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Abstract. A sperm penetrates an egg by extending a long, actin-filled tube 
known as the acrosomal process. This simple example of  biomotility is one 
of the most dramatic. In Thyone, a 90 I~m process can extend in less than 
10 s. Experiments have shown that actin monomers  stored in the base of  the 
sperm are transported to the growing tip of  the acrosomai process where they 
add to the ends of  the existing filaments. 

The force that drives the elongation of the acrosomal process has not yet 
been identified although the most frequently discussed candidate is the actin 
polymerization reaction. Developing what we believe are realistic moving 
boundary models of diffusion limited actin fiber polymerization, we show 
that actin filament growth occurs too slowly to drive acrosomal elongation. 
We thus believe that other forces, such as osmotically driven water flow, must 
play an important  role in causing the elongation. We conjecture that actin 
polymerization merely follows to give the appropriate shape to the growing 
structure and to stabilize the structure once water flow ceases. 

Key words: Acrosomal reaction - -  Actin polymerization - -  Moving boundary 
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1. Introduction 

During fertilization the sperm of an echinoderm, such as the sea cucumber Thyone, 
penetrates the coats of  jelly surrounding an egg by rapidly extending an actin-filled 
tube known as the acrosomal process (Fig. 1). The force that drives the extension 
of the acrosomal process has not yet been elucidated, but a number  of  suggestions 
have appeared in the literature. Tilney et al. (1973), Tilney (1975), and Tilney 
and Kallenbach (1979) have suggested that the rapid polymerization of actin, 
known to occur within the acrosome, provides the force to drive the elongation. 
Oster et al. (1982) have suggested that osmotically generated hydrostatic forces 
are responsible for the elongation and that  the actin polymerization follows in 
the already elongating tube. In this model the actin ultimately forms a rigid 

* Work partially supported by the United States Department of Energy 
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Fig. lad. The acrosomal reaction. When the sperm comes in contact with the jelly coat surrounding 
an egg, the acrosomal reaction is initiated. (a) The acrosomal vacuole (v) fuses with the membrane. 
(b) Actin monomers sequestered in the peracrosomal cup, a region between the nucleus (N) and the 
vacuole, polymerize onto the actomere. (e) The growing actin filament bundle appears to push into 
and deform the posterior surface of the vacuole. (tl) The vacuole continues to be pushed out, and 
actin filaments grow 

supporting structure that allows the acrosome to keep its shape once equilibrium 
is established but does not push the acrosomal process outward. In proposing 
this model, Oster et al. (1982) note that it is difficult to imagine a kinetic process 
by which a polymerization reaction could push a membrane. 

Hill (1981) and Hill and Kirschner (1982) have shown by an equilibrium 
thermodynamic argument that the free energy change due to actin going from a 
monomeric to a polymerized state is sufficient to do mechanical work and deform 
the membrane surrounding an actin filament bundle. So, in principle, the energy 
released by an actin polymerization reaction could be used by the cell to push 
the membrane. However, the elongation process is extremely rapid. In Thyone, 
a 90 txm process can extend in somewhat less than 10 s (Tilney and Inou6 1982). 
Thus the basic question arises as to whether or not polymerization can occur at 
this rate within the acrosomal process. If  it cannot, then mechanisms such as the 
osmotic one proposed by Oster et al. need to be studied in more detail. I f  
polymerization can occur at this rate, then one needs to examine the possible 
mechanisms by which the energy released from the reaction could be used to 
move the membrane. 

In this paper we estimate the maximal rate at which the acrosome could grow 
if it were driven by polymerization. The polymerization reaction that occurs 
within the acrosome is of a rather specialized type. Monomer units are stored at 
the base of  the acrosome in a region called the periacrosomal cup (Fig. 1). Within 
the periacrosomal cup there is a nucleation site for filament growth, known as 
the actomere (Fig. 1). Once nucleated, filaments grow outward from the actomere 
by monomer addition (Tilney and Kallenbach 1979). Monomers must thus be 
transported from the base of  the acrosome to the growing tip (Fig. 2). Once a 
monomer adds to a filament, it elongates the filament. The region of  reaction 
thus moves as the reaction occurs. The polymerization reaction is regulated by 
actin binding proteins, such as profilin, so as to prevent spontaneous nucleation 
in the periacrosomal cup and to ensure growth from only one end of  the filament 
(Tilney et al. 1983). 

Experiments by Tilney and Inou6 (1982, 1985) have shown that except for 
the initial and final stages of  growth a graph of ( L -  Lo) 2 versus t is linear, where 
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Fig. 2. Length of the acrosomal pro- IO00 
cess squared, L 2, versus time as 
measured in an experiment by Tilney 
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elongation 

/ I I I I I I I 

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 

Time (sec) 

L -  Lo is the observed length of the acrosomal process (see Fig. 2) and t is time. 
Because diffusion processes commonly have this behavior, we shall discuss in 
Sect. 2 a moving boundary diffusion-reaction model for acrosomal extension 
suggested by Tilney and Kallenbach (1979). In this model, actin polymerization 
is treated as being irreversible, and thus the reaction behaves as a moving sink 
for monomer.  We correct a minor error in Tilney and Kallenbach's analysis of  
this model and show that this model gives results in qualitative, but no quantitative, 
agreement with experimental observation. Thus this model gives graphs of ( L -  
L0) 2 versus t that are linear; however, the final length obtained in 10 see is 
significantly smaller than observed. 

