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Abstract – Several fascinating phenomena observed for 2D turbulence in bounded domains are discussed. The first part of this paper concerns a short
overview of the non-trivial behaviour of freely evolving 2D turbulence in square domains with no-slip boundaries. In particular, the Reynolds number
dependence of, and the influence of the initial conditions on spontaneous spin-up of the flow, which is characterised by a sudden increase of the absolute
value of the angular momentum of the flow, is investigated in more detail. In a second set-up we have investigated forced 2D turbulence in circular
containers with no-slip walls. A comparison with the double periodic case reveals that domain-filling structures, always observed in the double periodic
cases, are being prevented from emerging. Wall-generated, small-scale structures are continuously injected into the interior of the domain, destroying
larger structures and maintaining the turbulent flow field. 2001 Éditions scientifiques et médicales Elsevier SAS
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1. Introduction

In this paper we discuss several interesting phenomena for decaying and forced 2D turbulence in bounded
domains with no-slip boundary conditions. The first part concerns decaying 2D turbulence and the surprising
phenomenon of spontaneous spin-up of the flow during the decay process. In the second part a few examples
of forced 2D turbulence in a circular domain with a no-slip wall will be discussed in order to show that also for
forced 2D turbulence the presence of no-slip boundaries will modify the time evolution of the flow dramatically.
In section 2 a short overview of theoretical and numerical aspects of 2D turbulence is presented, and in section 3
a short overview of the numerical method to simulate decaying 2D turbulence in bounded square domains is
given. Additionally, the different initialisation procedures of the flow are presented there. The role of initial
conditions and Reynolds number dependence on the spin-up process is discussed in more detail in section 4.
Results of forced 2D turbulence in a bounded circular domain are presented in section 5, and the main results
of this paper are summarised in section 6.

2. Decaying 2D turbulence in square domains with no-slip walls

During the last decades many theoretical and numerical studies have been carried out to improve the
understanding of two-dimensional (2D) turbulence.1 Thirty years ago the first phenomenological theory of
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1 For a more comprehensive overview of the developments in the field of 2D turbulence until 1980 we refer to a survey on hydrodynamic and plasma
applications by Kraichnan and Montgomery [1].
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forced 2D turbulence was presented by Kraichnan [2] and by Batchelor [3]. According to this theory, the
energy spectrum shows an inverse energy cascade with ak−5/3 inertial range for wave numbers smaller than
the wave numberki associated with the injection scale of the forcing (i.e.k < ki). A direct enstrophy cascade,
characterised by ak−3 inertial range, is predicted fork > ki . Numerical studies of forced 2D turbulence with
periodic boundary conditions more or less support the Kraichnan–Batchelor picture [4–7], although steeper
spectra for large wave numbers are also observed [6]. The energy spectra obtained for numerical simulations
of decaying 2D turbulence with periodic boundaries show that the inverse cascade is usually not very clearly
observed, and the direct enstrophy cascade is often only established as a transient state before the viscous range
starts to dominate the large wave number spectrum [8,9]. Additionally, the appearance of coherent vortices
during the decay process introduces steeper spectra for large wave numbers than predicted by Kraichnan and
Batchelor. It is assumed that due to the presence of a hierarchy of coherent vortices the energy spectrum
becomes more steep [8].

The emergence and the temporal evolution of a hierarchy of coherent vortices in decaying 2D turbulence has
been subject to many analytical, numerical and experimental studies [10–18]. An interesting theoretical result is
the scaling theory as put forward by Carnevale et al. [14,15]. They assumed that the total kinetic energyE of the
flow and the vorticity extremumωext of the dominant vortices are conserved in freely evolving 2D turbulence.
It is also supposed that the average number density of vortices decreases algebraically:ρ(t) ∝ t−ζ , with ζ

so far undetermined. Dimensional analysis then yields for the average number densityρ(t) ∝ L−2(t/T )−ζ ,
the average enstrophyZ(t) ∝ T −2(t/T )−ζ/2, the average vortex radiusa(t) ∝ L(t/T )ζ/4 and the average
mean vortex separationr(t) ∝ L(t/T )ζ/2. The characteristic length scaleL and time scaleT are defined by
L= ω−1

ext

√
E andT = ω−1

ext, respectively. The power-law exponent is a free parameter which has to be predicted
on the basis of numerical simulations. Computations with a simple, punctuated-Hamiltonian, dynamical model
for the evolution of a system of coherent vortices [14] and also numerical simulations of the Navier–Stokes
equations, although hyperviscosity has been used, show thatζ is approximately 0.72±0.03 [18]. Measurements
of the evolution of several vortex properties, such as vortex density, vortex radius etc., have been performed
recently in experiments of decaying 2D turbulence in thin electrolyte solutions in a rectangular container [16,
17]. These investigators claim correspondence between their results and the theory proposed by Carnevale and
coworkers.

In several studies it has been observed recently that vorticity produced near no-slip walls modifies the decay
process of 2D turbulence considerably [19–21]. The source of vorticity is found in the thin boundary layers at
the no-slip walls, and after boundary layer detachment these filaments are either advected into the interior of
the flow domain or they roll up and form new vortices. One of the tools to understand the role of the boundaries
in the evolution of turbulence is by comparing the energy spectra computed for simulations with no-slip and
with periodic boundary conditions. It is obvious that isotropy and homogeneity are absent when no-slip walls
confine the flow. As a consequence an alternative approach has to be used to measure the energy spectra for the
no-slip and the periodic case. For this purpose, a 1D spectrum is used based on the 2D Chebyshev expansion
of the (dimensionless) kinetic energy of the flow

