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Abstract

The kinematic geometry of protein backbone structures, constrained by either single

or multiple hydrogen bonds (H-bonds), possibly in a periodic array, is discussed.

These structures include regular secondary structure elements α-helices and β-sheets

but also include other short H-bond stabilized irregular structural elements like

β-turns. The work here shows that the variations observed in such structures have

simple geometrical correlations consistent with constrained motion kinematics. A

new classification of the ideal helices is given, in terms of the parameter α, the angle

at a Cα atom to its two neighboring Cα's along the helix, and shown how it can be

generalized to include nonideal helices. Specifically, we derive an analytical expres-

sion of the backbone dihedrals, (ϕ, ψ ), in terms of the parameter α subject to the con-

straint that the peptide planes are parallel to the helical axis. Helices constructed in

this way exhibit near-vertical alignment of the C = O and N − H units and are the

canonical objects of this study. These expressions are easily modifiable to include

perturbations of parameters relevant to nonplanar peptide units and noncanonical

angles. The addition of a second parameter, ε0, inclination of successive peptide

planes along a helix with respect to the helical axis leads to a generalization of the

previous expression and provides an efficient parametrization of such structures in

terms of coordinates consistent with H-bond parameters. An analogs parametrization

of β-turns, using inverse kinematic methods, is also given. Besides offering a unifying

viewpoint, our results may find useful applications to protein and peptide design.
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1 | INTRODUCTION

A regular helical polygon is a polygonal line in ℝ3 space in which all

segments have equal lengths, make equal angles with each other, and

successive triplets form equal dihedral angles (see Figure 1). By exten-

sion, a helical structure results naturally by considering a chain of

identical units (see the definition for unit-SSE's in Section 2.1) con-

nected in such a way that the successive connections form a regular

helical polygon.1 Helical structures abound in bio-macromolecules

such as proteins, nucleic acids, and other polymers, combining struc-

tural stability with packing efficiency. Corey et al., in their seminal

work on stable polypeptide configurations, deduced the

characteristics of the two regular structural motifs in proteins, α-heli-

ces (see Table 12), and β-sheets.3 In a series of articles, on the stereo-

chemical requirements of the polypeptide chains, Ramachandran

et al.,4 provide a detailed description of all possible helical conforma-

tions. The helical region in the Ramachandran plot shows its precise

extent in (ϕ, ψ ) space.

In this work we discuss aspects of the inverse problem, namely

determining (ϕ, ψ ) pairs consistent with given helical parameters or

other secondary structure descriptors, with focus on the role played

by the intramolecular H-bonds in the secondary structure elements,

regular and irregular, of a protein. While any sterically allowed pair of

backbone dihedrals (ϕ, ψ ) results in a helical structure if repeated
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along an ideal polypeptide chain, it is only a narrow range of these

values that result in biologically relevant helices.4 The stability of

these arrangements depends on their ability to form intramolecular H-

bonds between the successive levels of the helical ladder. Although

mathematical descriptions for a 2-D search over the backbone dihe-

drals (ϕ, ψ ) for compatible values by construction and testing exist,

analytical derivations of the compatible pairs are currently missing. By

using ideas from kinematics, we give analytical expressions for such

pairs that lead to helices with backbone geometries favorable for H-

bonds. Unlike previous works, where an H-bond is the result of a sea-

rch, our approach incorporates H-bond formation implicitly.

One of the earliest pieces of evidence regarding the crucial role

of H-bonds in biomolecules comes from the crystal analysis of cell

macromolecules. Subsequent efforts directed toward the prediction

of stable tertiary protein structures using experimentally derived

interatomic distances and angles led to the suggestion of patterned

H-bond structures, α/γ-helices, the parallel and anti-parallel β-sheet

configurations.5 The two main assumptions under which the con-

structed α-helical structures were shown to exist, in the stable confor-

mations of fibrous proteins and synthetic polypeptide chains, are (1)

the trans-planarity of the amide bond and (2) the stereochemical

requirement for H-bond formation, N� � �O ≈ 2.72 Å, ∡HNO ≤ 30� (see

Figure 2).6,7 The orientations assumed by the functional groups

involved in the intramolecular H-bond formation within the α-helical

structure in these stable conformations were such that the H-bonds

were near parallel to the helical axis. The orientation of the participat-

ing functional groups with respect to the helical axis is an important

geometrical construct in the sense that it is responsible for the H-

bond orientation, parallel to the helical axis or away from it.

A similar approach coupled with the cis–trans orientations of

atoms about the single bonds adjacent to the Cα atoms along the

backbone, resulted in two stable pleated β-sheets type structures.

Among these two configurations, one was disfavored by all residues

except glycine due to side-chain sterics. The favored pleated β-sheet

configuration demonstrated a lateral arrangement of H-bonds in

which the consecutive residue Cα − Cα distance is ≈ 3.34 Å, possibly

due to the distortions in the trans-planarity of the peptide bonds, lat-

eral Cα − Cα distances ≈ 4.75 and 4.85 Å for antiparallel and parallel,

respectively, and ∡HNO ≈ 6� − 10�. The lateral H-bond distance as a

consequence of these metrical properties falls within the range of

those proposed for helical structures, for example, 2.75 Å.8

The construction of the helix and pleated sheet structure, a result

of an exhaustive exploration for H-bond structures within a protein,

may be understood as an optimal arrangement of the planar peptide

units, joined at the Cα atoms, that maximizes the formation of the H-

bonds with prescribed stereochemical properties. This construction

process is pivotal to the determination of protein tertiary structures,

the arrangement of the helices and sheets, for two reasons. First, it

underlies most of the structural parameters which may be used in the

construction of patterned H-bond structures and second, broaches

the study of the conformational flexibility of the polypeptide chains

under the energetically favored trans-planarity of the amide bond

geometry, that is, the Pauling–Corey peptide unit.3

Ramakrishnan et al., recognized that questions related to the con-

formational flexibility of the polypeptide chain are of much more gen-

eral nature than those undertaken earlier since they must describe,

with reason, not only those conformations which are sterically and

F IGURE 1 A schematic representation of a regular helix defined

by a polygonal line in space. The red dots represent the pattern of Cα

atoms. Intrinsic parameters (α, μ, β, γ) required for such a construction
are as labeled. The Equations (5) and (6) define the relation among the
intrinsic parameters assuming the repetitive pattern of Cα atoms

F IGURE 2 H-bond distance-related geometry with fixed

∡HNO = 30�. The blue circle shows the locus of the hydrogen atom
(H) covalently bonded to the nitrogen (N). The gray circle shows the
locus of oxygen (O) atom bonded noncovalently to the hydrogen (H).
The d(N� � �O) = f(d(N − H), d(H� � �O), ∡NHO). The position of the H-
atom causes the d(H� � �O) distance to vary from 1.71 Å, collinear
position ∡NHO = 180� to 1.92 Å, current position ∡NHO

0
≈ 154�

272 HASSAN AND COUTSIAS



energetically feasible, but also provide necessary and sufficient condi-

tions to distinguish them from those that are not. The former objec-

tive depends on the latter. For example, if the necessary conditions

for unfeasible conformations are known they could be used to

describe sterically feasible conformations. If these conformations also

show a close agreement with experimentally derived data, the

requirements for sufficiency and energetic feasibility are automatically

satisfied. This details the general approach followed by Ramakrishnan

et al. for the description of feasible conformations.9,10 These descrip-

tions require parameters that affect the relative orientations of the

peptide planes in the polypeptide chains. The rotatable bonds adja-

cent to the Cα atoms, the ϕ, ψ dihedrals, serve this purpose.

The helical parameters Hp, the unit twist, unit translation and the

direction cosines of the helical axis, expressed as a function of the

dihedral angle parameters, were used to determine the general nature

of the helical conformations. This formulation, Hp = F(ϕ, ψ ) does not

provide a priori bounds on the input dihedrals and was thus coupled

with the distance contact restraints to serve as a guide in the search

for feasible conformations.4 Specifically, the procedure adopted

requires the calculation of the atomic coordinates based on different

discrete combinations of the dihedrals ϕ, ψ . Nonbonded atomic-dis-

tances calculated from the atomic coordinates were in turn evaluated

against a predefined, van der Waals radii dependent, minimum contact

atomic-distance list. Conformations that violate the minimum contact

distance criteria indicate a steric clash and were subsequently dis-

carded. Contact distances that fall within the favorable H-bond for-

ming range determine the relevant dihedral ranges. The resulting

ϕ − ψ conformational map outlines the allowed flexibility, in a helical

formation, of a peptide chain. The associated dihedrals of the final

ensemble specify the feasible, sterically and energetically, range of the

helical parameters Hp.

The polypeptide conformations, generated over the feasible dihe-

dral angle range, were analyzed for two different types of H-bonds,

forward and backward. Forward H-bonds, associate the oxygen of the

first residue to the nitrogen of the latter, while the backward H-bonds,

associate the oxygen of the latter residue to the nitrogen of the first.

The results obtained in the context of the forward and backward H-

bonds are of particular significance since they rule out the presence of

backward H-bond conformations especially the γ-helices, of the kind

Hn� � �On + 4, n ≥ 2, proposed by Pauling et al. The α−helical formation

was also noted as sensitive to the range of the ∡NCαC, and the

allowed perturbation for this angle is ±2� from its canonical value

(∡NCαC ≈ 109.5�). Besides α−helices, 310 and π helices were also

identified (see Table 1).

Irregular secondary structure elements, sections of the loop

regions which allow peptide chains to make abrupt directional

changes, are known connectives of the regular secondary structure

elements in protein structures and form an integral part of cyclic pep-

tides.11 Such units are nonhelical in nature and exhibit a conserved,

but variable, H-bond geometry. Venkatachalam et al. characterized

such peptide conformations, dihedral angle (ϕ, ψ ) based descriptive

approach extended to three linked peptide units at the Cα atom, to

three different types with H-bonds between residues (n, n + 3).12

Amino-acid propensity analysis based on feasible conformations of

the linked peptide units suggest a maximum likelihood of glycine at

the n + 2 residue position (see Section SI.6). The availability of high

resolution protein structures has enabled further classification of pro-

tein turns into 18 types based on residue contacts and H-bonds.13

It is apparent that the descriptive approach complements the ear-

lier construction methodology proposed by Pauling et al. by providing

a detailed observation of the geometrical nature of polypeptide chains

and its helical formation using two linked peptide groups at the Cα

atom. However, both methods use the H-bond criteria as a tool for

either construction or characterization of the polypeptide chain con-

formation and neither attempts an ab-initio investigation of the H-

bond geometry itself. Such an investigation must adhere to a con-

struction method where the H-bond geometry is not a subject for sea-

rch but a consequence of the polypeptide chain conformation. Finding

a more natural devise that allows control over H-bond formation is

one of the main motives of the work undertaken here.

