rate of a monochromatic signal. Itshould be noted that this scheme is only second order accu-rate in time. As signal for the diagnostics we use the time-trace of the expansion coe�cient of the second Chebyshevmode and the �rst Fourier mode, i.e. k = 1.In all runs we used a time step, �t, which is well un-der the limit dictated by the semi-implicit time advancingscheme. All runs have been continued until T = 200. Thenumbers are accurate to O(10�7).In Table 3 we study the spatial convergence of thescheme. As found from the linear eigenvalue analysis inSec. 3.1, we con�rm that M = 64 and N = 16 is su�cientto resolve the dynamics of the unstable Poiseuille 
ow. Weobserve that as soon as the dynamics is resolved, we obtainthe eigenvalues with very good accuracy.We have also studied the temporal convergence of thefull scheme. We �nd that the scheme is clearly �rst order



14 ICOSAHOM 95M N �t �i �r64 16 0.01250 0.2375063 0.003716764 32 0.01250 0.2375063 0.003716764 64 0.01250 0.2375063 0.003716764 128 0.01250 0.2375063 0.003716716 16 0.00625 0.2367990 0.021207232 16 0.00625 0.2396010 0.004285864 16 0.00625 0.2375164 0.0037283128 16 0.00625 0.2375164 0.0037282Table 3: Spatial convergence of frequency, �i, and growthrate, �r, for the unstable mode of a Poiseuille 
ow atRe=10,000, k = 1; � = 1:0 and U0 = 1:0. M and N arethe number of Chebyshev and Fourier modes, respectively,and �t designates the used time-step.in time as expected from the backward Euler time step forthe di�usive part of the equation.6.2 Roll up between moving walls at highReynolds numberIn Figure 2 we show the evolution of the vorticity and pres-sure �eld during roll up of a thin shear layer in a periodicchannel with counter moving walls at Reynolds numberRe = 40; 000. The value of Re is based on the channelhalf width and the total velocity di�erence between theupper and lower walls moving with U+ = �1 and U� = 1,respectively. Obviously, this example has mainly theoreti-cal interest, since three-dimensional e�ects will begin to beimportant already at much lower Reynolds numbers. AtT = 0, we have set up an unstable vorticity sheet perturbedin the x-direction by mode number 1. In this example, wehave used 512 Fourier modes and 1024 Chebyshev modes,corresponding to 342� 684 active modes after de-aliasing.The time step, �t, is 10�3.We observe a very high degree of symmetry in the nu-merical solution despite many violent bursts of boundarylayer vorticity. Symmetry of the 
ow is maintained up toT � 35. After this, the code can no longer adequately re-solve the dynamics and breaks down shortly after T = 37.We have performed a similar simulation [20] with addi-tional random noise of amplitude 10�8 added to all thespectral modes at T = 0. This slightly noisy run begins tolose symmetry at T � 20, indicating that round-o� errorsin the present calculation are less than 10�8.The accuracy checks described in Sec. 2.1 for the energyand enstrophy evolution give 5 � 10�4 accuracy for dE=dtand 5 � 10�2 for d
=dt at T = 24. At T = 30, these num-bers are 2 � 10�2 and 10�1, respectively, indicating the lossa adequate resolution near the end of the simulation. We

would like to emphasize that these accuracy tests, and es-pecially the enstrophy evolution test, are very valuable di-agnostic tools, since they provide consistency checks for thecomplex dynamics involved in vorticity production duringboundary layer eruptions.The computation of the pressure gives global errors, asde�ned in the last part of Sec. 5, of O(10�7) up to T � 5,when thin boundary layers near the walls are formed. Theglobal error then grows to O(10�5) which is kept through-out the symmetric evolution, demonstrating the high ac-curacy of the pressure algorithm.7 Concluding remarksIn this paper, we have developed a spectral tau methodfor the solution of the incompressible Navier-Stokes equa-tions in a planar geometry. The emphasis has been onthe periodic channel with no-slip walls, but we have pre-viously employed similar algorithms in annular geometries[3, 7, 18], just as we are presently adapting the scheme toa disk geometry.The emphasis in this work has been on the accurate so-lution of the incompressible Navier-Stokes equations for
ows with strong boundary layer interactions. Such 
owsrequire high spatial resolution, which, in turn, impose se-vere requirements on the development of accurate and e�-cient algorithms. We have implemented several diagnosticaccuracy tests in the code, and in the present paper, wehave reported results demonstrating that high accuracycan be obtained even for 
ows with violent boundary layeractivity.We have previously demonstrated close agreement [3, 7,18] between our numerical results and experiments per-formed at moderate Reynolds numbers, O(1000). In thispaper, we have furthermore demonstrated the ability ofour scheme to perform accurate and direct simulationsof turbulent boundary layer eruptions in planar 
ows atReynolds numbers which are even an order of magnitudehigher.AcknowledgmentsPart of this work was performed while one of the authors(EAC) visited Ris� National Laboratory, Denmark, andanother part was performed while the two other authors(JPL and JSH) visited the University of New Mexico, Al-buquerque, USA. These visits have played an importantrole in the development of the spectral methods employedin this paper and they are gratefully acknowledged. One ofthe authors (JSH) was partially supported by the Danish
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Figure 2: The roll up of a thin shear layer in a periodic channel with counter moving walls at Re = 40; 000. Thecontour plots show vorticity (left) and pressure (right) with full and dashed lines indicating positive and negative levels,respectively.
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