In Sect. 3 we improve on the model by taking into consideration the convective 
transport o f  monomeric  actin and by allowing the polymerization reaction to be 
reversible. Using singular perturbation techniques, we find an approximate sol- 
ution to the moving boundary reaction-diffusion-convection problem. In Sect. 4 
we discuss the relevance of this solution to the biological problem. 

Throughout  our analysis we shall not be concerned with the initial stages of  
the process, i.e. vacuole fusion and nucleation of filament growth (see Fig. 1). 
We assume that at t -- 0, filament growth has begun from a pre-existing filament 
bundle of  length Lo. Further, we shall ignore any complexities, such as filament 
capping and cross-linking, introduced by the action of actin binding proteins. 

2. A moving boundary problem for irreversible polymerization 

Tilney and Kallenbach (1979) suggest that the following one-dimensional moving 
boundary problem might model actin transport  and polymerization. A reservoir 
of  monomer  at concentration eo serves as a source from which monomers  diffuse 
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to the right along the x-axis. The diffusing monomers are subject to polymeriz- 
ation. Polymerization is modeled as a rapid irreversible absorption into fixed 
sites distributed uniformly within the volume. Let So be the total number of sites 
per unit volume, c(x, t) the concentration of  monomer, and s(x, t) the number 
of free sites per unit volume. Initially there is no monomer in the system, 
c(x, 0) = 0, and all sites are free, s(x, 0) = 0. The dynamics of the system are given 
by 

Oc 02c 
D~x 2 - kes, ( la)  

Os 
- -=  -kcs, ( lb)  
at 

where D is the monomer diffusion coefficient, and k is a constant that measures 
the rate of  absorption. To convert this to a moving boundary problem that mimics 
diffusion limited filament growth, let k--> o0. In this limit, the solution to Eq. (1) 
is cs = 0. Thus s will be zero at all points which have been reached by diffusing 
molecules. Consequently, at any point x, either all sites are filled, or none. Freely 
diffusing monomers will be present only in those volume elements in which all 
sites are filled. Therefore, there is a moving boundary that separates the filled 
from the empty region. Let L(t) be the position of the boundary. The rate at 
which the boundary moves is given by the rate at which sites are filled. Since 
molecules are supplied by diffusion 

i 

D Oc[ dL (2) 
- Oxlx=L =s~ d----t' 

where the right-hand side, the number of sites occupied per unit time per unit 
area, is equal to the diffusional flux at the boundary. Because c = 0 at the boundary, 
dc/dt = 0 at x = L, and hence 

Oc [ dLdt O-~t x=L Ox[~=L = 0. (3) 

Thus, the problem to be solved becomes 

OC OZc 
- - = D  0 < x < L ,  (4) 
at Ox 2' 

with boundary conditions 

and 

initial condition 

c(0, t) = Co, t > 0 (5a) 

c(L, t) = 0, t > 0, (5b) 

c(x, 0) = 0, 0 < x < L ,  (6) 

and with the motion of  the boundary determined by 

so l = . \Ox/  Ix=z 

Equation (7) arises from solving (3) for dL/dt  and substituting into (2). 
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This problem is a special case of the one-phase Stefan problem (cf. Cannon 
1984). It is well-known that this problem has a unique solution with the boundary 
moving such that L(t) is proportional to t172 (Cannon 1984, pp. 281-288). For 
this particular version of the Stefan problem, Hermans (1947) shows that 

{ [err(x/4e 7/]1 
c(x, t )=co 1 - L e r f ( L / ~ j j ,  O<x<L(t ) ,  (8) 

where erf(.) is the error function (Abramowitz and Stegun (1964)), and 
L ( t ) / ~  is constant. The constant is determined by Eq. (7). Recall that 

d erf(z)= 2 _z2 
dzz ~ e  . 

Using this fact, the chain rule, Eq. (7), and remembering L/4x/4-D-i is constant, 
we find 

x~__~ exp(_L2/ 4Dt) = soL erf(L/44T~) (9) 

Let z 2= L2/4Dt. Then 

1 Co (10) z exp(z 2) erf(z) = x/-~ So" 

The solution to Eq. (10) provides the required constant, i.e. 