Studies that pertain specifically to the analysis of H-bonds, both

intra, and inter molecular, are forked in two main directions. The first

is concerned with the recognition of H-bonds and statistical analysis

of its associated geometry while the second concerns itself with the

effects of H-bond formation on the molecular geometry of macromol-

ecules, leading to a thorough understanding of its structure–function

relation. Both experimental and theoretical techniques are applied to

these two types of studies wherein the validation process requires

the ability of the theoretical methods to substantiate the experimen-

tally determined qualitative data. Within this setting, an H-bond for-

mation is defined as an attractive force based on the electro-

negativities of the donor-acceptor atoms giving rise to the widely

accepted, although debatable, electrostatic nature of the H-bond in

biomolecules.14,15 There is, however, an associated partial covalent

character to this bond which institutes a directionality, (see Figure 2)

the direction of approach of the proton donor toward the proton

acceptor in relation to the bond(s) of the acceptor. The nature of the

acceptor atoms is responsible for this partial covalent character and

directionality is a consequence of an anisotropic electron density dis-

tribution toward the hydrogen atom.16 Statistics from crystallographic

data on the varied nature of bimolecular H-bonds suggest that the

directional requirement of the acceptor atom, usually the oxygen

atom, is (1) not strong and (2) affected by the polarizability of the

TABLE 1 Types of helices in biological molecules

Helix

type

H-bond

residue

Avg helix

length Observed frequencya

310 (n, n + 3) 3 − 5 res 83%

α (n, n + 4) 10 − 12

res

78.4%

π (n, n + 5) 5 − 8 res 1.8% (this percentage is assumed

to be much higher ≈15%)2

aSecondary structure method DSSP is used here to determine the helix

type content in each protein structure. The values correspond to a

percentage of 161757 RCSB structures.
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electron density, possibly induced by the configuration of the func-

tional group to which it is attached.17 In general, the H-bond direc-

tionality strengthens with a heightened covalent character and is

observed geometrically as its tendency toward a collinear arrange-

ment of the donor, hydrogen, and acceptor atom.

The definition of an H-bond has evolved. It serves as a precursor

to its recognition and is complemented by theoretical studies which

provide a basis for its intrinsic descriptors.18,19 The H-bond definition

highlights two of its main characteristics, strength, and directionality,

where the latter may not necessarily depend on the former.20 Experi-

mental studies clearly distinguish strong and weak H-bonds.21,22 In

contrast, there is no correlation between the strengths of the various

types of weak H-bonds through their exhibited directionalities. Statis-

tical studies which attempt to differentiate between weak H-bonds

and the van der Waals attraction show that even the weakest H-

bonds exhibit a range of directional attributes.23 It is also deceptive to

associate the strength of the H-bond with the distance of approach

since such associations do not take into consideration the nature of

the donor-acceptor atoms,17 although environmental conditions

which affect the bond strength have been considered.24–26 Strength

is associated with the total energetics of the H-bond formation and, it

is well accepted that it has no single energetic contributor.27–29 Quan-

tum mechanical methods based on the molecular orbital theory

approximate the energetic contributions as the sum of electrostatics,

charge-transfer, polarization, exchange-repulsion, and dispersion. The

first three terms are attractive and the last two terms repulsive in

nature. Although theoretical studies target the exact nature of the H-

bond formation, which includes the coupling of the different contrib-

uting factors, they are limited in their applicability to systems with

many degrees of freedom. Ground state molecular geometry predic-

tions based on theoretical studies for biomolecular systems, where

the competing nature of inter and intramolecular H-bonds is signifi-

cant, must also be used with caution. Bias toward the latter may result

in unfeasible collapsed conformations.30,31 In general, there is a dis-

connect between the geometrical descriptors of the H-bond,

referenced in prior discussions, and its strength. Theoretical studies

that attempt to rationalize directionality thus seek to quantify the

energetic difference of the different H-bond contributors as a func-

tion of this characteristic.32–34

An accurate representation of the H-bond geometry is one of

the major bottlenecks in biomolecular simulations of proteins and

nucleic acids employing widely used force fields or their variants.

These force fields, empirically or theoretically parameterized,

treat the noncovalent interactions in terms of the isotropic van

der Waals and electrostatic interaction between fixed dipoles.

The putative argument based on the optimization of the parame-

ters and charge refinement procedures in the molecular mechan-

ic's force field seems to suggest a balance sought between the

spectroscopic properties of the H-bond and the overall, computa-

tionally efficient, conformational accuracy of the biomolecules.17

A ramification of this balance often results in H-bond geometries

that differ significantly from those predicted theoretically. The

atom centered charge assignment in these force fields tends to

bias the H-bond geometries toward a collinear arrangement of

the participating atoms.35,36 As a remedy, off center charge

assignment methods, placing fixed or iteratively obtained partial

atomic charges at defined sites away from the atom centers, or

multipole (MTP) electrostatic interactions are used in force fields

to replicate the geometrical changes observed as a consequence

of the lone-pair (LP) effect.37–40 Curative measures for polariz-

ability induced geometric changes, for a consistent transferability

among the different bimolecular dielectrics, are incorporated in

polarizable force fields.41 Force fields which attempt to explicitly

account for quantum mechanically derived energetics, charge

transfer (CT) effects which cause an elongation of the H-bonds, of

the observed H-bond geometries do so by including specific angu-

lar terms, ∡O : ∡ 17 − 4 − 3, ∡H : ∡ 13 − 17 − 4, or ∡N : 4 − 13

− 17 or their combinations (see Section 3.6) in an additive

manner.42,43

Knowledge-based potentials provide a simple, computationally

efficient, alternative to account for the H-bond geometries in crystal-

lized structures. These potentials, developed for both protein struc-

ture prediction methods and H-bond geometrical variability, rely on

the central idea that the empirically observed frequency of certain

structural properties (Sp) correspond to the Boltzmann like probability

density function.44,45 Owing to the natural caveats of such an

assumption, that is, the ensemble of high-resolution structures are not

in thermal equilibrium, Grzybowski et al., provide a statistical frame-

work for such an assumption wherein it is assumed true provided Sp is

a function of some intrinsic property of the molecular structures in

the ensemble.44,46 This rationalization provides for an additive H-

bond potential, based on the orientation of the H-bond geometry,

designed to encompass both the anisotropic charge distribution

toward the hydrogen atom and the electrostatic effects captured by

the point charge models.47,48 The additive nature of the H-bond

potential developed by Kortemme and Morozov is an attempt to

decouple the parameter set interdependence, in absence of a single

intrinsic parameter, and serves as a simplification of the H-bonds com-

plex energy landscape. The orientation-dependent geometric descrip-

tors, scrutinized in a high-resolution protein database, are the bond

length δHA,KM : 17 − 4, bond angles ∡ΘKM : ∡ 17 − 4 − 3, and

∡ΨKM : ∡ 13 − 17 − 4, and dihedral XKM : 17 − 4 − 3 − 51 and their

associated energies are obtained as the negative logarithm of their

frequency distribution.35

In general, there are six parameters involved in the formation of

the H-bond, two in addition to those used by Kortemme et al. These

are torsions about N − H : 11 − 13 − 17 − 4 and the O� � �H : 13

− 17 − 4 − 3. The inverse kinematic solution to the H-bond geometri-

cal problem developed here allows an exploration of the full six

parameter set, including its implicit interdependence, as a function of

a single parameter α (see Section 4). It is also possible to explore the

inverse parameter set interdependence problem using the Builder for

Recursive Inverse Kinematic Assembly and Ring Design (BRIKARD) appli-

cation49 as implemented in this work for H-bonds in β-turns (for the

parameter α range see Section 3.5). The parameter α thus serves as

the intrinsic parameter and may supplement or replace the current

274 HASSAN AND COUTSIAS



parameter set in H-bond potentials. Such an H-bond potential,

although not explicitly presented here, would simplify substantially

the dependence on relevant empirical data and the strain on parame-

trization to correctly reproduce the different test results. The kine-

matic-geometric analysis of the secondary structure elements

demonstrates the viability of such a program.

We focus exclusively on the kinematics and geometric analy-

sis of these building blocks of the biomolecular machinery, and

show that (1) the helical parameters Hp, are functions of the

intrinsic parameters, (2) the construction of the ideal helical

structures depends solely on the parameter α, (3) the H-bond

geometries exhibited for ideal helices, represented by the six

parameter set (see Section 3.6), are a functions of the parameter

α, (4) with set peptide plane orientation, controlled by the value

of ε0, or with set parameter α values (see Section 3.4) it is possi-

ble to explore the (ϕ, ψ ) space and construct nonideal helices (see

Section 4),50 and (5) the inverse kinematic construction, adept to

exhaustively explore β-turn backbone torsions, can implicitly

explore the inverse H-bond parameter relations and the resulting

β-turn Bricard Curves (2-D figures, Section 3.5) present a simple

and efficient way of exploring torsional interdependence.

This article is organized as follows: In Section 2, we begin with

the geometrical underpinning for the SSE motifs and provide formulas

which relate Hp to the intrinsic parameters μ, β, γ, and α. A mathematical

expression for the peptide plane orientation parallel to the helical axis Z,

is included in the Tetrahedral Equation (see Equation (21)) and analytical

expressions are presented to convert the solutions of the Tetrahedral

Equation to the backbone dihedrals (ϕ, ψ ). Next, the general theoretical

foundation for all possible peptide plane orientations is developed.

Results of the kinematic equations developed in Section 2 are pres-

ented in Section 3. Step-by-step construction protocols are provided

here and the implications of the results obtained are discussed in rela-

tion to the experimentally derived data. Our findings are summarized in

Section 4. The Supporting Information contains mainly the derivations

of the various relations obtained in Section 2. Figures related to the

peptide plane perturbations, additional β-turn Bricard Curves and other

details are also presented in this section for a complete overview of the

results in Section 3.

2 | METHOD

2.1 | Geometrical construction for helices and
β-strands

Consider a regular right handed helix and introduce a collection of

right handed co-ordinate systems with Z axis along the helical axis. A

projection of the helix onto the X − Y plane is therefore a circle C of

some radius (say r).

Arrange the backbone of a polypeptide chain so that the nth Cα atom

is placed on the helix at a distance r from the origin, along the positive X-

axis. For simplicity in the sequel, we define the length unit as the canoni-

cal distance between two successive Cα atoms in a trans conformation

(Cα − Cα distance is ≈ 3.8 Å). Let the unit vector along {Cα,n, Cα,n + 1}, ân ,

make an angle β with the X−Y plane and let the angle between the

two consecutive vectors ân and ân+1,n= 1,2,…f g be denoted by the

parameter α. The projection of {Cα,n, Cα,n+ 1}, n = {1, 2, …} onto the X

−Y plane subtends an angle μ at the origin O. The unit normal to the

plane <n> formed by the triad {Cα,n, Cα,n+ 1, Cα,n+ 2} is denoted as N̂n .