E(x, y, τ) =
N∑

n=0

N∑
m=0

Ênm(τ)Tn(x)Tm(y), (1)

along a line parallel to one of the boundaries. TheTn(x) andTm(y) are the Chebyshev polynomials, and the
Ênm(τ) represent the (time-dependent) Chebyshev spectral coefficients of the kinetic energy. The 1D spectrum
Ŝn(τ ) is defined as an average of the symmetrically equivalent contributions along the linesx = a, x = −a,
y = a, andy = −a which are all parallel to one of the boundaries. The 1D spectrum of the contribution along
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the linex = a, denoted bŷSx=a,n(τ ), is expressed as

Ŝx=a,n(τ ) =
∣∣∣∣∣

N∑
m=0

Êmn(τ)Tm(a)

∣∣∣∣∣
�τ

, (2)

where the subscript�τ states that the 1D spectrum is averaged over the time interval[τ − �τ, τ ] with �τ

of the order of the initial eddy turnover time. The 1D spectra for the simulations with periodic boundary
conditions are computed in a similar way. An interesting observation is the following: the inertial range of the
1D energy spectrum, measured along a line parallel with one of the boundaries not too far from this boundary,
shows ak−5/3-slope up to the smallest wave numbers used in the simulations (length scales as small as the
enstrophy dissipation scale are well resolved). The presence of thek−5/3-slope for small wave numbers is due
to the production of small-scale vorticity filaments near the no-slip walls [20]. The direct enstrophy cascade is
virtually absent at early times during the decay process. To illustrate this remarkable feature we have plotted
in figure 1 the averaged 1D energy spectrum for runs with freely evolving 2D turbulence, withRe=20,000,
in double periodic domains and for similar runs in domains with no-slip boundaries. The average spectrum
computed for the runs with periodic boundary conditions shows reasonable agreement with the predictedk−3-
slope for large wave numbers. This spectrum is measured after approximately four initial eddy turnover times
(τ = 4). The 1D energy spectrum for the no-slip runs, measured near the boundaries, shows at the same time
a k−5/3-slope instead of ak−3-slope (figure 1(b)). When the spectra are measured at a larger distance from
the boundary, the cleark−5/3-slope slowly disappears but the spectra for runs with periodic and with no-slip
boundary conditions remain different (see for more details [20]). At later times the energy spectrum shows the
build-up of a direct enstrophy cascade with ak−3 inertial range together with the inverse energy cascade for
smaller wave numbers (seefigure 1(c)). The energy spectrum shows a kink, which slowly moves to smaller
wave numbers. The position of the kink, which represents the injection scaleki , can clearly be associated with
the growth of an averaged local boundary-layer thickness. The spectra as observed in these simulations differ

Figure 1. Averaged 1D energy spectra for runs withRe= 20,000.
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Table I. Power-law exponents for runs with no-slip and with periodic boundary conditions forRe= 5,000 and 10,000. The last row represents the
exponents as obtained form the theory by Carnevale and coworkers withζ = 0.72.

Re 〈ωext√
E

〉no-slip 〈Z/E〉no-slip 〈ρ〉no-slip 〈r〉no-slip 〈a〉no-slip

5,000 −0.35± 0.05 −0.80± 0.1 −0.85± 0.1 0.45± 0.07 0.25± 0.03

10,000 −0.30± 0.05 −0.70± 0.1 −0.75± 0.1 0.40± 0.07 0.25± 0.03

Re 〈ωext√
E

〉periodic 〈Z/E〉periodic 〈ρ〉periodic 〈r〉periodic 〈a〉periodic

5,000 −0.47± 0.04 −1.13± 0.05 −1.13± 0.1 0.65± 0.05 0.25± 0.03

10,000 −0.38± 0.04 −0.98± 0.05 −1.03± 0.1 0.60± 0.05 0.25± 0.03
ωext√
E

Z/E ρ r a

0 –0.36 –0.72 0.36 0.18

from the well-known Kraichnan–Batchelor picture of 2D turbulence mentioned earlier, and differ also with
spectra computed from our simulations with periodic boundary conditions.

Actually, the boundaries act as generators of vortices, thus modifying the evolution of vortex statistics.
Numerical studies of decaying 2D Navier–Stokes turbulence in containers with no-slip boundaries show a
distinctly different evolution of vortex statistics, at least up to integral-scale Reynolds numbers of 20,000, than
predicted on basis of the theory proposed by Carnevale et al. [14,15]. The evolution of vortex statistics of freely
evolving 2D turbulence in square domains with no-slip boundaries is also compared with similar numerical
experiments with periodic boundary conditions, and the differences between the two approaches are striking.
In table I we have summarised the power-law exponents computed for runs with periodic and with no-slip
boundary conditions, withωext/

√
E, Z/E, ρ, r , and a the normalised vorticity extremum, the normalised

enstrophy, the vortex density, the mean vortex separation and the vortex radius, respectively, and〈 · 〉 denotes
an ensemble average over approximately 10 runs (see for more details [21]). It is still an open question whether
the observed difference in the evolution of vortex statistics for decaying 2D turbulence depends indeed on the
type of boundary conditions. Higher Reynolds number simulations are necessary to investigate the sensitivity
to particular boundary conditions. An additional complication, which has not been discussed here, is the role
of the initial flow field on vortex statistics.

We have also computed the power-law exponents for the final decay stage where viscous effects are relatively
important [21], and these data show agreement with the measured values by Hansen et al. [17] in experiments
with relatively small initial integral-scale Reynolds number of the flow (Re≈1,000). Therefore we have the
impression that any agreement between the power-law exponents obtained in these experiments and the power-
law exponents from the theory by Carnevale and coworkers is rather accidental; the results seem to coincide
better with our final decay stage data.

Another interesting observation from numerical simulations of decaying 2D turbulence in square domains
with no-slip walls is the spontaneous spin-up of the flow due to shear and normal forces exerted by the
walls on the fluid in the container [19]. In the first part of this paper we discuss this issue in more detail
with numerical data from high Reynolds number decaying turbulence simulations with different initialisation
procedures. Before proceeding to this issue we give an outline of the numerical method and introduce the two
initialisation procedures used in present spin-up study.