L(t)= z 4v/4-D-[. (11) 

This model can easily be generalized to include a finite supply of molecules 
from a well-mixed reservoir. Motivated, by the sketch of the biological system 
in Fig. 3, we consider a reservoir located between x = - L o  and x = 0. Let the 
monomer concentration in the reservoir be Co(t). Because monomer in the system 
is supplied by the reservoir, we replace the boundary condition (5a) by 

c(O, t)= Co(t), t>0 ,  (12a) 

where co(t) is given by 

f Lo (t) Lo(co(0) - Co(t)) = (c + So) dx. (12b) 

Fig. 3. Schematic illustration of  monomer  transport from the base 
of the acrosome and of  monomer  addition to the elongating tips 
of  the actin filaments. The diameter of  the growing shaft  is greatly 
exaggerated, as is the space available for monomer  transport;  
typically the diameter of  the shaft  is one to two percent of  that of  
the base region. In our model the actin filament bundle is assumed 
to press against  the membrane  so that the length of  the shaft, 
L(t)- Lo, is the length of the filament bundle, L(t), minus some 
initial length Lo 
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The left side of  Eq. (12b) is the amount of monomer supplied by the reservoir 
up to time t, and the right side is the total amount of monomer, free and absorbed, 
in the system at time t. Crank (1957a, b) numerically analyzes models of this 
form. It is easy to see that depletion of the reservoir must slow down the motion 
of the boundary. We shall not pursue this finite reservoir generalization because, 
as we show below, even with an infinite reservoir, the motion of  the boundary 
is too slow to model acrosomal growth. 

Experiments by Tilney and Inou6 (1982) show that if the length of the 
acrosome squared is plotted against t, a straight line results, except for the initial 
and very final stages of elongation. Thus, to a first approximation the solution 
to this moving boundary diffusion problem is consistent with data. Tilney and 
Kallenbach (1979) attempt to examine the rate of  growth predicted by Eq. (10) 
but incorrectly interpret So as the free concentration of monomer. In what follows 
we correct their analysis. 

Electron micrographs of  the acrosomal process show that it is filled with a 
densely packed bundle of  actin filaments containing on average 60 filaments 
(Tilney and Inou6 1982). Each filament is composed of 370 monomers per 
micrometer (Aebi et al. 1981). Assuming each monomer occupies one site, the 
total concentration of "sites" So = 2.2 x 107 cm-~/A, where A is the cross-sectional 
area of the acrosomal process. Taking the process to be a cylinder with a diameter 
of 0.05 ~m (Tilney, personal communication), we find A = 2 x  10 -H cm 2 and 
So = 1.1 x 1019 c m  -3. Tilney and Inou6 (1982) estimate that the sperm contains 
1.1 x 106 polymerized actin monomers. Let us assume that at the beginning of 
the acrosomal reaction, the number of  monomers is twice this value. This is 
probably an overestimate since almost all monomers polymerize, and hence we 
may be overestimating the rate of filament growth by diffusion-limited polymeriz- 
ation. These monomers are stored in the base of  the acrosome (periacrosomal 
cup), a region whose volume is approximately 5 x 10 -13 cm 3 (Tilney and Inou6 
1982). Hence Co = 4.4• 1018 cm -3. That it is probably an overestimate can be 
verified from the fact that if one calculates the concentration of  actin that one 
would obtain if the actin molecules were close packed, one finds that 7.87 x 1018 
actin molecules could fit into 1 cm 3 (Tilney and Inou6 (1982)). Thus Co is 
approximately 50% of  the close packed limit. 

Using Co = 4.4 x 1018 c m  -3 and So = 1.1 • 1019 c m  -3, the right side of Eq. (10) = 
0.226. Solving Eq. (10), we find z - 0 . 4 2 .  Taking z = 0.42 and using the value of 
D given by Tilney and Kallenbach (1979), D = 5x  10 -7 cm2/s, we find L 2 / t  = 

4 D z  2 = 35 ixm2/s. Hence, in 10 s, with no depletion of  monomers from the source, 
the acrosome would grow 18.7 Ixm. This is considerably smaller than the experi- 
mental value of  90 Ixm. 

Tilney and Inou6 (1982) measured the slopes of  L 2 versus t plots. In six out 
of  nine sperm, the slopes ranged from 790 ixm2/s to 960 izm2/s with a mean of 
850 ixm2/s. The other three sperm produced short processes, and the slopes were 
about one half of the other six. The slope we predict, 35 ixm2/s, is approximately 
20-fold smaller than the observed slope. 

It thus appears that diffusion limited growth occurs too slowly to be the 
mechanism driving acrosomal elongation. Tilney and Kallenbach (1979) suggest 
that convective transport will speed up the transport and allow polymerization 
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to drive acrosomal elongation. In the next section we improve our model and 
examine this conjecture. 

3. A moving boundry problem for reversible polymerization 

The model described by Eqs. (4)-(7) unrealistically treats actin polymerization 
as a rapid, irreversible reaction. It is known that actin polymerization is reversible. 
From in vitro experimentation the following kinetic equation has been developed 
(Wegner 1976): 

at a 

where for reactions occurring within the acrosomal process we take f to be the 
number  of  actin filament ends per unit cross-sectional area and I to be the length 
a filament extends when a monomer  adds to it. Thus f i t  is the concentration of 
filament growing points (ends) in the polymerization zone. I f  the filament con- 
centration is constant, as will be assumed in our model of  the acrosome, f / 1  
may be incorporated into kl and k_l. 