The dihedral γ defined by the tetrad {Cα,n, Cα,n+ 1, Cα,n+2, Cα,n+ 3} is

therefore the angle between the unit vectors N̂n and N̂n+1 (not shown

in Figure 3). In Figure 3, P, Q, R, and S represent the consecutive Cα

atoms. PQ
0
represents the projection of ân onto the X−Y plane. We

denote the unit vector ⊥ to the plane containing ΔPQQ
0
by b̂n . The

angles ξ, θ, and η are as defined in Figure 3.51 A tetrahedral is defined

as, an arrangement of four rotors in a cyclic sequence such that each

makes a given angle with its predecessor and successor.52 We define a

unit-SSE as such a tetrahedral.53 In general, the angles ξ, θ, η, and α are

variable across the different planes <n> formed by the triad {Cα,n, Cα,n

+1, Cα,n+ 2}. However, these values are held constant under the

assumption of identical repeated unit-SSE's. The numerical values of ξ,

θ, and η used in all calculations are consistent with the trans-planarity

of the peptide bonds which require Cα,n−Cα,n+1, n = {1, 2, …} distance

as ≈ 3.8 Å (see Section 2.6.2 for the values of the tetrahedral variables

used).

2.2 | Vector definitions for Whitworth's relation

Considering ΔOPQ
0
, the radius r of C , using from the law of sines, is

obtained as a function of the intrinsic parameters (see Figure 1)

that is,

r =
cosβ
2sin μ

2

: ð1Þ

From ΔPQQ
0
, we define the rise h= �Q0Q, that is, h = sinβ. With

the defined co-ordinate system we may write the unit vector

F IGURE 3 Geometrical skeletal of a helix. P, Q, R and S shown as
red dots represent the Cα atoms forming a helical polygon
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â1 = cosβ −sin
μ

2

� �
î+ cosβcos

μ

2
ĵ+ sinβ k̂: ð2Þ

The consecutive vector â2 can be obtained by rotating about the

Z axis by an angle μ, â2 =Rz μð Þâ1 , where Rz μð Þ=
cosμ −sinμ 0

sinμ cosμ 0

0 0 1

0
B@

1
CA ,

so that

â2 = cosβ −sin
3μ
2

� �
î+ cosβcos

3μ
2

ĵ+ sinβ k̂:

In general, with ân =Rz μð Þân−1, we have

ân = −cosβsinμn î+ cosβcosμn ĵ + sinβ k̂;μn =
2n−1ð Þμ

2
&n= 1,2,…f g:

ð3Þ

By definition, N̂n = κân × ân+1 where κ = 1/sinα, so that

N̂n = κðsinβcosβ cosμn−cosμn+1f g î+ sinβcosβ sinμn−sinμn+1f g ĵ
+ cos2βsin μn+1−μnð Þ k̂Þ, whereμn+1−μn = μ:

ð4Þ

From the definition for N̂n , we have sin α= j ân × ân+1 j . Using
Equation (4) we can show that

sin
μ

2
cosβ = sin

α

2
: ð5Þ

Since, γ is the angle between planes <n> and <n + 1>, the relation

cos 2π−γð Þ= N̂n�N̂n+1 holds. Again, using Equation (4) we can

show that

cos
γ

2
cos

α

2
= cos

μ

2
: ð6Þ

A formal derivation of the Whitworth's relation, Equations (5) and

(6),54 consistent with the above described geometry is provided in the

Supporting Information (see Section SI.1).

2.3 | Geometry based torsional relation for SSE's

Here, we derive an expression relating torsions τ1, < n> and τ2, < n>,

n = {1, 2, …} where τ
1, < n>

and τ2, < n> are the angles between the planes

formed by atoms {Cn, Cα,n, Cα,n + 1} and {Cn + 1, Cα,n + 1, Cα,n + 2} with

<n>, respectively. For a regular helix b̂n represents the surface normal

of the plane containing ΔPQQ
0
and hence the plane formed by {Cn,Cα,

n,Cα,n+1}. This gives us

cosτ1, <n> = b̂n�N̂n,

cosτ2, <n> = b̂n+1�N̂n where b̂n = cosμn î+ sinμn ĵ,
ð7Þ

which on simplification using Equation (4) results in

cosτ1, <n> = κsinβcosβ 1−cosμf g= secα
2
sinβsin

μ

2
: ð8Þ

cosτ2, <n> = −κsinβcosβ 1−cosμf g= −cosτ1, <n> : ð9Þ

For a complete derivation of the relation obtained in Equation (9)

we refer the reader to the Supporting Information (see Section SI.2).

2.3.1 | An approximate formula from Miyazawa's
expression

An intricate geometrical approach was developed by Mizushima et al.,

to express Hp as a function of a repetitive pattern of single or multiple

atom type positions defining a helical polygon in ℝ3 and is isolated

from the backbone dihedral related work, Hp = F(ϕ, ψ ) of Ram-

achandran et al. We supply a complete set of relations among the

intrinsic parameters μ, β, γ, and α missing in this treatment through

our geometrical approach and show that parameter interdependence

is indeed dissociable. Well known approximations originating from the

intricate treatment are also discussed and its limitations are

highlighted in this section.

The mathematical treatment of the helical conformation as a

function of the internal coordinates, bond lengths, bond angles and

torsions about the covalent rotatable bonds, attempted earlier by

Mizushima et al., expresses μ (angle subtended at the center, see Fig-

ure 1), h = sinβ (assuming Cα − Cα distance as unit) and radius r

(assuming all atoms are of the same type) as a function of the con-

secutive Cα − Cα distance, π − α and γ.55 There are two main points

we make here regarding this rigorous mathematical treatment. First,

the complicated formulas arrived at, resulting from a relation

between two right handed Cartesian coordinate transformations, are

essentially the Whitworth's relation. These are easily arrived at from

our fairly simple geometrical treatment using the intrinsic parameters

α, μ, β, and γ. To see this, we direct our attention to a simplification

of these results under different assumptions (1) All atoms considered

are of the same type that is, a repetitive pattern of Cα atoms and (2)

All atoms considered are of multiple types that is, a repetitive pat-

tern of two or more atom types. For example, {Nn, Cα,n} atoms or {Cα,

n, Cn} atoms or {Nn, Cn} atoms or a repetitive pattern of backbone

atoms {Cα,n, Cn, Nn + 1}.
56 Second, the construction of a helical string

passing through a polygonal line or frame in space requires only a

single atom type. In our case, this is the repetitive pattern of Cα

atoms forming the polygonal line and is afforded to us through the

parameter α search. The dihedrals (ϕ, ψ ) are calculated based on this

pattern (see Table 2).

To make a direct comparison with the trigonometric relations of

Miyazawa et al., for the single atom type, we substitute for the vari-

ables θM ≡ μ, τM ≡ γ, ϕM ≡ π − α in Miyazawa's eq. 9 :

cosθM2 = cos τM2 sin
ϕM
2 : This gives us,
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cos
μ

2
= cos

γ

2
cos

α

2
,

which is Equation (6) (see Table 2).

Similarly, Miyazawa's eq. 10 : dMsin
θM
2 = rMsin

τM
2 sin

ϕM
2 takes

the form

dCα−Cαsinβsin
μ

2
= dCα−Cαsin

γ

2
sin

π−α

2
,where

γ

2
=
π

2
+ τ1,

) cosτ1 = sec
α

2
sinβsin

μ

2
,

ð10Þ

which is Equation (8).

In particular, we note that Whitworth's relation Equation (5) is

missing in this work, which results in the reliance on the two parame-

ters μ and β to calculate γ, using Equations (6) and (10) together, and

hence α using Equation (6) separately. Thus, with the internal coordi-

nates, bond length dCα−Cα , bond angle π − α and torsion γ about the

virtual Cα−Cα bond now known, it is possible to calculate the Carte-

sian coordinates of the polygonal line. In contrast, our only reliance is

on the parameter α to calculate the helical parameters (μ, β, γ) given

the kinematic approach which results in solutions for τ1. The path

taken to calculate the backbone dihedrals (ϕ,ψ ) from (α, τ1) is self-con-

tained and the a priori requirement of dihedrals for the calculation of

the helical parameters and vice versa is redundant (see Figure 4).

The three atom type consideration, repeats of the kind {Cα,n, Cn,

Nn + 1}, although not necessary to analyze in the context of helical

construction, gives rise to a simplified formula for μ in terms of the

dihedral angles (ϕ, ψ ),57 that is,

3cosμ=1−4cos2
ϕ+ψ
2

� �
: ð11Þ

We show here that this simplified formula is an approximation

derived from Miyazawa's eq. (36) and not an exact formulation.

Assuming the Pauling-Corey geometry for trans peptides, Miyazawa

et al. simplify their eq. (36) to

cos
θM
2

= −0:817sin
τ12,M + τ31,M

2

� �
−0:045sin

τ12,M−τ31,M
2

� �
:

Substituting for the variables as above and maintaining the cur-

rent convention of dihedral rotation we have

cos
μ

2
= −0:817sin

ψ +ϕ
2

� �
+0:045sin

−ψ +ϕ
2

� �
) cosμ= −0:330486−0:667489cos ψ +ϕð Þ−0:07353cosψ

+0:07353cosϕ −0:002025cos −ψ +ϕð Þ
)3cosμ= 1:011009−4:004934cos2

ψ +ϕ
2

� �
−0:22059cosψ

+0:22059cosϕ−0:006075cos −ψ +ϕð Þ:

ð12Þ

Discarding the last three terms and rounding up to the

nearest integer we have the truncated formula Equation (11).

The approximate formula works well for the experimentally

observed helical region bounded by the range of ϕ � {0, −π}

and ψ � {0, −π}. However, Equation (12) or its truncated

TABLE 2 Key expressions
Input ! output Expression

{ξ, θ, η, α} ! τ1 U= − D�C +Bð Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D�C +Bð Þ2−4EA

p
2E , Equation (23)

where U= u2 = tan2 τ1
2 ,

{α, τ1} ! μ tan μ
2 = �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

sin2τ1cos2α=2
−1

q
, Equation (26)

{α, μ} ! β sin μ
2cosβ = sin

α
2, Equation (5)

{α, μ} ! γ cos γ
2cos

α
2 = cos

μ
2, Equation (6)

{μ, β} ! r r = cosβ
2sinμ

2
, Equation (1)

{τ1, ξ, θ, η, α} ! ϕ x= 1
Cϕ,τ1

u Eϕ,τ1u
2 +Dϕ,τ1 −

G2v2 + J2
F2v2 +H2

h i
Bϕ,τ1u

2 +Aϕ,τ1

� �n o
, Equation (31)

{τ1, ξ, θ, η, α} ! ψ y = 1
Cτ2 ,ψ

v Bτ2,ψv
2 + Eτ2 ,ψ −

G1u2 + J1
F1u2 +H1

h i
Aτ2 ,ψv

2 +Dτ2 ,ψ
� �n o

, Equation (32)

F IGURE 4 Graphical sketch of the variable dependence (notice
that there are no arrows from the dihedrals (ϕ, ψ ) toward the helical

parameters and vice versa). The tetrahedral angular variables {ξ, θ, η}
limit the range of α values which result in a viable solution for τ1. It
should not be construed that the tetrahedral variables are related to
the parameter α through an explicit mathematical expression like the
other variables in the graph
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version Equation (11) require a priori knowledge of the dihe-

drals. Consequently, ϕ,ψð Þ⇌possible
not possibleμ.