3. Initialisation procedure

The numerical simulations of the 2D Navier–Stokes equations on a bounded domain with no-slip walls were
performed with a 2D de-aliased Chebyshev pseudospectral method [22]. The flow domainD with boundary
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∂D is a two-dimensional square cavity. Cartesian coordinates are denoted byx andy, and the velocity field is
denoted byu = (u, v). The equation governing the (scalar) vorticityω = ∂v

∂x
− ∂u

∂y
is obtained by taking the curl

of the momentum equation. The following set of equations has been solved numerically:

∂ω

∂t
+ (u · ∇)ω = ν∇2ω, (3)

∇2u = k × ∇ω, (4)

with the boundary conditionu = 0 and enforcingk · ∇ × u = ω on ∂D by an influence matrix method [22].
An initial condition,ω|t=0 = k · ∇ × ui , whereui is the initial velocity field, is also supplemented. In present
numerical simulations of the Navier–Stokes equations neither hyperviscosity nor any other artificial dissipation
has been used. The time discretisation of the vorticity equation is semi-implicit: it uses the explicit Adams–
Bashforth scheme for the advection term and the implicit Crank–Nicolson procedure for the diffusive term.
Both components of the velocity and the vorticity are expanded in a double truncated series of Chebyshev
polynomials. All numerical calculations, except the evaluation of the nonlinear terms, are performed in spectral
space, i.e. the Chebyshev coefficients are marched in time. Fast Fourier Transform methods are used to evaluate
the nonlinear terms following the procedure designed by Orszag [23], where the padding technique has been
used for de-aliasing.

The integral-scale Reynolds number of the flow is defined asRe= UW/ν with U the RMS velocity of the
initial flow field, W the half-width of the container andν the kinematic viscosity of the fluid. Time has been
made dimensionless byW/U and vorticity byU/W . The initial micro-scale Reynolds number is defined as:
Remicr = 2Re/ω0 [24], with ω0 the (dimensionless) initial RMS vorticity.

Two kinds of numerical experiments have been performed: a set of numerical simulations with a random
initial velocity field and relatively small integral-scale Reynolds numbers (1,000� Re�2,000), and another
set with 10× 10 slightly perturbed Gaussian vortices on a regular lattice. The integral-scale Reynolds number
for this latter set of simulations is considerably higher: 5,000� Re�20,000. Both initialisation procedures are
briefly described.

For the first kind of numerical experiments the initial condition for the velocity field, denoted byui, is
obtained by a zero-mean Gaussian random realisation of the first 65× 65 Chebyshev spectral coefficients of
bothui andvi , and subsequently applying a smoothing procedure in order to enforceui = 0 at the boundary of
the domain. The varianceσnm of the velocity spectrum ofui is chosen as

σ 2
nm = n

[1+ (1
8n)

4]
m

[1+ (1
8m)4] , (5)

with 0� n,m� 64, andσnm ≡ 0 for n,m � 65, and the resulting flow field is denoted byU(x, y). The
smoothing function is chosen asf (x) = [1 − exp(−β(1 − x2)2)], with β = 100. The initial velocity field
is thus:ui(x, y) = f (x)f (y)U(x, y), where the flow field is normalised in order to enforce theL2-norm of the
velocity per unit surface of the initial flow field to be equal to unity. The minimum number of Chebyshev modes
required to get a well-resolved simulation of the flow dynamics for this particular kind of computations scales
like N � 6

√
Re[25]. We have usedN = 180, 256 and 288 forRe=1,000, 1,500 and 2,000, respectively, all

satisfying the well-resolvedness condition. In these numerical experiments we find for the dimensionless initial
RMS vorticityω0 = 28.0± 0.5, thusRemicr

∼= 71, 107 and 143, respectively.

The initial condition for the velocity field in the second set of numerical experiments consists of 100
nearly equal-sized Gaussian vortices. The vortices have a dimensionless radius of 0.05 and a dimensionless
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absolute vortex amplitude of|ωmax| ∼= 100. Half of the vortices have positive circulation, and the other
vortices have negative circulation. The vortices are placed on a regular lattice, well away from the boundaries,
with a random displacement of the vortex centres equal to approximately 6% of the dimensionless lattice
parameterλ, with λ ∼= 0.17. A smoothing function, similar to the one employed in the previous initialisation
procedure, has been used in order to ensure the no-slip condition exactly. The initial micro-scale Reynolds
number for these simulations is substantially higher then for the previous set:Remicr

∼= 263,526 and 1052,
respectively (ω0 = 38.0± 0.5). These computations are more demanding and require a relatively large number
of Chebyshev modes for the simulations. The number of modes depends on the local enstrophy dissipation scale
λd

∼= 2π(ν3/ε)1/6, with ε the instantaneous enstrophy decay rate per unit area. The local enstrophy dissipation
scale has to be resolved reasonably well in the domain and near the boundaries. The number of modes is
now 257, 361 and 513 forRe=5,000, 10,000 and 20,000, respectively. For this set of initial conditions we
can introduce a new dimensionless timeτ , defined asτ = 1

10ω0t (with t the dimensionless time based on the
characteristic parametersW andU ), andτ = 1 corresponds approximately with the initial eddy turnover time
of the Gaussian vortices. We will employ the same definition ofτ for the simulations with random initial
vorticity fields, because it appeared that the number of coherent structures which arise from the random flow
field is, by accident, approximately 100 (see [25], figure 5c). Note, however, that we have to use the slightly
smaller value for the RMS vorticity in that case:ω0 = 28.0.