The values of  kl and k_l depend on which end of the actin filament monomers 
are reacting with. The monomers are asymmetric, and hence the two ends of a 
filament are distinguishable. Monomers add more rapidly to one end (known as 
the preferred, or barbed, end) than to the other (known as the nonpreferred, or 
pointed, end). Tilney and Kallenbach (1979) show that in the acrosomal reaction, 
growth is from the preferred end. At equilibrium, c = k_ l / k  1 = g, the "critical" 
monomer  concentration. I f  c > g, then filaments tend to grow; whereas if c < g, 
filaments tend to shrink. It is thought that Co > g so that filaments, once nucleated, 
grow. Measurements on actin filaments in Limulus sperm (Bonder et al. 1983; 
Coluccio and Tilney (1984)) suggest that for the preferred end g-~ 10 .7  M = 
6 x 1013 c m  -3 .  We shall assume a similar value is appropriate for Thyone sperm. 

To treat the growth of filaments from one end in the presence of reversible 
reaction requires a model different from that developed in Sect. 2. The end of 
the filament bundle now corresponds to the boundary,  and L(t)  is the length 
of the filament bundle. We assume all filaments have the same length. Thus L(t)  
can be viewed as the length of a single filament. A filament can only change 
length when a monomer  joins or dissociates from a filament end. The rate of 
monomer  addition per filament end is - ( d e / d t ) / ( f / I  ). Because a filament extends 
by length 1 each time a monomer  adds, 

dL - t  2 dc 
A(kac(t) - k_l) , (14) 

d t -  f dt 

where Eq. (13) has been substituted for dc/dt. 
To make this model more realistic, we treat fluid flow within the acrosomal 

process. As the acrosomal process elongates, it fills with filaments and cytoplasm 
containing monomeric  actin. Viewing the acrosomal process as a pipe of diameter 
0.1 Ixm filling with fluid at the speed of the elongation motion ( - 1 0  pom/s), one 
can estimate the Reynolds number a s  10 - 6  . For such low Reynolds number  flow 
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it seems safe to assume uni form plug flow. The assumpt ion  of  plug flow was also 
used in the model  o f  Oster et al. (1982). 

The speed at which fluid moves in the acrosome is not known.  Passive filling 
implies fluid mot ion  at the rate o f  elongation,/_~. Faster fluid flows could occur,  
but  they would  require a hydrostat ic  pressure gradient.  A pressure gradient  would 
exert a force on the tip and cause the acrosome to extend as in the case o f  blowing 
up a bal loon (cfo Oster et al. 1982). In order  to isolate polymerizat ion as the 
only driving force for  elong.ation, we shall restrict or at tention to flows that occur  
at the rate o f  elongation,  L. 

We model  the acrosomal  process as a cylindrical rod o f  length L(t). Because 
o f  the plug flow assumption,  two-dimensional  effects inside the rod can be ignored. 

Two coordinate  systems are useful: the system at rest with origin x = 0 at the 
base, and a moving coordinate  system ~ = x - L ( t )  with origin at the tip o f  the 
growing process [~:= 0 at x = L(t)] .  In  the moving system, the fluid inside the 
rod is at rest. Initially we use only the rest f rame in which c, the m o n o m e r  
concentra t ion,  satisfies the equat ion 

Oc 02c Oc 
ot=Dox---5-vo---~, O < x < L ( t ) ,  (15) 

where the fluid velocity v, is assumed to be the acrosomal  growth rate, i.e. 

dL 
v - dt" (16) 

To give the bounda ry  condit ions at the two ends, we refer to Fig. 4. At x = 0, 
material is entering the rod f rom the reservoir at speed dL/dt. Because the 
reservoir concent ra t ion  is Co, we assume 

c(0, t) = co, t > 0 .  (17) 

At the tip x = L(t), material  enters by diffusion and is added  to the growing 
filament. Thus mass balance and Eq. (14) gives 

-Dcx]x=L(o=f ~t  =f[k lc(L( t ) ,  t ) -k_ l] .  (18) 

/ 

Reservoir I " 

o/ [ 

CO I 0 0 0 0 

_•x=O x= (t)  / 

Fig. 4. At the base (x = 0) fluid enters containing monomer at the concentration of the reservoir 
(c = Co). Monomer is transported to the tip by diffusion at rate -Dc x and exits the system at rate 
f[-./A by addition to the tip 
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Convection plays no role in this boundary condition because the convective 
velocity v exactly matches the tip velocity L, and hence convection transports 
no mass to the tip. 

Our modeling of acrosomal elongation begins after initiation of the process 
is completed. At this stage (see Fig. 3) 

L(O)=Lo (19) 

and 

c(x ,O)=co,  O<~x<~Lo . (20) 

A limitation of this model is that it assumes a very large reservoir at constant 
concentration Co that is not depleted by the growth of the filament bundle. Under 
this assumption growth will go on forever if Co> ~= k-1/k l .  In reality, the finite 
size of  the reservoir and the limited amount of  extra membrane available to the 
cell to use to increase its surface area pose effective limits to {he final length of 
the process (Tilney and Inou6 1982). 1 Still, the conclusions drawn from the 
model with constant reservoir concentration should be valid at intermediate times 
and provide a reasonable upper  bound on the speed of elongation. 