2.4 | General tetrahedral reconstruction

For consistency we will refer to the three consecutive Cα atoms which

form the plane <n> as C k +1ð Þ
α,n+ k ;k = jmod3 where j = {0, 1, …}. When the

context of the plane of reference for the angles and their associated

polynomial variables is clear, we will drop the suffix <n>. For a defini-

tion of the torsional angles please see Figure 5 and Table 3. The gen-

eral tetrahedral equation with respect to the plane <n> and vertex at

C 2ð Þ
α,n+1 is written in compact form as58

Bn σ1, <n> ;τ2, <n> ;ξn,θn+1,ηn+1,αn+1ð Þ=0, whereσ1, <n> = τ1, <n> + δ1, <n> :

ð13Þ

Converting to polynomial form using the following half tangents,

ui, <n> = tan
τi, <n>
2

, i= 1,2f g w1, <n> = tan
σ1, <n>
2

, ð14Þ

we have

Bn w1,u2,A,B,C,D,Eð Þ=0: ð15Þ

In view of the relation between σ1 and τ1 8 < n> where n � {1, 2,

…, Nres − 1} we may eliminate w1 using the following relations

Δ1 � tan
δ1
2

=
sinδ1

1 + cosδ1
,Δ2

1 � tan2
δ1
2

=
1−cosδ1
1 + cosδ1

,

Bn Δ1,u1,u2,A,B,C,D,Eð Þ=0,
ð16Þ

where

A= −cosθn+1−cos αn+1−ξn−ηn+1ð Þ,
B= −cosθn+1−cos αn+1−ξn + ηn+1ð Þ,
C = 4sinξn sinηn+1,

D= −cosθn+1−cos αn+1 + ξn−ηn+1ð Þ,
E = −cosθn+1−cos αn+1 + ξn + ηn+1ð Þ:

ð17Þ

F IGURE 5 General description of a constrained motion
tetrahedral in terms of its tetrahedral angles ξ, θ, η, and α. The
tetrahedral angles are labeled as following. To each virtual bond Cα,

n − Cα,n + 1 we associate the angles ηn and ξn and to each Cα,n atom we
associate the angles θn and αn (see Table 3 for angular definitions).
Dihedral angles ϕ, ψ , σ, and τ are shown along their respective axis of
rotation. The inset figure on the upper right hand corner shows the
bonds used to form the tetrahedral at the central Cα,n + 1 atom. The
dihedral angles in this figure are labeled according to the plane
definition. However, in our case all planes are identical and hence the
angles will take on the same values across the planes <n> , n = {1,
2, …,}

TABLE 3 Notation

Notation Description

ân Unit vector from Cα,n to Cα,n + 1.

b̂n Surface normal to the plane formed by {Cn, Cα,n, Cα,n + 1}

atoms.

C Helical projection onto the X − Y plane.

Cα,n nth Cα atom.

<n> Plane formed by the triad {Cα,n, Cα,n + 1, Cα,n + 2}.

N̂n Unit normal to <n>.

O Center of C
r Radius of C .

X, Y, Z Fixed axes attached to the helix.

α Angle between ân and ân+1.

β Angle ân makes with the X−Y plane.

γ<n + 1,n> Angle between N̂n and N̂n+ 1 (angle between planes <n>

and <n+1>).

δ Angle between planes formed by atoms

{Cn, Cα,n, Cα,n + 1} and {Nn + 1, Cα,n + 1, Cα,n}

ε0 Perturbation angle about the virtual Cα − Cα bond.

η ∡CnCα,nCα,n + 1 = 19.014�.

θ ∡NnCα,nCn = 109.323�.

μ Angle subtended at the center of C by the projection of

ân on the X−Y plane.

ξ ∡Cα,nCα,n + 1Nn + 1 = 16.537�.

σ1, < n> Angle between the planes formed by atoms

{Nn + 1, Cα,n + 1, Cα,n} and <n>.

w1, < n> Half tangent of σ1, < n> that is, w1, < n> = tanσ1, <n >
2 .

τ1, < n> Angle between the planes formed by atoms

{Cn, Cα,n, Cα,n + 1} and <n>.

u1, < n> Half tangent of τ1, < n> that is, u1, < n> = tan τ1, < n >
2 .

τ2, < n> Angle between the planes formed by atoms

{Cn + 1, Cα,n + 1, Cα,n + 2} and <n>.

u2, < n> Half tangent of τ2, < n> that is, u2, < n> = tan τ2, < n >
2 .

~τ1, < n> Torsional perturbation of τ1, < n> about the virtual Cα − Cα

bond.

~τ2, < n> Torsional perturbation of τ2, < n> about the virtual Cα − Cα

bond.

ϕ Backbone torsional angle about the N − Cα bond.

ψ Backbone torsional angle about Cα − C bond.

Ω1 ∡NnCα,nCα,n + 1.

Ω2 ∡Cα,nCα,n + 1Cn + 1.
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2.5 | Polynomial form for helix and β-strand
condition

Converting Equation (9) to a polynomial form and using half tangent

formulas defined in Equation (14) we have,

u1, <n> u2, <n> = �18n: ð18Þ

In Equation (18), we distinguish the positive relation as a geomet-

rical condition for the construction of helices and the negative as that

for β-strands. Next, we delineate the two cases considered with the

different ancillary geometrical assumptions for the modeling of

the SSE's.

2.6 | Identical repeated units

In this section, we assume the SSE's are composed of identical

repeated unit-SSE's, a unit formed by the triad {Cα,n, Cα,n + 1, Cα,n + 2},

and as such τ1, < n + 1> ≡ τ1, < n>. To construct SSE's under this assump-

tion it is sufficient to solve the kinematics for a given plane. The dihe-

drals ϕ and ψ calculated using the solution to the kinematic equation

will thus remain same throughout the peptide chain. Our assumption

here also allows us to express the relations between γ and τ1 as plane

invariant (see Figure 6). Consequently, we drop the suffix which

explicitly identifies this plane. Conditions for the formation of SSE's,

Equation (18) gives us,

A:u1u2 = 1, B:u1u2 = −1,

2π−γ + τ1 = τ2, 2π−γ + τ1 = τ2,

)2π−γ + τ1 = π−τ1, 2π−γ + τ1 = π + τ1,

) γ = π +2τ1, γ = π:

ð19Þ

2.6.1 | General tetrahedral equation

Following the definition of unit-SSE's and our assumption of identical

repeated units, all the four angles ξ, θ, η, and α are assumed same

across all planes. As above, we drop subscripts which explicitly iden-

tify the plane in Equation (16). The substitutions, u1 = u and u2 = v

lend to the following simplified form,

ℬ Δ,u,v,A,B,C,D,Eð Þ=0: ð20Þ

Simplification and grouping of terms in Equation (20) results in

the following,

Δ2 Av2 +Du2v2 +B−Cuv + Eu2
� �

+Δ 2Auv2−2Duv2 + 2Bu+Cv−Cu2v−2Eu
� �

+ Au2v2 +Bu2 +Cuv +Dv2 + E
� �

=0,

ð21Þ

where the coefficients A − E have the same definition as that of Equa-

tion (17), with the subscripts dropped. The above is a simplification of eq.

(11) in Coutsias et al., using the relation as defined in eq. (12) for i = 2.58,59

The general case for repeated identical units, δ ≠ π, although not

attempted here, could be implemented using Equation (21) with relations

derived in Equation (18) that is, uv = ± 1. The next section demonstrates

the kinematic implementation undertaken for the limiting case δ = π.

2.6.2 | Tetrahedral solution for helices and beta
sheets

In addition to the geometrical symmetry for the SSE's, a strict trans

configuration is also assumed across the peptide chain that is, δ = π

for simplicity, thus 1
Δ≈0. In this case, tetra1 reduces to

Du2v2 + Eu2−Cuv +Av2 +B= 0: ð22Þ
Substituting for v using Equation (18) we have

D+ Eu2�C +A
1
u2

+B=0,

) Eu4 + D�C +Bð Þu2 +A=0,

) EU2 + D�C +Bð ÞU+A= 0,whereU� u2

) U=
− D�C +Bð Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D�C +Bð Þ2−4EA

q
2E

,

ð23Þ

where the solutions are enumerated as follows,

U1 =
− D−C +Bð Þ+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D−C +Bð Þ2−4EA

q
2E

, uv = +1ð Þ

U2 =
− D−C +Bð Þ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D−C +Bð Þ2−4EA

q
2E

, uv = +1ð Þ

U3 =
− D+C +Bð Þ+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D+C +Bð Þ2−4EA

q
2E

, uv = −1ð Þ

U4 =
− D+C +Bð Þ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D+C +Bð Þ2−4EA

q
2E

, uv = −1ð Þ:

ð24Þ

F IGURE 6 The figure here shows the simultaneous angles formed
by a tetrahedral plane, triad {Cn + 1, Cα,n + 1, Cα,n + 2}, with planes <n>
and <n + 1>
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Substituting for the values of ξ, θ, and η in Equation (23) and using

α as a parameter, one may obtain U (see Figure 7(A),(B)); μ is obtained

as a function of α and τ1 using Equation (26), derived from the

Whitworth's formulas given by eqs. (5) and (6) (see Figure 4). Here, we

have taken ξ = 16.537 � , θ = 109.323�, and η = 19.014� consistent

with the trans-planarity of the peptide bond.

2.6.3 | Helical parameters from Whitworth's
relation

Here, we derive the relation of the helical parameters, μ, β, and r to

the torsion τ1, < n> ≡ τ1 for identical repeated units. τ1 is obtained from

Equation (24) for given parametric values of α. From Equation SI.6

we have

sin2τ1 = κ
2sin2μcos2β: ð25Þ

Using Equation (5) and substituting for κ we have,

tan
μ

2
= �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

sin2τ1cos2α=2
−1

s
ð26Þ

It should be noted here that corresponding to the sign of τ1 there

is a two part evaluation for the angle μ using Equation (26). Under the

assumption that the parameter β � {0, 90�} for right handed helices,

Equation (5) may again be used to obtain parameter β. The radius r of

the helix is obtained from Equation (1) (see Figure 8(A),(B)).