The kinetic energyE(t), the enstrophy*(t) and the palinstrophyP(t) of the flow are defined as

E(t) = 1

2

∫
D

u2(r, t)dA, (6)

*(t) = 1

2

∫
D

ω2(r, t)dA, (7)

P(t) = 1

2

∫
D

(∇ω(r, t)
)2

dA, (8)

with D denoting the domain and dA an infinitesimal surface element ofD. The meaning of the energy and
the enstrophy is straightforward. The palinstrophy, however, is less often used. It is a global average of the
vorticity gradients in the flow. For decaying high Reynolds number 2D turbulence in double periodic domains
vortex mergings can be recognised by inspection of the palinstrophy: each merging is represented by a strong
peak in the palinstrophy evolution. When no-slip boundaries are present the time evolution of the palinstrophy
is completely dominated by vortex-wall interactions. For a bounded domain with no-slip walls the time rate
of change of the energy is exactly the same as found for flows in domains with periodic boundary conditions:
dE(t)

dt = −2ν*(t). The time rate of change of the enstrophy contains an additional term which is related with
the vorticity as well as the vorticity gradients at the no-slip boundary (see also [26] for flows in an annular
geometry),

d*(t)

dt
= −2νP (t) + ν

∮
∂D

ω(r, t)
∂ω(r, t)

∂n
ds, (9)

with ∂/∂n denoting the normal derivative with respect to the boundary∂D and ds the length of an infinitesimal
element of the boundary∂D. The ensemble-averaged energy, enstrophy and palinstrophy for numerical
experiments (withRe=10,000 and where the average is based on eight different runs) with periodic and with
no-slip boundaries have been plotted infigures 2(a)–(c). The ensemble-averaged values ofE(t), *(t) andP(t)

are computed up toτ = 200 for the periodic runs and up toτ = 500 for the no-slip runs. Enhanced dissipation
of kinetic energy of the flow in the simulations with no-slip boundaries is clearly visible infigure 2(a). The
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Figure 2. The averaged (a) kinetic energyE(τ), (b) enstrophy*(τ) and (c) palinstrophyP (τ) for runs with periodic boundaries (dotted lines) and
no-slip boundaries (drawn lines). The initial integral-scale Reynolds number is 10,000.

effective Reynolds numberRe(τ ), based on the kinetic energyE(τ), has decreased atτ = 200 to approximately
5,000 for the no-slip runs and 7,500 for the runs with periodic boundary conditions. The decrease of the
enstrophy (figure 2(b)) indicates that self-organisation of the flow, and the associated appearance of large
scale vortices (note that the average size of the vortices can be inferred from

√
E(τ)/*(τ)), occurs more

rapidly for freely evolving 2D turbulence with periodic boundaries compared to the no-slip case (as might
be expected because no-slip walls serve as a source of small-scale vorticity). The role of no-slip walls on
the palinstrophy evolution is illustrated infigure 2(c): the production of vorticity gradients is substantially
larger, and the subsequent decay of the palinstrophy is slower than for runs with periodic boundary conditions
(the palinstropy is one to two orders of magnitude smaller in the periodic case). Vortex-wall interactions are
represented by the spikes in the palinstrophy plot for the no-slip case. Note that these plots represent ensemble
averages, thus most of the spiky behaviour has been suppressed by the averageing procedure.

4. Spontaneous spin-up during the decay of turbulence

The flow evolution of decaying 2D turbulence on a square domain with no-slip walls is characterised by three
stages. Rapid self-organisation due to merging of like-sign vortices and the formation of medium-sized dipoles
are the main features of the initial stage. Actually, this stage is the vigorous turbulent decay phase. The second
stage is characterised by the presence of strong vortex-wall interactions and the formation of increasingly larger
coherent structures. In the third stage a relaxation process to a tripolar or monopolar structure is observed. This
structure, with a size comparable with the container dimension, is more or less situated in the centre of the
container. During the final stage, when most of the initial kinetic energy of the flow is dissipated, the flow is
dominated by viscous relaxation. This part of the decay process will not be discussed. During the initial and
intermediate decay stage a remarkable process is observed for the large majority of the runs: the (absolute
value of the) angular momentum of the flow, which was initially approximately zero, increases dramatically.
This sudden increase of the angular momentum reflects the ‘spontaneous spin-up’ of the flow. Since the angular
momentum of unbounded viscous flows is conserved when the total circulation is zero, spontaneous spin-up is
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a process which is entirely due to the finiteness of the flow. This is easily understood by considering the angular
momentumL(t), defined with respect to the centre of the container,

L(t)=
∫
D

[
xv(r, t) − yu(r, t)

]
dA

= −1

2

∫
D

r2ω(r, t)dA, (10)

and its time derivative. The expression ofL(t) in terms of the vorticity is obtained by partial integration and
using the boundary condition for the velocity. It is clear from equation (10) that two versions of dL(t)/dt can
be derived which are equivalent: one based on the Navier–Stokes equations,

dL(t)

dt
= 1

ρ

∮
∂D

p(r, t)r · ds + ν

∮
∂D

ω(r, t)(r · n)ds, (11)

and one derived from the vorticity equation (3),

dL(t)

dt
= −1

2
ν

∮
∂D

r2∂ω

∂n
ds + ν

∮
∂D

ω(r, t)(r · n)ds, (12)

with n the unit vector normal to the boundary,∂/∂n denoting the normal derivative with respect to the boundary
∂D and ds an infinitesimal tangential element of the boundary∂D. The last contribution to equation (11) and
(12) is simplified in case of a square domain:νW

∮
∂D ω(r, t)ds, and it represents the stress on the no-slip

boundary. In the derivation of equations (11) and (12) we have used that the total circulation for flows in
bounded domains with stationary no-slip walls is zero. We like to mention both formulations of dL(t)/dt
because it clarifies the role of several physical processes determining the time-dependence of the angular
momentum. From both relations we conclude that the total shear stress along the boundary influences the
time rate of change ofL(t). Additionally, a pressure contribution will also modify the time rate of change of
L(t). It is clear from equation (12) that this contribution should be proportional to the normal vorticity gradient
integrated over the boundary.2 It is interesting to note that the productν ∂ω

∂n
should be finite for vanishing

viscosity (thereby assuming a finite pressure contribution in the expression for dL(t)/dt in this limiting case).