In order to study the effects of reversible polymerization on the dynamics, 
we shall first rewrite the system (15)-(20) in terms of dimensionless variables. 
We introduce the dimensionless quantities ~, ?, ~, /~, etc., by 

c = y~, t = rT, L = sr/_~, x = ~7, ~: = ~'s ~. (21) 

Equation (15) gives 

and we let 

(22) 

&=O lC 2 (23) 

be the dimensionless diffusion coefficient. Following the discussion in the previous 
section, we take D = 5 x 10 .7 cm2/s ,  and we choose as typical length and time 
scales the values ~ = 90 ~m and r = 10 s. Thus 

/~ = 0.06. (24) 

The dimensionless versions of  the boundary conditions (17)-(18) are 

h = Co/,r (25) 

1 If V is the volume of the reservoir, then the c o V monomers, each of length A, could be assembled 
into fA filaments with total length at most AcoV/(fA ) 
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where 

and 
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Oft ~=s f-d-~ = f [k lc l (L '  t')--L1]' 

and 

Thus 

~Ay 
/~1 = T  kl ,  

/~ - ~ k  --1 - - ?  --1" 

As typical values, we take 

f =  60 filaments/2 x 10 -11 c m  2 = 3 x 1012 cm -2, 

A = 10 -4 cm/370 monomers - 2.7 x 10 -7 cm 

y = Co = 4.4 • 10 TM cm -3. 

(26) 

(27a) 

(27b) 

(27c) 

(28a) 

(28b) 

(28c) 

and 

ti = 5 -  1. (33) 

/~-1 = 6 x 10 -4. (32b) 

Finally, we take 

f = 2.5. (29) 

It is of interest to note that in terms of the variables used in Sect. 2, 

So = f / A, (30a) 

and thus 

f = So/Co. (30b) 

From the data of Bonder et al. (1983), 

kl = 2 x 10 -14 cm3/s (31a) 

and 

k_ l=2S  -1. (31b) 

Similar values have been reported by Pollard and Mooseker (1981), i.e. kl = 
10-14cm3/s and k_ l=6s -1 ;  and by Coluccio and Tilney (1984), i.e. kl = 
0.56 X 10 -14 c m 3 / s  and k-i  = 0.3 s -1. Taking the values in Eq. (31) as being typical, 
we find 

/~1 =26.4 (32a) 
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In terms of the dimensionless quantities introduced above, the system becomes 
[here, for simplicity, we drop all the ( - )  signs from our variables] 

n,+Lnx=Dn~,  O < x < L ( t )  

n(x, 0) =0,  O<~x<~Lo, (34) 

n(0 ,  t) = 0, 

and 

-Dn~[x=L(,) = f ( k l n  + kl - k_,). (35) 

An analytical study of the evolution of the moving boundary-initial value 
problem given by Eq. (34) is very difficult. Because D ~ 0.06, we shall pursue a 
singular perturbation analysis of (34) when D is small. Anticipating a boundary 
layer of thickness ~ at the tip, we introduce 

e =- D 1/2 ~ 0.24 (36) 

as our perturbation parameter. On studying a problem dependent on a small 
parameter, e, by singular perturbation techniques, our aim is to produce an 
asymptotic expansion for the solution uniformly valid in the domain of interest 
as e ~ 0. In practice, the results retain their asymptotic validity (in an approximat- 
ing sense) for e not so small, but the expansion might require more terms to 
provide a reasonable estimate for the solution (see, e.g. Murray (1984)). 

If  we let e ~ 0, Eq. (34), the "outer"  problem, has the solution n(x, t) = 0 [i.e. 
c(x, t) = 1], which fails to satisfy the boundary condition at x = L(t). Observe 
that in Eq. (34) the term Dn~ is negligible (of order D = e 2) unless nxx is large 
(of order D -a or e-2). This will happen in a neighborhood of  the tip of  thickness 

(Fig. 5). To show this explicitly we employ a stretched coordinate at the tip 

x -  L( t )  
z . . . .  , (37) 

E 

which, in standard terminology, is called the "inner" variable. In terms of z, the 
region 0 < x < L(t) becomes - L / e  < z < 0 so that the left end point ~ -oo as e ~ 0. 
In keeping with this, the zeroth order " inner" problem must be solved on a 
semi-infinite interval and we require a solution that tends to the (constant) 
reservoir value Co as z ~ - o o .  Since in reality our left endpoint is at z = - L / e ,  
not at z = -0% keeping only the zeroth order term will introduce an error in our 
calculation that can be accounted for in a self consistent manner, by higher order 
terms. This turns out not to be necessary because, as we show, the error is 
negligible (of  order 10 -9 ) throughout the domain of interest. 