2.7 | Torsional relations for trans-planarity of the
peptide bond

To calculate the torsions about the actual bonds, N − Cα and

Cα − C, in terms of the torsion about the virtual Cα − Cα bonds

we employ the use of the fundamental formulas of spherical

geometry as discussed by Bricard.53 The resulting polynomial

form of these relations, with variable definitions

x= tanϕ
2 ,y = tan

ψ
2 ,u= tan

τ1
2 , and v = tan τ2

2 , are biquadratic in nature (see

Equations (27) and (28)) and provide an explicit representation in

terms of the torsion, u and v, about the virtual Cα−Cα bond. However,

the solutions obtained at this stage are not unique. These explicit rela-

tions are therefore substituted in the corresponding tetrahedral equa-

tions (see Equations (29) and (30)), δ1, < n> = π that is, 1
Δ≈0, to obtain a

unique solution for the backbone torsions (ϕ,ψ ). In the ensuing discus-

sion, the unit-SSE's are assumed identical. Hence, it is enough to illus-

trate the relation between the different torsions and tetrahedral

angles for a single unit and as such only the first unit is considered

(see Figure 9).

Biquadratic polynomial forms obtained through spherical geome-

try derived relations take on a compact form,

F2v
2x2 +G2v

2 +H2x
2 + J2 = 0, ð27Þ

F1u
2y2 +G1u

2 +H1y
2 + J1 = 0, ð28Þ

while the Tetrahedral Equations, arrived at in a manner similar to

Tetra-angle, for the unit-SSE under consideration take on the follow-

ing form,

ϕ,τ1, <n>ð Þ : Bϕ,τ1u
2x2 +Aϕ,τ1x

2−Cϕ,τ1ux+ Eϕ,τ1u
2 +Dϕ,τ1 = 0, ð29Þ

τ2, <n> ,ψð Þ : Aτ2,ψv
2y2 +Bτ2,ψv

2−Cτ2,ψvy +Dτ2,ψy
2 + Eτ2,ψ =0: ð30Þ

Substituting the biquadratics into the relevant tetrahedral equa-

tion we have,

F IGURE 7 Torsional angles for helices and β-strands as a function
of the parameter α are shown. The physical region of the solutions are
marked by the vertical lines and correspond to the geometrically
obtained bounds, α � {35.126 � ,106.228�}. There are two parts to the
torsion τ(α) curves shown here. τ+(α) > 0� corresponds to the solution
+

ffiffiffiffiffiffi
U1

p
or +

ffiffiffiffiffiffi
U3

p
whereas τ−(α) < 0� corresponds to −

ffiffiffiffiffiffi
U1

p
or −

ffiffiffiffiffiffi
U3

p
.

(A) The point of inflection, log10(U1) = 0 corresponds to τ+≈90�,
τ−≈ −90�, and parameter α≈74.7�. Thus, as the parameter α varies
from 35.28� to 106.2� the logarithm of the solution, log10(U1) passes
from maximum positive to minimum negative value while τ+(α) varies
from ≈180 � to 0� and τ−(α) from ≈−180 � to 0�. (B) The point of
inflection here, log10(U3) = 0, corresponds to τ+≈90�, τ−≈ −90� and
parameter α≈62�. Variation in the τ(α) curve is similar to that in
part (A)
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x=
1

Cϕ,τ1u
Eϕ,τ1u

2 +Dϕ,τ1 −
G2v2 + J2
F2v2 +H2

	 

Bϕ,τ1u

2 +Aϕ,τ1

� �� �
, ð31Þ

y =
1

Cτ2,ψv
Bτ2,ψv

2 + Eτ2,ψ −
G1u2 + J1
F1u2 +H1

	 

Aτ2,ψv

2 +Dτ2,ψ
� �� �

: ð32Þ

Backbone torsional expressions for helices and β-strands are

obtained from Equations (31) and (32) using Equation (18). For the

coefficient definitions, in terms of the tetrahedral angles, see

Section SI.3.

2.8 | Torsional perturbation about the Cα − Cα

virtual bond

Torsional perturbation about the virtual Cα − Cα bond by angle −ε0
with the assumption that 1

Δ≈0 is shown in Figure 10. The sense of

direction of the dihedral angles is same as that used by Coutsias

et al.59 In an equation form we have,

~τ1, <n> = τ1, <n> −ε0: ð33Þ

Since, the peptide planes are linked at the Cα atoms and their

mutual orientation constrained by the θ angle, we will require the tet-

rahedral Equation (22) written as a quadratic in ~v where ~v denotes the

perturbation to τ2, < n> by an unknown dihedral angle (say ε00). Hence,

~τ2, <n> = τ2, <n> �ε00: ð34Þ

A proof for the perturbational relations among the torsions given

by Equations (33) and (34) and the conditions under which they exist

in relation to the prescribed geometry is presented in Supporting

Information (see Section SI.4). The task we undertake here (1) serves

to construct conformations which do not have the peptide planes par-

allel to the helical axis and (2) describes the perturbational range

corresponding to the parameter α. Denoting ~u as the half-tangent of

~τ1, <n> , we have

D~u2~v2 + E~u2−C~u~v +A~v2 +B=0, ð35Þ

The quadratic form in ~v gives us the following two solutions

~va =
C~u+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C~uð Þ2−4 D~u2 +A

� �
E~u2 +B

� �r
2 D~u2 +A
� � ,

~vb =
C~u−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C~uð Þ2−4 D~u2 +A

� �
E~u2 +B

� �r
2 D~u2 +A
� � :

ð36Þ

All the applied perturbations to τ1, < n> may not necessarily result

in a viable solution of the quadratic Equation (36). Thus, for a given

value of the perturbation ε0 and some fixed parameter α we have two

orientations for the torsion ~τ2, <n> � ~τ2 (see Figure 11(A),(B)). In the

case of no perturbation ε0 = 0�, it can be checked that the calculations

F IGURE 8 (A) Variations in μ, angle projected at the center, β, angular rise per unit residue, and r, radius of the helix as a function of the
parameter α. The graph for μ versus parameter α has two parts. The part below the green line is obtained for τ +1 ! μ+ and τ−1 ! μ+ whereas the
part above the green line is obtained for τ +1 ! μ− and τ−1 ! μ− . The red line corresponds to α = 66.82� here. Since there are four parts to μ, that
is, μ+, μ− from τ +1 and μ+, μ− from τ−1 , there are four parts associated with β. The β+ values corresponding to μ+ obtained from either sign of τ1 is
shown here. The β− values corresponding to μ− from either sign of τ1 are reflections about a horizontal line parallel to the Y-axis and have values
equal to 180− β+. The red line here corresponds to α = 74.77� and hence μ = 74.77�. The radius r corresponding to the 4 parts of β result in same
values. Hence, the graph r versus parameter α is independent of the sign of τ1. The red line here corresponds to α = 70.63�. The graph for r
assumes the Cα−Cα distance as unit. (B) In the graph for μ versus parameter α the parts above and below the green line have the same definition
as described in Figure 8(A). The red line here corresponds to α = 56.68�. The description in Figure 8(A) for β versus parameter α is also relevant
for the solution U3. The red line passing through the minimum value of β corresponds to α = 62.14�
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do revert back to the original conformation of helices or β-strands for

a given parameter α that is, the specific conformation available to us

on the application of the helix-strand condition uv = ±1. However, an

alternative conformation exists for the same value of τ1, < n>. Hence,

the general nature of the solutions we seek requires Equations (31)

and (32) to obtain perturbed dihedrals ~ϕ, ~ψ
� �

. The coefficient defini-

tions for A, B, C, D, and E are as expressed in Equation (17).

3 | RESULTS

3.1 | Helices and β-strands

The inverse kinematic construction for the helices and β-strands pres-

ented here is based on two main geometrical assumptions (1) the ori-

entation of the peptide plane is such that it is parallel to the helical

axis (Z) and the carbonyl group points in its positive direction (2) the

helical structure consists of identical repeated units. The single param-

eter α is varied from 0 � to 180� in a continuous manner and only

those solutions which satisfy the kinematic Equation (22), give real

positive solutions, are collected. It was found that for the α-helix con-

dition uv = + 1, only U1 produced real positive solutions while for the

β-strand condition uv = − 1, only U3 produced real positive solutions

(see Figure 7(A),(B)). The range of the parameter α � {0�, 180�} was

discretized into 1001 values which results in a step-size of 0.18�. Of

the 1001 different α values 395 of these result in real positive solu-

tions. These solutions correspond to the parameter

α � {35.28 � ,106.2�} and they are contained withing the defined

physical region (see the caption for Figure 7). The range

α � {86.76 � ,90.9�} and α � {95.58 � ,100.62�} corresponds to

α/π−helices and 310−helices, respectively. A relaxation of H� � �O by

0.4 Å and ∡HNO by 10� relaxes the parameter α bounds to

α � {82.62 � ,92.16�} and α � {93.42 � ,103.32�} for α/π−helices and

310−helices, respectively. The structures with the relaxation of the H-

bond criteria are shown in Figures 12(A),(C), 13(A),(C), and 14(A),(B).

The H-bond recognition is based on the hybridization2 (Figure 12(A))

and geometry of small molecule crystal structures implemented in

chimera.60

3.2 | Construction protocol

The theoretical framework discussed here details the construction of

the SSE's and is independent of the number of the residues consid-

ered. This is also true for any generalization of the current methodol-

ogy. The protocol for identical repeated units is implemented on a

relatively large canonical system, 32 residues to figuratively exhibit

the geometrical changes in the gradual transition between helical

types (see Table 1 and Figure 14 for a transition from π-helix to

α-helix). Here, we detail the simple construction procedure adopted.

1. To begin with, a n-residues canonical backbone structure where

each residue contains the atoms N, Cα, and C is used.

a. Bond length definitions: N − Cα ≈ 1.453 Å, Cα − C ≈ 1.53 Å,

and C − N ≈ 1.325 Å.

b. Bond Angle definitions: Internal atoms ∡N ≈ 120�,

∡ Cα ≈ 109.36�, ∡ C ≈ 117.5�

c. Torsion definition: ω ≈ 180�; ϕ, ψ variable

The corresponding Cartesian coordinates (x, y, z) of each atom

in the system gives us a co-ordinate matrix C3 × 3n.

2. Co-ordinate matrix C3 × 3n is used to determine the 3n dihedral

vector, D3n × 1.

3. Nα, the number of discrete α values required is set. In our case, we set

this value to 1001 for a reasonable discretization of the range 0 �

F IGURE 10 Geometrical skeletal of a helix with perturbation
about Cα − Cα bond. P, Q, R and S represent the position of the Cα

atoms

F IGURE 9 Spherical angles Ω1 and Ω2 projected at the center
Cα,2 of the sphere S
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− 180�. This also determines the maximum number of conformations

that will be generated. Not all values of the parameter α result in a

solution. If S denotes the number of solutions then S ≤ Nα.

4. Corresponding to each discrete value of α we get a set of five

coefficients A, B, C, D, and E. Indexing we have ((θ, αi, ξ, η) : Ai, Bi,

Ci, Di, Ei) 8 i � {1, …, Nα}. The entire procedure for solution finding

is implemented for only those indices for which jBi j ≥ 0.