Spontaneous spin-up of decaying 2D turbulence with a random initial velocity field is clearly observed for
Re=1,500 and 2,000. ForRe=1,000 viscous effects are relatively strong, and the spin-up process occurs less
frequently. Four examples of spin-up are shown infigure 3: two examples from decaying 2D turbulence with
random initial vorticity field (figure 3(a)) and two examples obtained from runs with initially 100 Gaussian
vortices on a regular lattice (figure 3(b)). We first discuss briefly spontaneous spin-up from random initial
velocity fields. The absolute value of the (dimensionless) angular momentum of the flow in one of these runs
(see upper curve infigure 3(a)) increases suddenly from the dimensionless value|L| ∼= 0 to |L| ∼= 0.3 during
a short time interval (15� τ � 50), and decays afterwards very slowly (|L| ∼= 0.15 for τ = 300). Inspection
of the vorticity contour plots of this simulation shows, as is the case for all runs with similar initial conditions
and which show spontaneous spin-up, that the maximum absolute angular momentum is associated with the
appearance of one relatively strong vortex somewhere in the centre of the container: the spin-up process is
dominated by the formation and dynamics of one vortex. In this set of simulations it appears that approximately
65% of the runs show spontaneous spin-up; 20% of the runs show weak spin-up (i.e. at early times spin-up is
observed but a relatively rapid decay of the dominant vortex results in fast decay of|L|) and 15% of the runs

2 Equivalence of both terms can also be shown by expressing the pressure boundary condition for present problem in terms of the normal vorticity
gradient at the boundary.
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Figure 3. The dimensionless angular momentum for four numerical simulations in square containers with no-slip walls. In (a) the flow is initialised
with a random initial vorticity field (Re= 2,000) and in (b) with an array of 10× 10 Gaussian vortices (Re= 10,000).

Table II. We have summarised for each integral-scale Reynolds number the total number of runsN , the number of runs showing spontaneous spin-up
(Ns ) and weak spin-up (Nw), the characteristic spin-up timesTspin-up and amplitudesAspin-up. The error inTspin-up is approximately 40%, and the

error inAspin-up is roughly 15%.

Re N Ns Nw Tspin-up Aspin-up

1,000 12 7 1 36 0.14

1,500 12 8 2 60 0.20

2,000 13 8 3 51 0.22

5,000 12 8 3 148 0.44

10,000 8 8 0 149 0.67

20,000 2 2 0 136 0.56

show no spin-up at all. Several characteristics from an ensemble of simulations with random initial velocity
field are summarised intable II. The characteristic spin-up amplitudeAspin-up summarised intable II is based
on the average value of the maximum of|L(t)| of the runs showing spontaneous spin-up. The average time
necessary for spin-up of the flow is denoted by the characteristic spin-up timeTspin-up (only data from runs
showing spontaneous spin-up are used for the ensemble average).

The spontaneous spin-up phenomenon is even more pronounced when the Reynolds number is increased
with an order of magnitude. We illustrate this with a few simulations where the initial vorticity field consists
of a checker board pattern of Gaussian vortices with alternating sign. The initial angular momentum is
approximately zero (as is the case for all our runs) andRe=10,000. Infigure 3(b) we have plotted the
dimensionless angular momentum for two runs and the spin-up of the flow is rather obvious in both cases. The
upper curve showsL(t) of a run (displayed infigure 4) which we discuss in more detail. AlthoughL(t = 0) ∼= 0
it rapidly grows toL = 0.73 atτ ∼= 120. After reaching a maximum, the dimensionless angular momentum
slowly decreases toL ∼= 0.45 atτ = 800. The oscillation of the angular momentum reflects the presence of a
rapidly rotating tripolar structure located in the centre of the container. The local minima in the graph ofL(t)

correspond to the situation where the satellite vortices are located in the two diagonally opposite corners of the
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(a) τ = 8 (b) τ = 20

(c) τ = 40 (d)τ = 80

(e) τ = 200 (f) τ = 400

Figure 4. Vorticity plots of a simulation with no-slip boundary conditions (Re= 10,000). Red indicates positive vorticity, blue indicates negative
vorticity andτ = 1 corresponds to one initial eddy turnover time.
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domain. The angular momentum shows a local maximum when the axis of the tripole, i.e. the (approximately
straight) line joining the two satellites with the central vortex, is parallel with two of the boundaries. In principle,
the time rate of chance ofL(t) can be explained by interpreting the contributions in equations (11) and (12).
A comparison between these two contributions reveals that dL(t)/dt is dominated by the normal vorticity
gradient integrated over the boundary (or by the pressure distribution integrated over the boundary) and is thus
hardly influenced by the total shear stress along the boundary. This striking difference between the relative
importance of both terms determining dL(t)/dt appears more generally valid for our decaying turbulence
simulations. A few snapshots of the vorticity field of this particular run are shown infigure 4. The production
of vorticity near the no-slip boundaries is clearly visible in all snapshots and infigures 4(a)–(e)one can also
observe detachment of boundary layers which subsequently roll up and form small-scale vortices. Evidence
of the presence of a large tripole is nicely illustrated infigure 4(f). A rather important difference between the
decay process of turbulence, and the spin-up phenomenon in particular, for the two sets of simulations is the
following: the complete process of spontaneous spin-up observed in the intermediate Reynolds number case
(1,000� Re�2,000) coincides with the formation of a tripolar or a monopolar vortex with characteristic size
comparable with the container dimension. In the high Reynolds number case it is observed that during the spin-
up stage of freely evolving 2D turbulence the average scale of the vortices is still rather small: spontaneous
spin-up of the flow is reflected by the build-up of mean background rotation of the flow. As a result the sea of
vortices is rotating with respect to the container boundaries. This can be seen in, e.g.figure 4(e)(τ = 200) where
small-scale vortices with negative circulation (the blue patches) are moving around a somewhat larger positive
vortex (note that the maximum ofL(t) occurred already forτ ≈ 100). It is remarkable that, in contrast to the
runs with lower Reynolds number, all runs withRe=10,000 show spontaneous spin-up (seetable II where
alsoTspin-up andAspin-up for these runs are summarised) and that only one run out of twelve withRe=5,000
show no spin-up at all. The two runs withRe=20,000 show spontaneous spin-up, but the total number of runs
is too small in this case to be statistically significant. Furthermore, the averaged values forTspin-up andAspin-up