To begin our formal analysis, we state the inner problem in terms of the 
"stretched" variable z, i.e. 

n t = nz z  , --cx3 ~ Z ~ 0, 

-enz(O, t) = f (  kan(O, t) + ka - k-a), 

with 

(38a) 

(38b) 

n(z, 0) =0,  - o o < z < 0 .  (38c) 
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(boundory Ioyer) 
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u(t) x 
E . . , I . - - -  

z=O) 

Fig. 5. A schematic illustration of the 
monomer  concentration, c, as a func- 
tion of  position, exhibiting the inner 
(steep growth) and outer (constant) 
regions 

As usual, the solution of  the outer problem (Eq. (34)) as x - ~ L  (i.e. ~ 0 )  
must be matched to the solution of  the inner problem [Eq. (38)] as z ~ - ~  in 
some sense (cf. Kevorkian and Cole 1979), in order to yield a uniformly valid 
asymptotic expansion for n (and c) in the entire interval 0<~ x <-L(t). We saw 
that the solution valid away from the tip is, to leading order n = 0 or c = 1. We 
thus solve the inner problem (Eq. (38)) with the boundary condition 

n(-oo, t) --- 0 (39) 

in order to match with the outer solution. 
Taking the Laplace transform of  Eq. (38), gives 

and 

s~ = n~, (40) 

-earl0, s) =fk, t~(0, s)-~ 
f ( k l  - k-O 

s 
(41) 

where the superscript A denotes a Laplace transform, and s is the transform 
variable. Solving Eq. (40), we find 

R(z, s) = F( s ) e  z'~, (42) 

where the term proportional to e -z'/~- was neglected because of  the boundary 
condition at z = -00 .  F(s)  needs to be determined from the boundary condition 
(41). Differentiating Eq. (42) and evaluating at z -  0, gives 

- eF(s )Vrs  = f k l F ( S  ) 4 
f ( k l - k - 1 )  

s 

i.e. 

-f(kl-k_,) 
F ( s )  - 

s(fkx + ev/s)" 
(43) 
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Thus 

~(z, s) - - f (  k, - k_t)e ~'ff 
s ( fk l  + ev/-s) (44) 

To obtain the inverse Laplace transform of ~(z, s), we use the following formula 
(Morse and Feshbach 1953, p. 1582): 

{ ( ) ( 2 @ t ) }  ez47 1 - z  1 e_hZ+h2 t = (45) 
L ~erfc  ~ - ~  erfc + h ~  s(h+, fs ) '  

where L{f(t)} denotes the Laplace transform of f ( t ) .  For 

h =fk l / e ,  (46) 

the right-hand side of Eq. (45) agrees with Eq. (44) up to a constant, so that 

c(z, t) = 1 + n(z, t) 

- 1  k l - k - l {  ( -Z)-e-CfkJ '} (~-Yk~' /~}er fc(~-~+fk;x / t )}  (47) lcl erfc ~ 

To find L(t), we note 

~; 1 -- e (fkl/~)2' erfc . (48) 

Since/2 = klc(O, t) - k_~, we find 

/ 2=(k l - k -1 )  eCrkJ~}2' erfc ( ~ ) ,  (49) 

which on integration by parts gives 

L( t )= Lo+ (k~-k_l)e2 " ( f k ! ~ )  2fk,x/t'] 
f2k~ e Crk~/~}:' erfc - -  - 1 * ~e4-~  J" (50) 

Because (Abramowitz and Stegun (1964; p. 298)) 

) erfc(x) ~ - ~ -  , x>> 1, (51) 

we find that for t = 0(1) and e small 

L(t)~- Lo+ 2 ( ( k -~k~)e - )  4~ + O(e2). (52) 

Thus after an initial transient the growth is like 

( L -  Lo)2/t = constant (53) 

in qualitative agreement with experimental data. 
Although carrying this perturbation procedure to higher order is unnecessary 

for our purposes, we comment briefly on what would be involved. We note that 
Eq. (47), written in terms of the outer variable, is not an exact solution of Eq. 
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(34) since it does not satisfy exactly the boundary  condition at x = 0 (i.e. z = 
-L/e); rather, 

( l q- 2 fkl t~'~ k ' -  k-l { erfc (2e-~) -exp [fkl( L-~fklt) ] erfc 2-----e-~ ",,/ J" 

(54) 

For small e and t = O(1) we use Eq. (51) and find 

t L 2 

\L(L+afkxt) kl 

Since L/x/t is constant, the difference between this value and the required value 
of  zero is of  order 

e e x p ( - ~ ) ~ 1 0  -9. 

To get corrections for c, we can follow a standard procedure and consider 
the next order term in a perturbation expansion, i.e. 

/'/1 : C - -  Cinne r. 

Now, nl satisfies the same equations with zero boundary condition at x = L(t) 
and an O(e  e (-1/~)2) boundary  condition at x = 0. We can solve for nl in a similar 
fashion as we did for n and find the next order correction to our solution. For 
this it would be necessary to consider corrections on L(t) in a self-consistent 
manner: we would assume L = L(t; e) and allow for a possible modification of 
the growth in a slow time scale. Note however that to find n~ we solve a diffusion 
equation with boundary  conditions nl=O at x=L(t) and n~---10 -9 at x=O. 
Clearly, n~< 10 -9 in the domain O<x<L(t) and thus can be neglected when 
compared with n. 