5. The solutions U1 and U2 are evaluated as given in Equation (24)

and those which are real retained. Among the real solutions we

locate those which are positive. Indexing again, we have

((θ, αj, ξ, η) : Aj, Bj, Cj, Dj, Ej) 8 j � {1, …, S}.

6. The positive, u+
j and negative, u−

j torsions in polynomial form are

evaluated from U1,j and then for U2,j 8 j� {1,…, S}. This gives us two

sets of positive u+
j torsions and two sets of negative, u−

j torsions.

The attributes positive and negative denote only the part of the

solutions U from which they are calculated. They bear no reference

to the actual sign of the dihedrals (ϕ,ψ ). For instance, u+
j = +

ffiffiffiffiffiffiffi
U1,j

p
.

In our calculations, U2 did not result in any real positive solution so

instead of four sets of u values we had only two corresponding to

a u+
j and u−

j both associated with the solution U1.

7. From these half-tangents, we convert to dihedrals (ϕ, ψ ) as follows

u+
j ! x+

j ,y
+
j

� �
!

2tan−1 x+
jð Þ

2tan−1 y +
j

� � ϕ+
j ,ψ

+
j

� �
8j� 1,…,Sf g

and

u−
j ! x−j ,y

−
j

� �
!

2tan−1 x−jð Þ
2tan−1 y−

j

� � ϕ−
j ,ψ

−
j

� �
8j� 1,…,Sf g

using Equations (31) and (32) with helical condition uv = 1. The dif-

ferent combinations of the dihedral values will result in four differ-

ent ensembles, each of size S. For our case, we use

ϕ+
j ,ψ

+
j

� �
8j� 1,…,Sf g in the construction of right-handed helical

structures.

8. The ϕ, ψ dihedrals from residue 1 to n are reassigned to the vector

D3n × 1 and the corresponding Cartesian coordinates generated. If

Dj
3n×1 denotes the vector of dihedrals (ϕj,ψ j,ω) repeated n-times

then its corresponding Cartesian coordinates are represented as

Cj
3×3n8j� 1,…,Sf g. Since our objective was not to disturb the trans-

planarity of the amide bond we do not make any changes to the

ω-torsion.

9. The construction for β-strands follows the same procedure as out-

lined above with the difference that uv = − 1 is used for solving

the quartic equation Equation (24). Similar to steps 6 and 7, u+
j

and u−
j corresponding to U3,j8 j� {1,…, S} are evaluated. As men-

tioned earlier, U4 does not provide us with any real positive solu-

tion. The dihedrals ϕ+
j ,ψ

+
j

� �
for the β-strand solutions are

calculated and the procedure defined in step 8 is followed.

From the generated ensemble it is possible now to calculate the

different H-bond parameters as shown in Figure 15. The concentra-

tion of scatter data points as seen in Figure 15 is obtained from exper-

imentally derived x-ray structures. We detail below the procedure

adopted for the experimental results.

3.3 | Experimental data plot

1. The structures are obtained from a culled library maintained by

the Dunbrack Lab,3 cullpdb_pc20_res1.6_R0.25_d200109_

F IGURE 11 The figures shown here are a schematic
representation of the peptide plane perturbation, in-between Cα,n and
Cα,n + 1, under the ∡θ constraint. Each orientation of this plane,
vertical (no perturbation), or off-vertical (ε0 perturbation), result in
two corresponding orientations (see Equation (36)). (A) Shows the two
solutions corresponding to the vertical alignment, parallel to the
helical axis and hence zero perturbation, of the peptide plane. The
blue–blue plane arrangement results in a perfect helical structure
while the blue–purple plane arrangement will result in a conformation
which forces the Cα,n + 3 to change its position (say C0

α,n+3 not shown
in the figure). (B) Similar to Figure 11(A), the peptide plane is
perturbed by a small angle (off-vertical). The corresponding solutions
are shown as the blue and purple plane orientations assumed under
the ∡θ constraint
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chains3743 from which we chose the first 800 entries of resolu-

tion <1.6 Å and R-factor <0.25. These were checked for helices of

length greater than or equal to 8 residues which resulted in Pα = 698

different peptide chains. The Pα peptide chains contain Nα = 4031

helices of varying lengths. 98% of these helices, as identified in the

pdb format, were α-helical while the remaining 2% were of π-helical

nature.

2. For each Hi, i � {1, …, Nα} of length Nri residues, Nri − 2 parameter

α values were calculates and saved incrementally in a vector Vα

such that length of the vector

Lα � l Vαð Þ=
XNα

i=1

Nri−2ð Þ:

In our case Lα = 49160. Since, to each parameter α value there is

an associated (ϕ, ψ ) dihedral the vector length of the dihedrals formed

in a similar manner is also Lα. This provides us with the concentration

of the scatter points in Figure 15.

3.4 | Construction protocol for perturbation about
the Cα − Cα virtual bond

For a fixed parameter value αj, j � {1, …, S} a perturbation to the

corresponding dihedral, τ1, < n> about the virtual Cα,n − Cα,n + 1 bond, in

a tripeptide unit as shown in Figure 5, is applied to allow different ori-

entations, ~τ1, <n> . The kinematic Equation (37) shows that for each ori-

entation there exists exactly two unique conformations. However, the

sign of the solutions determine the right or left handedness of the

identical unit assembled conformation. This adds two additional sets

of conformations. For example for U1,

u+
j !

2tan−1 u+
jð Þ

τ +1, <n> !ε0,k ~τ +1, <n> !
tan

~τ1, <n>
2

� �
~u+
j ! ~v +

a,jk;~v
+
b,jk

� �
,k� 1,…,Nεf g

and

u−
j !

2tan−1 u−
jð Þ

τ−1, <n> !−ε0,k
~τ−1, <n> !

tan
~τ1, <n>
2

� �
~u−
j ! ~v−

a,jk ;~v
−
b,jk

� �
,k� 1,…,Nεf g,

ð37Þ

where ε0 � {−180�, 180�} and Nε = 101 is the total number of per-

turbations considered (see Figure SI.1). Now, for a given value of

(j, k) there are three possibilities for the existence of a solution of

~v,

a. ~v +
a,jk ,~v

+
b,jk

� �
and ~v−

a,jk ,~v
−
b,jk

� �
, j� 1,…,Sf g,k� 1,…,Nεf g exist.

b. ~v +
a,jk ,~v

+
b,jk

� �
exists but ~v−

a,jk ,~v
−
b,jk

� �
, j� 1,…,Sf g,k� 1,…,Nεf g does not.

c. ~v +
a,jk ,~v

+
b,jk

� �
does not exist but ~v−

a,jk ,~v
−
b,jk

� �
, j� 1,…,Sf g,k� 1,…,Nεf g

does.

F IGURE 12 The atom types are same across all constructed conformations that is, conformations obtained for different values of the
parameter α. All conformations are constructed under the assumption δ = π. Results are shown for two values of the parameter, α = 83.7 �

and 90�. H-bonds are shown as wires for the 8 residue system (see Table 1 for frequently observed helix length). The torsional definition used for
the starting structure is ω ≈ 180 � ; ϕ, ψ variable. (A) An 8 residue system showing the different atom types. The virtual bonds between Cα atoms
are shown in cyan. H-bonds are formed between On� � �Hn + 5, n � {1,2,3}. (B) Same construction procedure as that of Figure 12(A), parameter
α = 90�. The H-bonds are between On, � � �, Hn + 4, n � {1,2,3,4}. The Figure 12(C),(D) show the top view of the conformation shown in Figure 12
(A),(B), respectively
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Due to the symmetry of the perturbed torsions ~τ +1, <n> and

~τ−1, <n> considered in our calculations the latter two cases do not

exist. For both solutions, expressed in Equation (37), not all values of

k∈ {1,…,Nε} result in solutions. Hence, there exists for each j∈ {1,…, S}

a variable range of allowed perturbations, k∈ 1,…,k0,…,Nε0|fflfflfflfflffl{zfflfflfflfflffl},…,Nε

� �
that is, the values of k0 and Nε0 change for each j∈ {1,…, S}.

In addition, the range k∈ k0,…,Nε0f g may be a single or a bifurcated

range. In our case, for the four sets of conformations

available, corresponding to the allowed range of perturbations,

two sets of conformations are of an opposite handedness. For

example,

1. the sets CFa : ~u+
j ,~v

+
a,jk

� �
and CFc : ~u−

j ,~v
−
a,jk

� �
, j∈ 1,…,Sf g,k∈ 1,…,Nεf g

2. and sets CFb : ~u+
j ,~v

+
b,jk

� �
and CFd : ~u−

j ,~v
−
b,jk

� �
, j∈ 1,…,Sf g,

k∈ 1,…,Nεf g,

F IGURE 14 All conformations are constructed under the assumption that δ = π. The construction procedure is same as that for Figures 12
and 13. Torsional definition used for the starting structure is ϕ, ψ , ω ≈ 180�. The results are shown for four different parameter values,
α = {83.7 � ,84.6 � ,88.56 � ,90.9�}. The figures attempt to show a gradual transformation from a π-helix to an α-helix across the values the
parameter α. A similar transition from an α-helix to a 310-helix also exists for a different range of the parameter α values (not shown here).
However, we did not find one range of sequential parameter α values for a transition from a π-helix to a 310-helix. H-bonds are shown as wires
for the 32 residue system

F IGURE 13 All conformations are constructed under the assumption δ = π. Here, the results are shown for two values of the Figures 12 and
13, α = 91.26 � and α = 96.3�. The virtual bonds between the Cα atoms are shown in cyan. H-bonds are shown as wires for both the 8 residue
system, α-helix, and the 5 residue system, 310-helix (see Table 1 for frequently observed helix length). The torsional definition of the starting
structure is same as in Figure 12. (A) The constructed conformation shows H-bonds formed between On� � �Hn + 4, n � {1,2,3,4}. (B) Similar to
Figure 13(A), H-bonds are formed between On� � �Hn + 3, n � {1, 2} for parameter α = 96.3�. The Figure 13(C),(D) show the top view of the
conformations shown in Figure 13(A),(B), respectively
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result in conformations of opposite handedness. Similarly, 2 sets of

alternative conformations for the same handedness result from

1. the sets CFa : ~u+
j ,~v

+
a,jk

� �
and CFb : ~u+

j ,~v
+
b,jk

� �
, j∈ 1,…,Sf g,

k∈ 1,…,Nεf g,
2. and sets CFc : ~u−

j ,~v
−
a,jk

� �
and CFd : ~u−

j ,~v
−
b,jk

� �
, j∈ 1,…,Sf g,

k∈ 1,…,Nεf g.

In a manner similar to that adopted for the construction of helices

and β-strands the perturbed units-SSE's are repeated to obtain

perturbed conformations. The computational procedure undertaken is

described as follows:

1. A range for the perturbation ε0 is first selected and discretized into

Nε points.