computed from these runs are most likely lower bounds due to limitation in computation time (τ � 200) for
these simulations (several hundred CPU hours per run on a Cray Y-MP C916). Nevertheless, we expect from
the limited data available for this set of runs that once more nearly all runs show spontaneous spin-up.

It is worthwhile to note that the final states obtained in runs showing spontaneous spin-up have a partially
relevant analogon for 2D bounded Euler flows.3 For the case of 2D Euler flows a framework exists in which
such behaviour might be expected as is shown by Pointin and Lundgren in a calculation of most probable, or
maximum-entropy, states in a square container [27] (see also [28,29]). In their calculations they showed on
statistical mechanical grounds a most-probable state for that situation as one containing a large central vortex
core of one sign, surrounded by a vorticity distribution of opposite sign for the zero net vorticity case. Such a
configuration necessarily has a large angular momentum, even if it developed from a state with none. No such
general framework exists for the bounded case with no-slip walls where viscosity cannot be disregarded.

5. Forced 2D turbulence

Recently, numerical studies revealed the special role of the angular momentum in decaying 2D turbulence in
circular containers with no-slip walls by Li and Montgomery [30], and experimental confirmation of several of
their findings has been presented by Maassen et al. [31]. Both the simulations and the experiments are carried
out at relatively low Reynolds numbers. Here we will report on an investigation of an alternative case: forced 2D

3 Note, however, that spontaneous spin-up for decaying 2D turbulence with high initial integral-scale Reynolds number is characterised by many
small-scale structures in a large-scale background flow with mean rotation.
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turbulence in a circular domain with no-slip boundary conditions. The integral-scale Reynolds number in these
numerical experiments, reached after a certain time of forcing, are considerably larger than in the simulations
and experiments on decaying 2D turbulence mentioned above.

In this section we compare the flow dynamics of forced 2D turbulence in a circular domain with a no-slip
wall to the flow evolution in an unbounded domain. For this purpose the 2D incompressible Navier–Stokes
equations are written in the vorticity-stream function formulation:

∂ω

∂t
+ J (ω,ψ)= ν∇2ω +F, (13)

with ν the kinematic viscosity andF a forcing term which will be described below. For completeness we
recall thatω is the scalar vorticity andψ is the stream function which is related to the vorticity by the Poisson
equation

∇2ψ = −ω. (14)

The JacobianJ (ω,ψ) is given by

J (ω,ψ)= ∂ω

∂x

∂ψ

∂y
− ∂ψ

∂x

∂ω

∂y
= 1

r

[
∂ω

∂r

∂ψ

∂θ
− ∂ψ

∂r

∂ω

∂θ

]
. (15)

We use two different pseudospectral algorithms to solve equations (13) and (14). For the unbounded domain
we use a standard 2D Fourier pseudospectral method. Hereby we obtain a double periodic domain, and the
length of each cell is set toLx = Ly = L= 2.0. We note that even though we are only regarding simulations in
a finite square box, a double periodic domain is in principal an infinite domain with the (artificial) restriction
that a subsection of the domain is repeated indefinitely.

For the circular domain we use a disk code which solves equations (13) and (14) on a circular domain with
radiusR = 1. The solutions forω andψ are expanded into series of Chebyshev polynomials for the radial
direction and Fourier modes in the azimuthal direction. The Chebyshev polynomials are here defined on the
entire interval−R � r � R in order to avoid having a large concentration of points near the origin. As boundary
condition we use the no-slip condition, i.e.ur(R, θ, t) = 0 anduθ(R, θ, t) = 0. A description of the disk code
can be found in [32].

For both codes we are using an implicit 3rd order stiffly-stable time integration scheme. The resolution of
the simulations with periodic boundary conditions isN = M = 256 in all the simulations whereas for the
computations in a circular domain with a no-slip wall we usedN = M = 512. For both codes we have used low
level noise as initial condition. The definition of the integral-scale Reynolds number for the simulations with
periodic boundary conditions is the same as the one employed previously for the computations of decaying 2D

turbulence in square domains with no-slip boundaries:Re= 1
2L

√〈u2〉/ν =
√

1
2E(t)/ν with the kinetic energy

E(t) defined as in equation (6). In case of the circular domain the integral-scale Reynolds number is defined as

Re=R
√〈u2〉/ν =

√
2
π
E(t)/ν (in this caseD in equation (6) represents the circular domain).

The forcing term which we employ in present numerical study is constructed to be both homogeneous and
isotropic. In addition we attempt to make the forcing term as identical as possible for the two different domains.
To achieve this we first consider the unbounded domain in Fourier space and we activate certain modes of this
system,

F(x, y, t) = c

N/2−1∑
kx=−N/2

M/2−1∑
ky=−M/2

G
(|k|)exp

(
2πikxx

L

)
exp

(
2πikyy

L

)
exp

(
i8(t)

)
, (16)
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wherec is a constant and8(t) is a phase which is diffusing randomly in time with a diffusion time scaleτdiff .
We have performed simulations with the diffusion time scale ranging fromτdiff = 0.01 (corresponding to nearly
completely random forcing in time) toτdiff = 100 (corresponding to nearly static forcing). Qualitatively we find
no significant differences using the different values ofτdiff . In this section we will show the results forτdiff = 0.1
in order to display the differences observed in the two domains (bounded versus periodic). Furthermore, for the
bounded case we also present the results forτdiff = 100.