Using Eq. (52), we now wish to examine the degree of  quantitative agreement 
with data. Recalling that the quantities in Eq. (52) are all non-dimensional,  and 
that for our typical values, Eq. (32), /~-1 << ]~1, we find 

( L -  Lo) / t -~ j75"-~. (56) 

Expressing L and t in dimensional units, we finally get 

{ CoA )2 
( L -  Lo)E/ t = 4 D \ v~  f ] = 9.9 ixmE/ s. 

This is 40- to 80-fold smaller than the values measured by Tilney and Inou6 
(1982). It is also smaller than the value we predicted in Sect. 2 using the irreversible 
absorption model. The reason for this is that the boundary condition used in the 
absorption model,  c(L, t ) =  0, will give rise to a steeper monomer  gradient and 
hence to faster boundary  movement  than the boundary condition, Eq. (18), used 
in the diffusion-convection model. 
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4. Discussion 

The elongation of the sperm acrosomal process is one of the most dramatic 
examples of motility at the cellular level. The speed at which the acrosome grows 
is in fact comparable to the rate of contraction of some of the fastest skeletal 
muscles (Tilney and Inou6 (1985)). Cytoskeletal rearrangements are intimately 
involved in cell locomotion, and thus it seemed natural to propose that actin 
polymerization was involved in generating the forces required to extend the 
acrosome. Whether or not this is the case has not yet been resolved. The mechanical 
issue of how an actin polymerization reaction can push a membrane protuberance 
out from the body of the cell has never been adequately addressed (Oster et al. 
(1982), Tilney and Inou6 (1985)). Further, Oster et al. (1982) and Dan and 
coworkers (1964, 1967) have suggested that osmotic effects may play a major 
role in extending the acrosomal process. 

In order to help evaluate the role of  actin polymerization in driving the 
elongation, we asked whether the kinetics of diffusion-limited actin polymeriz- 
ation were sufficiently rapid to account for the observed acrosomal elongation 
dynamics. To do this we examined two models. In the first, we assume actin 
polymerization was infinitely fast and irreversible. The rate of actin filament 
growth was then determined by solving a moving boundary diffusion problem. 
In the second, we added convective transport of monomer via plug flow and for 
completeness incorporated reversible actin polymerization kinetics. Both models 
predict that a plot of ( L - L o )  2 versus t should be linear. Thus the models are in 
qualitative agreement with measurements by Tilney and Inou6 (1982, 1985). 
However, when the predicted slope of the L 2 versus t curves are compared with 
experimental values, we find that the slopes for both models are 20 to 40-times 
too small. Thus, diffusion-limited polymerization can not directly account for the 
dynamics of acrosomal elongation. 

The validity of this conclusion depends upon the realism of our model of 
actin filament growth. In developing our model we ignored some of the known 
complexities none of which we believe could substantially alter our conclusions. 
For example, the actin binding protein profilin is known to play a crucial role. 
It is thought to work by binding to actin monomer and forming a 1 : 1 complex 
(Tilney et al. (1983)). Actin monomers are asymmmetric, having two sites: an 
" a "  site at the preferred end and a "b"  site at the pointed end. Polymerization 
occurs by a sites binding to b sites. Profilin regulates the polymerization by 
binding to and blocking the a site. The actin-profilin complex having only a free 
b site, can not self-associate, and thus spontaneous filament growth, say in the 
base of the acrosome, is prevented. The actin-profilin complex having a free b 
site can bind to an existing filament but only at its preferred end. This partially 
explains the growth of the filament from one end only. Free actin can also bind 
to the preferred end, but because much of the actin is in the form of a complex, 
in the presence of profilin this pathway is of less importance. Thus both free and 
complexed actin monomers can cause filament elongation. Once the actin-profilin 
complex binds to a filament, Tilney et al. (1983) believe that a conformational 
change occurs causing a release of the profilin and the exposure of the a site. 
The liberated profilin can then bind any free actin, and the process can repeat. 
Available measurements (Tobacman and Korn (1982), Tseng and Pollard (1982), 
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Markey et al. 1982) indicate that the rates of  filament elongation from the 
preferred end in the presence and absence of profilin are surprisingly similar. 
Thus the reaction kinetics that we have used in the body of the text should be 
appropriate. However, in the presence ofprofilin, both free actin and actin-profilin 
complex must be transported from the base of the acrosome to the growing tip. 
Profilin has a molecular weight of about 12 500 daltons (Tilney et al. 1983), 
and thus the complex will diffuse somewhat slower than free actin. Thus, including 
profilin dynamics into a realistic model should further slow down the growth 
rate of acrosomal elongation. 2 

In addition to profilin, the periacrosomal cup contains three other proteins 
(Tilney (1979)), 250 000- and 220 000-dalton proteins each in 1 : 12 stoichiometry 
with actin, and a 25 000 dalton protein in a 1:4 stoichiometry with actin. The 
functions of  these proteins are not known, but among other things they must be 
responsible for laterally cross-linking the actin so that the fibers form a bundle. 
In our model we have ignored the role of actin cross-linking proteins. It is hard 
to imagine any way that these proteins could speed up the growth process. 
Although, given their size, they might sterically interfere with the polymerization 
and slow it down. 