2. Vectors T +
S× 1 andT

−
S×1 containing corresponding values of τ1, < n> is

obtained from u+
j and u−

j , j� 1,…,Sf g, respectively.
3. The vectors are now given some perturbation ε0,k, k � {1, …, Nε} to

obtain new vectors ~T
+
S×1 and

~T
−
S×1 . Matrices ~U

+
S×Nε

and ~U
−
S×Nε

are

formed such that the columns of these matrices contain the half-

tangents of vectors ~T
+
S×1 and

~T
−
S×1 formed for the different values

of ε0,k, k� {1,…,Nε} as expressed in Equation (37).

4. ~U
+
S×Nε

is used to form two matrices ~V
+
a,S×Nε

and ~V
+
b,S×Nε

while ~U
−
S×Nε

is used to form the two matrices ~V
−
a,S×Nε

and ~V
−
b,S×Nε

using Equa-

tion (36). Since, not all solutions are possible the indices which

result in solutions are collected in an index matrix IS×Nε and popu-

lated column-wise. In general, there are two such index matrices,

an I +S×Nε
which corresponds to solutions obtained from ~U

+
S×Nε

and

an I−S×Nε
which corresponds to solutions obtained from ~U

−
S×Nε

. In

our case I+S×Nε
= I−S×Nε

� IS×Nε . The column values of the index

matrix correspond to the indices of the horizontal lines shown in

Figure 16.

5. The column-wise combination of the matrices

~U
+
S×Nε

, ~V
+
a,S×Nε

� �
, ~U

+
S×Nε

, ~V
+
b,S×Nε

� �
, ~U

−
S×Nε

, ~V
−
a,S×Nε

� �
and ~U

−
S×Nε

, ~V
−
b,S×Nε

� �

result in four matrices for ϕ and four matrices for the ψ dihedrals.

For instance,

a. ~U
+
S×Nε

, ~V
+
a,S×Nε

� �
! ~Φ+

a,S×Nε
and ~U

+
S×Nε

, ~V
+
a,S×Nε

� �
! ~Ψ+

a,S×Nε
,

b. ~U
+
S×Nε

, ~V
+
b,S×Nε

� �
! ~Φ+

b,S×Nε
and ~U

+
S×Nε

, ~V
+
b,S×Nε

� �
! ~Ψ

+
b,S×Nε

,

c. ~U
−
S×Nε

, ~V
−
a,S×Nε

� �
! ~Φ−

a,S×Nε
and ~U

−
S×Nε

, ~V
−
a,S×Nε

� �
! ~Ψ−

a,S×Nε
,

d. ~U
−
S×Nε

, ~V
−
b,S×Nε

� �
! ~Φ−

b,S×Nε
and ~U

−
S×Nε

, ~V
−
b,S×Nε

� �
! ~Ψ−

b,S×Nε
.

6. Collecting matrices together as in step 5-pert the column-wise

combination of the dihedral matrices give us the following four

sets of conformations.

a: CFa : ~Φ+
a,S×Nε

, ~Ψ+
a,S×Nε

� �
,

b: CFb : ~Φ+
b,S×Nε

, ~Ψ+
b,S×Nε

� �
,

c: CFc : ~Φ−
a,S×Nε

, ~Ψ−
a,S×Nε

� �
,

d: CFd : ~Φ−
b,S×Nε

, ~Ψ
−
b,S×Nε

� �
:

The conformation sets CFa, CFb, CFc, and CFd conclude the consid-

eration of perturbation ε0 � {−180�, 180�} for all conformations

F IGURE 15 H-bond geometries calculated for 395
conformations generated through the geometrical construction for
n = 8 residues. The ∡O = ∡ CnOnHn + 4, ∡H = ∡ OnHn + 4Nn + 4 and
HB = On� � �Hn + 4. The peak point (black) in-between the green lines
corresponds to ∡OnHn + 4Nn + 4 = 174.572� tending toward linearity.
The ∡O curve is shown in orange and follows closely the black curve
of ∡H. The colored, blue and red, scattered concentration of points
correspond to experimentally derived (ϕ, ψ ) dihedrals, respectively.
These are plotted against their corresponding parameter α values. The
total number of parameter α values plotted here are Lα = 49160. Refer
to Section 3.3 for details

F IGURE 16 Conformations αj, j � {1, …, S} which result in a
solution for ~va and ~vb with respect to the different perturbations ε0,k,
k� {1,…,Nε}. The red line here corresponds to ε0,51 = 0�. The blue line

corresponds the range of allowed perturbations ε0� {−151.2 � ,21.6�},
k� {9,…, 57} for α305 = 90�
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identified in the construction of helices and β-strands. It should be

noted here that although the matrices formed are of dimension

S × Nε it is only the feasible perturbation range, single or bifur-

cated, for which the dihedral matrices ~Φ and ~Ψ are evaluated.

7. Among the sets of conformations available as a result of the per-

turbations, conformations corresponding to ε0,51 = 0� and αj, j �

{1, …, S} contained in the set CFb revert back to the original confor-

mation for helices as shown in Figure 17(d).

8. A three dimensional plot of each of the dihedral sets described in

step 6 are plotted and shown in Figure SI.2 in Supporting Informa-

tion (see Section SI.5). The similarity between the Ψ dihedral

matrix plots ~Ψ+
a,S×Nε

, ~Ψ−
a,S×Nε

� �
and ~Ψ+

b,S×Nε
, ~Ψ−

b,S×Nε

� �
is noticeable

among these graphs. Thus, it is reasoned that the opposite handed-

ness of the conformations sets CFa and CFc is the sole conse-

quence of the opposite sign of the dihedral matrix set ~Φ+
a,S×Nε

and

~Φ−
a,S×Nε

. A similar reasoning is applied to the opposite handedness

of the conformational set CFb and CFd with sign switch now

between the dihedral sets ~Φ+
b,S×Nε

and ~Φ−
b,S×Nε

.

All the constructed structures in Figure 17(A)–(D) have their first

3 Cα-atoms superimposed. The starting structure used here is differ-

ent from that used in Figures 12 and 13 and shows the invariance of

the kinematic principle to the Cartesian coordinates of the starting

structure and its dependence only on consistent values of ξ, θ, and η.

3.5 | β-beta-turns

In addition to the ability of the kinematic principle to generate SSE's

ab-initio it can also be used to sample exhaustively the geometrically

feasible β-turn backbone conformations (see Figure 18). This requires

the inverse kinematic solution of a loop closure problem, achieved

here through an implementation of the BRIKARD program,49 and is

used to generate an ensemble of Nsample = 10,000 conformations. The

initial conformation used, to generate Nsample, is a canonical 4 residue

GLY structure obtained using construct, a subprogram of the

BRIKARD suite. The β-turn H-bond between residues (n, n + 3), of the

form Cn − On� � �Hn + 3 − Nn + 3, is modeled together with the interven-

ing backbone as a closed loop. Using inverse kinematics and referring

to Figure 19, we may set the bond angles ∡C1O1H4 and ∡O1H4N4

and the distance O1� � �H4 arbitrarily. These three loop closure condi-

tions, part of the H-bond parameter set, are kept constant for a partic-

ular ensemble but they may be prescribed to any desired value(s).

Including the torsion about O1� � �H4, there are seven rotatable bonds

available. For each triplet of parameter values, scanning the H-bond

torsion results in a 1-parameter family of closed loop solutions for all

the backbone torsions in the β-turn. We refer to the generated curves

as Bricard Curves.4 These Bricard curves, giving the distribution of the

dihedrals over Nsample, are superimposed on the experimental data

derived for that particular dihedral from a set NDunbrack = 1043

F IGURE 17 (A) Two 8 residue systems are shown where the original structure α = 83.7�, is shown in brown and the perturbed conformation
α = 83.7 � , ε0,57 = 21.6� is shown in cyan. H-bonds were not found in the perturbed conformation. (B) Similar to Figure 17(A), 8 residue systems
are shown where the original structure α = 90�, is shown in brown and the perturbed conformation α = 90 � , ε0,57 = 21.6� is shown in cyan the
H-bonds in the original structure are formed between On� � �Hn + 4, n � {1,2,3,4} whereas in the perturbed structure the H-bonds are formed
between atoms On� � �Hn + 3, n � {1,2,3,4}. All structure are constructed under the assumption δ = π. Torsional definition of the starting structure
used for construction is ω ≈ 180 � , ϕ, ψ variable.Figure 17: (C) five 3 residue systems α = 90� are shown for different perturbations
ε0 = {−151.2�, −90�, −21.6�, 0 � ,21.6�}, k = {9,26,45,51,57}. (D) An alternative conformation for a 3 residue system with α = 90� is shown for
ε0,51 = 0�. The conformation in cyan is obtained from the conformational set CFa whereas the structure in brown is obtained from the
conformational set CFb and is overlapped with the original starting structure. Thus, although three structure are shown here only two are visible.
Torsional definition for the starting structure used here is ϕ, ψ , ω ≈ 180�
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different protein structures as shown in Figure 18. This database of

PDB structures, including different models of the same structure, was

examined earlier by the Dunbrack Lab for new types of protein

turns.13 There is a good agreement between the kinematically

obtained backbone torsions and the experimental data. However, it

should be noted that this agreement depends critically on the criteria

used for the detection of β-turns in protein structures. The general

procedure followed for this study is outlined in the next section.

3.6 | Validation of the generated Bricard curves

1. A list of NDunbrack PDB-ID's is used to obtain the structures in a

PDB format from the RCSB-Protein Data Bank.5 All model types

of these structures, that were examined for determining new pro-

tein turns, were collected into separate PDB's resulting in an

ensemble Nexp = 1075 PDB structures.

2. Dunbrack's code for turn detection is applied to each structure si,

i � {1, …, Nexp} in the ensemble and the corresponding output of

the turn detection, OPi, i � {1, …, Nexp} stored in separate files.

These output files, OPi, i � {1, …, Nexp} contain details such as the

starting and ending residues for different turn nomenclatures. This

is the only information we make use of in our study here. Sample

output files generated by DunbrackTurn_detect.sh can be

found in the Sample Output folder within the downloadable

BetaTurn18 folder provided by the Dunbrack Lab at https://

github.com/sh-maxim/BetaTurn18.