The filter function,G, is defined by

G(| k |)=
{

1 if a < |k| < b,
0 otherwise.

(17)

In the present case we have chosena = 3.0 andb = 4.5 and withL = 2 we are thus forcing modes with a length
scale which is approximately one-tenth of the domain size. Note that since equation (16) depends on time it
will have to be recalculated during the simulations.

Due to the direct accessibility to the spectral coefficients of this forcing term equation (16) can be used
directly in the simulations with the double periodic code, whereas in the algorithm to compute flows in circular
domains the summations have to be evaluated for all the collocation points. As such summations are quite time
consuming operations, they are only computed every 10 time steps. We note that interpolating equation (16)
onto the circular domain results in a quantity which is not torque-free and therefore the angular momentum
will accumulate in course of time. For this reason it is important to remove this (small) contribution from the
forcing term. This is achieved by adding a (small) solid body rotation to equation (16). If we omit adding such a
contribution we observe a significant spin-up of the flow originating from the accumulated angular momentum
entering the system through the forcing as specified by equation (16).

Figure 5 display the time evolution of the vorticity field using periodic boundary conditions and for
τdiff = 0.1. The inverse cascade is clearly observed as the flow organizes into two huge, opposite-signed,
monopoles occupying the whole domain. Once these monopoles have been formed they will dominate the
evolution, absorbing the energy being pumped into the flow through the forcing, continuously increasing their
amplitudes. This process will accelerate whenτdiff increases. Note that the length scale observed infigure 5for
T = 1.0 corresponds approximately to the length scale used in the forcing term.

Figures 6and7 display the time evolution for the bounded (disk) case for two different values ofτdiff . In
figure 6results are displayed for the same value ofτdiff as used infigure 5, whereas infigure 7plots are shown
for the more extreme case ofτdiff = 100. Only initially figure 6displays the same evolution as the unbounded
case. We observe structures with the same length scales as the forcing term (seeT = 2.0) but quickly the
structures start to interact with the boundary and small-scale structures are created. These are injected into
the interior of the domain preventing larger structures from emerging (or even destroying larger structures).
This turbulent state is thus maintained at a Reynolds number ofRe=2,400. For higher and lower values of
τdiff we find qualitatively the same kind of evolution as displayed infigure 6, e.g. domain filling structures
are prevented from emerging due to wall-created small-scale vorticity. This is the case even for nearly static
forcing, seefigure 7, even though short lived structures do emerge (see the flow evolution atT = 10.0), but
they quickly become unstable and break down into smaller structures. The Reynolds number of the flow in this
simulation varies in the range 3,000< Re <5,000.

Frequently used tools to characterize the flow field are the total kinetic energy and the total enstrophy of the
flow as defined by equations (6) and (7), respectively. The time evolution of these two quantities for present
simulations can be seen infigure 8. In the unbounded case the inverse cascade is again clearly visible (shown for
τdiff = 0.1). Energy grows continously in time whereas the corresponding enstrophy quickly settles, at a value
of approximately 500. (Similar results are observed for all values ofτdiff with the exception of very large value
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Figure 5. The vorticity field of the flow on a double periodic domain usingτdiff = 0.1. Red corresponds to positive values, whereas blue corresponds to
negative values. In total 30 vorticity levels are displayed with a maximum of±50. Spectral resolutionN = M = 256. The Reynolds number increases

from Re≈ 1,000 forT = 1.0 to Re≈ 5,400 forT = 100.0.
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Figure 6. The vorticity field of a flow in a circular domain with no-slip boundary conditions usingτdiff = 0.1. Red corresponds to positive values,
whereas blue corresponds to negative values. In total 30 vorticity levels are displayed with a maximum of±100. Spectral resolutionM = 512 (radially),

N = 512 (azimuthally). The Reynolds number increases fromRe≈ 1,100 forT = 1.0 to Re≈ 2,500 forT = 100.0.
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Figure 7. The vorticity field of a flow in a circular domain with no-slip boundary conditions usingτdiff = 100. Red corresponds to positive values,
whereas blue corresponds to negative values. In total 30 vorticity levels are displayed with a maximum of±150. Spectral resolutionM = 512 (radially),

N = 512 (azimuthally). The Reynolds number increases fromRe≈ 2,200 forT = 1.0 to Re≈ 3,500 forT = 100.0.
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(a) (b)

Figure 8. Energy (a) and enstrophy (b) evolution of the flow fields displayed infigures 5to 7.

of τdiff . Here self-similar smooth structures can be observed late in the simulations in which case both energy
and enstrophy grow rapidly in time.) In present numerical experiments we are pumping energy and enstrophy
into a specific part of the spectrum and the enstrophy cascades towards smaller wave numbers where viscous
dissipation is the dominant physical process. A stable situation is thus quickly established for the enstrophy.
Energy, on the other hand, cascades towards larger wave numbers and it will settle at the largest wave number
accessible. Since the kinematic viscosity has virtually no effect in this part of the spectrum energy will simply
accumulate there. This is a well-known effect first discussed, for both the 2D Navier–Stokes and the 2D MHD
cases, by Hossain et al. [33].

In the corresponding bounded case, e.g. forτdiff = 0.1, we observe a different evolution. The energy settles
at a value of 5 and the enstrophy, even though it is strongly fluctuating, settles at a value of approximately
1,400. This enstrophy level is three times larger than computed for the unbounded flow which can be explained
by the presence of the boundary layer near the no-slip wall of the circular domain. The vorticity values in the
boundary layer are usually very high which affects the enstrophy considerably. It appears that the values of
the vorticity in the boundary layer is approximately three times larger than in the interior of the domain and
therefore most of the enstrophy is located there. In addition, the creation of small-scale structures near no-slip
walls, containing high amounts of enstrophy but small amounts of energy, makes the time evolution quite spiky.
This feature is also observed for decaying 2D turbulence in a square domain with no-slip boundaries.