If  one examines the number of  actin filaments as a function of length down 
the growing acrosomal process, one finds that the largest number of  filaments 
are located near the sperm nucleus, and the fewest are near the tip. Taking 
transverse sections through the acrosomal process and counting the number of 
filaments, Tilney and Inou6 (1982) show the number changes from 150 near the 
base to 18 near the tip. The region directly adjoining the tip membrane is difficult 
to visualize and thus the number 18 is not precise. Further, because of  this 
difficulty in visualization, one cannot tell if  the actin filaments touch the membrane 
as they must if they are to push it. In the model presented in Sect. 3, the change 
in the number of  filaments along the acrosomal process was ignored. Rather we 
simply used the average number of filaments, 60. Because the number of filaments 
decreases, we can presume that capping the ends of some filaments must occur, 
and that this may be another role for the actin binding proteins found in the 
periacrosomal cup. To model the observed change in filament density, one could 
make f, the number of filaments per unit cross-sectional area, a function of x, 
the distance down the acrosome, and time and then write a partial differential 
equation for f. We intend to pursue this approach in the future. At present, we 
can only speculate on the effect of replacing f by f(x, t). Notice from Eq. (14) 
that dL/dt would not be affected but the boundary conditon, Eq. (18), would. 
In effect, if some actin filaments are capped, there are less sites available for 
monomer addition, and thus the monomer concentration, c, would decrease more 
slowly. Because there are more filaments at the base of the acrosome, one would 
suppose that the monomer would be depleted more than our model predicts 

2 In models in which the actin concentration in the base is kept constant, the inclusion of profilin 
will increase the net transport rate of monomers to the tip by a classical facilitated diffusion process. 
However, if the amount of actin in the base is fnite, then including profilin will reduce the 
concentration of free actin in the base. Transporting a finite amount of actin, partially as a slower 
moving actin-profilin complex, must necessarily yield a net decrease in overall transport rate 
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during the early stages of growth, and hence the rate of growth might be somewhat 
slower than we predict. Conversely, later in the growth process the density of 
filaments in the reaction zone at the tip would decrease below the constant value 
of 60 that we used in our model; hence the monomer concentration would be 
elevated, and the growth dynamics would be enhanced. The net effect on the 
elongation dynamics is uncertain. One can see from Eq. (56) that the effect of 
using f =  18 filaments/unit area, the approximate value found at the distal end, 
rather than the average value of 60 would only lead to a factor of 3 increase in 
the slope of the L 2 versus t plot. If at the tip f were 1-2 rather than 60, then the 
slope would increase by 30-60 and be consistent with experimental observation. 
However, then only one or two filaments would be available to push the acrosomal 
membrane, and we doubt enough force could be generated to extend the mem- 
brane. 

If we are correct and diffusion-plug flow-limited actin polymerization can not 
occur fast enough to account for the growth of acrosomal process, then what is 
driving the elongation? Dan and coworkers (1964, 1967) and Oster et al. (1982) 
have suggested that water inflow into the sperm could be responsible. If fluid 
flow from the base to the tip of the acrosomal process occurs at a rate faster than 
dL/dt, then more monomers will be transported to the tip than we have calculated 
in our model based on the plug flow assumption. Polymerization can then also 
occur faster than we have predicted. However, for fluid flow to occur faster than 
dL/dt a hydrostatic pressure difference between the base and tip is required. 
This complicates the issue because, as Oster et al. (1982) have shown, water flow 
driven by a hydrostatic pressure difference can itself drive the elongation and 
produce a linear L 2 versus t plot with a slope in agreement with experimental 
measurements. In the presence of a hydrostatic pressure difference it might be 
difficult to separate the direct effects of the pressure from the effects of the 
polymerization, especially if the rate of monomer transport were sufficiently 
enhanced so as to keep the actin fiber bundle in the vicinity of the tip membrane. 
If  polymerization is not driving the elongation it may play a role in providing 
directonality to acrosomal growth. Hydrostatic pressure by itself would tend to 
produce spherical projections such as blebs rather than elongated tubes. Either 
special membrane asymmetries or effects upon the structure due to the presence 
of actin filaments must determine the tube-like shape of the acrosomal process. 
Further, hydrostatic pressures will eventually become equalized and water flows 
will stop. When this occurs, the actin filaments will stabilize the structure and 
maintain its tube-like shape. 

In the model of Oster et al. the hydrostatic pressure difference is created by 
osmotically driven water inflow into the periacrosomal cup region of the sperm, 
an event that occurs within 50-70 ms of the fusion of the acrosomal vesicle with 
the plasma membrane (Inou6 and Tilney 1982). Recent experiments by Tilney 
and Inou6 (1985) show that changes in the osmotic environment of the sperm 
affect the dynamics of the elongation process. In a hyperosmotic environment, 
the slope of the L 2 versus t curve decreases, whereas in a hypo-osmotic environ- 
ment, it increases. This is in qualitative agreement with the theory of Oster et al. 
(1982). Further development of the model is now planned in order to see if 
quantitative agreement can be obtained between theory and experiment. 
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