3. First, hydrogens are added to each si, i � {1, …, Nexp} and sec-

ond, the corresponding output files OPi, i � {1, …, Nexp} are

scanned for all types of turns of length four residues. For each

si, i � {1, …, Nexp}, our objective is to collected the Cartesian

coordinates of full backbone atoms that is, N, Cα, C, and O of

residues n through n + 3. The hydrogen attached to the Nn + 3

atom is also included in the coordinate list. A schematic repre-

sentation of all atoms considered in our calculations is shown

in Figure 19. As each si, i � {1, …, Nexp} may contain more than

one β-turn, n and thereby n + 3 take on different values within

each si, i � {1, …, Nexp}. Consequently, we identified,

Nβ = 21,091 β-turns in Nexp structures. We are interested in

the hydrogen atom attached to Nn + 3 atom for (1) calculation

F IGURE 18 β -turn Bricard
Curves generated for variable Cα

positions and variable parameter α
but fixed H-bond geometry.
α � {81.82 � ,109.78�} at Cα,2 and
α � {78.97 � ,108.80�} at Cα,3.
BRIKARD generated conformations,
B: Without Ramachandran criteria
and R: With Ramachandran criteria,

are shown as red and green curves,
respectively in the figure. 10,000
points each are used to generate
these curves. Experimentally
derived values are shown as dots
and are 21,091 in number. The H-
bond geometry is the closure
criteria predefined for sampling and
is given in step 5-brik-curve of the
validation process. Bricard Curves
with respect to the torsions about
On…Cn : 4 − 3 and Nn + 3…
Hn + 3 : 13 − 17 are provided in the
Supporting Information (see also
Figure SI.3)
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of the torsion about the covalent bond Nn + 3 − Hn + 3 and (2)

angle at Hn + 3 that is, ∡Nn + 3Hn + 3On. Since, these calculations

are not possible with proline in the n + 3 position scan results

of such kind are discarded.

4. For each of the β-turns Bj, j � {1, …, Nβ} all 6 H-bond parameters

can easily be computed from the Cartesian coordinates of the 17

atoms listed. Additionally, the backbone dihedrals (ϕx, ψx)x = {2,3}

can also be easily computed. In Figure 18 a scattered plot of tor-

sion about 5 − 6 and 9 − 10 versus torsion about 17 − 4 is shown.

The vector length of (ϕx, ψx)x = {2,3} and the torsion about 17 − 4

is Nβ.

5. The closure criteria defined for modeling of a H-bond in (n, n + 3)

type turns is set to the following values: On� � �Hn + 3 = 2.095 Å,

∡CnOnHn + 3 = 116.991� and ∡Nn + 3Hn + 3On = 156� (see

Figure SI.4). With this criteria set, BRIKARD is now used to ran-

domly sample the torsion about 4 − 3. All generated conforma-

tions sb, b � {1, …, Nsample} satisfy the closure criteria and provide

us with Cartesian coordinates for the calculation of the H-bond

parameters as well as the backbone torsions mentioned in step 4.

Alternatively, it is also possible through this design to sample the

torsion about the H-bond 17 − 4 instead of the 4 − 3 torsion.

From the ring design perspective there is no superiority in the

choice of the torsion used for sampling.

6. This step is optional: For the sake of computational detail, the

conformations sb, b � {1, …, Nsample} generated through BRIKARD

contains the side-chain information. Since, we are only interested

in the backbone atoms there is a backbone atoms extraction pro-

cedure applied to each sb, b � {1, …, Nsample} similar to that

defined in step 3 to obtain the specific Cartesian coordinates of

the 17 atoms shown in Figure 19. The process of obtaining the

H-bond parameters and torsions is same as that outlined in

step 4.

7. Next, the same closure criteria defined in step 5 is used in conjunc-

tion with the Ramachandran's criteria for allowable backbone tor-

sions to generate an ensemble, NR = 10,000. The conformations

generated undergo the same process as those outlined in steps 5

and 6 for the calculation of H-bond parameters and relevant

torsions.

The Cα,1 − Cα,4 distance for all sb, b � {1, …, Nsample} and all Ram-

achandran feasible conformations lie within the range of 4.68–5.95 Å,

well within the cut-off range of 7 Å used for experimentally derived

structures. The results shown in this section demonstrate the ability

to explore backbone torsional dependence for a given set of accept-

able H-bond parameters. Repeated application with different closure

criteria can be used to investigate the limits of the H-bond

geometries.

4 | CONCLUSIONS

In this work, ideas from Kinematics were used to construct a geo-

metrical characterization of three common SSE motifs, helices,

β-strands and β-turns. While for a simple helical polygonal line it

suffices to consider simple analytic geometry formulas, transitioning

to a periodic chain with multiatom, identical units naturally leads to

kinematics. Whitworth's relations given by Equations (5) and (6)

were utilized to segregate the interrelation of the helical parame-

ters Hp to the analysis of helical structures. Its derivation utilizes a

set of intrinsic parameters μ, β, γ, and α to relate the rise per resi-

due, h, and radius r, of the helix as functions of these parameters

(see Figure 20). A well known tool from the theory of spherical

mechanisms in Kinematics,52 the Tetrahedral Equation (Equation (21))

was then used to relate the orientations of peptide planes about

successive virtual Cα − Cα axes. Finally, the molecular geometry

software BRIKARD was used to solve the loop closure problem for

β-turns.

Some of our methods resemble closely the mathematical

treatment of the loop closure problem, developed by Coutsias

et al.58 However, the formulation of the periodic backbone

problem for the former two SSE motifs is new: an analytical

solution is derived for ideal helical polypeptide backbones, com-

posed of planar peptide units having prescribed inclinations to

the helical axis. The Equations (18), (23), (31), and (32) applied

together express the backbone torsions (ϕ, ψ ) in terms of the

distance between next-nearest neighboring Cα atoms, that is,

distance between Cα,n − Cα,n + 2 atoms. This is parametrized by

the angle α subtended at their shared neighboring Cα atom, that

is, Cα,n + 1. Favorable peptide plane orientations align Cn = On

and Nn + 4 − Hn + 4 groups and are consistent with experimen-

tally observed H-bond favorable conformations, which are

arrived at without necessitating an a priori distance dependent

constraint imposed for an H-bond formation. In this sense, our

F IGURE 19 A schematic representation of the atoms considered
in the analysis of β-turn type, for both experimentally derived and
BRIKARD generated structures, are numbered 1 through 17. The ring
model used in BRIKARD is defined as R : {3,5,6,7,9,10,11,13,17,4}.
The parameters for the formation of H-bonds, considered in the study
of backbone torsional variations through Bricard Curves, are three
torsions, two angles and one distance. The torsions are shown as
circles, the angles ∡C1O1H4, and ∡N4H4O1 are marked and the

distance O1� � �H4 is shown as a broken line. Torsion definition, of the
three circles shown, with respect to the closed ring model are (a) 13
− 17 : 11 − 13 − 17 − 4, (b) 17 − 4 : 13 − 17 − 4 − 3, and (c) 4
− 3 : 17 − 4 − 3 − 5
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approach is also one of construct-and-test, similar to the classi-

cal search for helical conformations. However, ours is a 1-

parameter search which yields H-bond suitable solutions for a

given range of allowable α values. Geometrically, the allowable

region is given by α � {180 � − (ξ + θ + η), 180 � − (θ − ξ − η)},

that is, α � {35.126 � ,106.228�} (see Table 3 for the definition

and values of ξ, θ, η used in this work), for a zero volume con-

strained motion tetrahedral similar to that shown in Figure 5.

The numerical range, obtained post kinematic consideration, of

α values consistent with H-bond formation,

α � {35.28 � ,106.2�}, is contained within this geometrically fea-

sible range. It should be noted here that the values of ξ, θ, and

η affect both the geometrical and numerical range of allowable

α parameter values.

The parameter α coupled with the off vertical planar pep-

tide inclination ε0 enter in the kinematic solution, Equation (36),

and the general Equations (32) and (31). Our formulas result in

families of ideal helices, right handed helices, left handed heli-

ces, and their opposite handed conformations. These occupy

different regions of the ϕ − ψ space and are a consequence of

the different branches of the kinematic solution (see step 5 in

Section 3.4). The ϕ − ψ map, shown in Figure 21, is a 2-D pro-

jection of 4-D surface formed by α, ε0, ϕ, and ψ where α and ε0

serve as a coordinate system. This coordinate system is super-

posed on the ϕ − ψ map and helps to delineate bounds relevant

to experimental helical conformations. Mathematically, it will be

of relevance to show that the Ramachandran feasible region for

SSE motifs or the ϕ − ψ map as a whole is a conformal map of

the coordinate system introduced here. The torsional pairs

associated with ideal helices, within the α − ε0 bounds, of these

types fall neatly in a restricted sector of the helical region and

lends to the biological relevance of the constructed conforma-

tions. The general nature of the applied perturbation ε0 is evi-

dent from Figure 16 which shows that the allowable range of

the parameter α decreases with an increase in perturbation and

is viewed as the shortening of the horizontal lines. Moreover,

we provide a step-by-step numerical protocol for deriving all

such ideal and nonideal helices.

It is possible to view an H-bond arrangement between (n, n

+ k), k = {3,4,5} residues as a closed kinematic chain, Figure 20

shows such an arrangement for k = 4. Thus, the problem of finding

H-bond capable ideal helices could also be approached as a prob-

lem in inverse kinematics with appropriate constraints, distance

On� � �Hn + 4, ∡ Hn + 4OnCn, and ∡Nn + 4Hn + 4On, to include pertur-

bations to periodicity. This is precisely the path undertaken for

β-turn (see Figure 19). By comparing with Dunbrack's database of

structures,13 we show that using parameter values in the central

voxel of three-parameter space - two angles and a distance (see

Figure SI.4)—we get Bricard curves for torsional correlations that

span well the regions of physically occurring structures (Figure 18,

2-D Figure SI.5, 3-D Figure SI.6). Thus the kinematic analysis suc-

cessfully recapitulates the physical space of β-turns (for a

F IGURE 21 A backbone dihedral (ϕ, ψ ) map is shown here. The
green curves correspond to ε0 = 0� for the different sets CFa, CFb, CFc
and CFd. The colored curves represent some of the perturbations in
the different sets and are marked by the values of ε0. The bold
colored curves form bounds for the four regions labeled R1, R2, R3,
and R4. It should be noticed that the same regions may be bound by
single colored bold curves by traversing across the perturbation
curves. A parameter α bound with subscripts denoting the
conformational sets it belongs to is also given, αa refers to bounds for
the CFa conformational set. The two colored curve bounds used here
highlight the fact that the same region can be accessed by different
conformational sets. For example, R1 is completely accessible by
either CFb or CFd conformational sets. As mentioned earlier, these sets
are of opposite handedness and their individual accessibility is a
consequence of the symmetry of the conformations. The red contour
lines correspond to the frequently observed regions of helices (right
and left handed) and β-sheets while the yellow regions mark the
allowed regions for these motifs

F IGURE 20 A schematic representation of the intramolecular
helical H-bond, On� � �Hn + 4
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distribution of the experimentally derived parameter α values and

dihedrals (ϕ, ψ ) see Figure SI.7). The spread of the physical points

is of course to be expected due to the variability consistent with

variations in the closure parameters.
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ENDNOTES
1 The variable KM here refers to parameter names used by Kortemme

et al. 47

2 http://www.cgl.ucsf.edu/chimera/1.4.1/docs/UsersGuide/idatm.html
3 http://dunbrack.fccc.edu/Guoli/pisces_download.php
4 Bricard Curves since they are generated using the flexibility analysis of

tetrahedral equations pioneered by R. Bricard. 3

5 https://www.rcsb.org
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