We note that for all values ofτdiff � 10 we find similar behavior for the evolution of both energy and
enstrophy. Energy and enstrophy will settle at a constant value, although this value will increase for increasing
τdiff . For τdiff = 100 we do observe more variations in the energy evolution with a peak value of 25. This is
a larger value than found for smallerτdiff but it is still a minor effect compared to the unbounded case. There
the maximum energy computed in a similar run was nearly 700 (computation up toT = 18.0). An important
conclusion here is that the presence of no-slip boundaries introduces a quite natural way to remove energy,
injected by the forcing, from the flow as can be concluded from the plateau-value in the energy for the bounded
case (seefigure 8(a)). We do not need an artificial sink of energy as usually employed in simulations of forced
2D turbulence with periodic boundary conditions.
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The angular momentum for flows in a circular domain is given by

L(t) =
∫ 1

0

∫ 2π

0
ruθ (r, t)r dr dθ = −1

2

∫ 1

0

∫ 2π

0
r2ω(r, t)r dr dθ, (18)

a relation which is actually identical to the one presented in equation (10). Note that such a relation is not
meaningfull for unbounded (periodic) flows, because it is not properly defined. Infigure 9we have plotted
the temporal evolution of the angular momentum for the numerical experiments displayed infigures 6and
7. We have normalised the curve with:

√
8πE(t)/9 which is the angular momentum of a flow in solid body

rotation with the energyE(t) (equation (6)). (We note that it can readily be shown, with the use of calculus
of variations and Lagrange multipliers, that if the energy is kept constant a solid body rotation is the situation
which maximises the angular momentum.) Forτdiff = 0.1 we observe little change in angular momentum with
peak values up to 20% of solid body rotation. Similar results are found forτdiff � 10. Forτdiff = 100 we do
observe an angular momentum of the flow which compares rather well with large-scale rotation of the flow (the
maximum of|L(t)| corresponds to 85% of solid body rotation). The maximum coincides with the appearance
of a large-scale structure but as this structure breaks down the angular momentum decreases again.

An important difference between the bounded square and circular case with regard to the time evolution of
L(t) (disregarding the role of forcing for the moment) is the absence of a pressure-induced contribution to the
time rate of change of the angular momentum in the latter case. For a circular domain(r · ds)∂D = 0, thus

dL(t)

dt
= ν

∮
∂D

ω(r, t)(r · n)ds = νR

∮
∂D

ω(r, t)ds (19)

(with R the radius of the circular domain), and dL(t)/dt depends only on the vorticity produced at the no-slip
wall (and on the forcing term if present). As a consequence the first term of the right hand side of equation (12)
should also be zero. This is indeed the case for flows in a bounded circular domain with radiusR:

ν

∮
∂D

r2∂ω

∂n
ds = νR2

∮
∂D

∂ω

∂n
ds =R2 d;

dt
= 0, (20)

Figure 9. Normalised angular momentum evolution of the flow for the circular domain displayed infigures 6and7.
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with ; the total circulation of the flow, which is constant (actually equal to zero) for bounded flows with
stationary walls. As mentioned in section 4, in a non-circular domain, e.g. where(r · ds)∂D �= 0, dL(t)/dt will
be dominated by the normal vorticity gradient integrated over the boundary, whereas the total shear stress along
the boundary is of minor importance. The relatively small values ofL(t) observed infigure 9can be seen as
a result of the absence of the term containing the pressure contribution, and one can generally conclude that
spin-up in a circular domain will very likely be absent (see also [30,31]). Note that decaying 2D turbulent flows
containing an appreciable amount of angular momentum in the initial flow field behave somewhat different
[34,31].

6. Conclusions

A summary of fascinating phenomena of 2D turbulence in bounded domains has been presented. For freely
evolving 2D turbulence these phenomena concern the non-trivial behaviour of 1D spectra near boundaries,
the different behaviour of the evolution of vortex statistics, and the spontaneous spin-up of the flow during the
decay of turbulence. The latter process has been discussed in more detail and it has been shown that this process
occurs for low and high initial integral-scale Reynolds numbers. The presence of spontaneous spin-up is also
independent of the kind of initial conditions of the flow. Another set of numerical experiments concern forced
2D turbulence in circular containers.

The main conclusions of this part are that the circular boundary prevents larger scale structures from
emerging in the flow as small-scale structures are continuously created at the boundary and are subsequently
injected into the interior of the flow, maintaining the turbulent flow field. This situation is quite different from
the periodic case, where one always observe the inverse cascade in which energy accumulates in the largest
scale possible (two monopolar structures). Additionally, it is not necessary to include an artificial energy sink for
the bounded flows in order to avoid unbounded growth of the kinetic energy of the flow: the no-slip boundaries
serve as a sufficient sink of energy. Concerning spontaneous spin-up the circular domain is special as only the
total shear stress along the boundary will contribute to the change of angular momentum. In these simulations
we only observe a small change in angular momentum. In the square domain, on the other hand, the change
of angular momentum will be dominated by the normal vorticity gradient integrated over the boundary, and
spontaneous spin-up is therefore more likely to occur.

An important aspect which has to be studied for decaying and for forced 2D turbulence is the precise role
of the no-slip boundaries as vorticity source (e.g. the production of vorticity and normal vorticity gradients as
function of the Reynolds number) and the role of the boundary layers on the flow dynamics, especially in the
limit of high Reynolds numbers. This requires, however, an enormous computational effort due to large amount
of necessary CPU-time. Nevertheless, such an investigation would be worthwhile to carry out.
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