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SUPPORTING INFORMATION

A C Version of frmsd

frmsd was originally written in Fortran 95. We decided to translate the routines into C in
order to make a fair comparison with qcp in our timing studies as well as to make our code
available to a wider audience. In the process, we tried to optimize frmsd as much as possible.

Some of the optimizations we performed were: loop reordering as C stores arrays by rows
while Fortran stores by columns; loop unrolling for loops over the three Cartesian coordinates;
replacing Fortran x = x ± ... constructions with C increment and decrement operators;
minimizing the number of divisions which tend to be computationally expensive (on all
the Linux and MacOS systems and compilers that we tried, C double precision floating
point divisions were more than twice as slow as multiplications1); replacing small arrays
by individual variables (computing array element offsets, especially in deeply nested loops,
can be expensive); saving pointer references as variables if needed more than a couple of
times (in C, 2D arrays are referenced a[i][j] where a[i] is a pointer to the ith row); in
conjunction with the previous, defining and explicitly incrementing array pointer references
in heavily used loops rather than performing array indexing (for example, a i = a; for

(...) { s += f[a i]; ++a i; }); writing explicit code on a case by case basis for dot
products involving possibly transposed matrices; inlining small subroutines in order to avoid
call overhead; and general code cleanup.

The C frmsd implementation2 has a number of features. The program operates on a
collection of .pdb files in a directory specified on the command line. It is assumed that a
file called files with the names of all the .pdb files, one entry listed per line, is present in
that directory.3 frmsd has options to compare all the structures with each other [a (array)
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1frmsd can be compiled for this common situation by defining -DSLOW DIVISIONS, which we did for all

the timings performed here. This option replaces code like x /= z; y /= z; by r = 1.0 / z; x *= r; y

*= r;, which is faster when multiplications are more than twice as fast as divisions and the extra assignment
takes negligible relative time, which is common behavior on current hardware.

2Available at http://www.ams.stonybrook.edu/∼coutsias/codes/frmsd.tgz.
3In Unix based systems, this file can be created via ls *.pdb > files.
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and s (single)]4, or compare all but the first structure with the first [l (list)]. frmsd can
then produce just the RMSD, the quaternion form of the rotation matrix, the usual rotation
matrix for aligning the structures to minimize the RMSD, and the gradient of the RMSD
with respect to the input coordinates. There is an option (for list) to apply the rotations
and produce the aligned molecules (either the rest aligned with the first molecule in the
list or the first molecule aligned with all the others). Molecules can be filtered in various
ways to select a subset of the available atoms for comparison purposes, such as only the
Cα, backbone or heavy atoms.5 Typically, only ATOM records in the .pdb files are used to
collect coordinates, but optionally HETATM records can be looked through as well. Various
checks and verbose outputs are also available.

A.1 Timings and Consistency

Here, we look at the results of some timings that we performed with the C version of
frmsd, along with comparable timings performed with qcp1–3, which is also written in C.
We analyzed three different datasets: 7ring 0.1deg, vhp mcmd:1vii and lattice ssfit:1beo.
7ring 0.1deg is a seven membered ring dataset generated using an inverse kinematics algo-
rithm.4 Specifically, all bonds were set to equal length, all angles to the canonical value
114o, and one of the torsions (t1) was sampled over the range [0o, 360o] in 0.1o increments.
The remaining six torsions {ti}7i=2 were determined by solving the ring closure polynomial,
producing none to as many as six alternative sets of values for each torsion t1. The density
of states is high for certain values of t1, corresponding to very closely spaced (in the sense of
RMSD) solutions. Symmetry was not considered for comparisons in the seven member ring
dataset, as qcp does not account for this possibility.

vhp mcmd:1vii5 is a decoy set6, that is, a collection of computer generated protein struc-
tures, from the chicken villin headpiece thermostable domain (PDB identifier: 1vii). lat-
tice ssfit:1beo7 is another decoy set, this one assembled from fragments of unrelated protein
structures with similar local sequences. Table SI1 details the basic numerical characteristics
of the datasets: the number of molecules (m) and atoms (n), and the number of comparisons
performed between molecules (each molecule was compared with every other molecule, so
m(m− 1)/2 comparisons).

To make the comparisons fairer, we modified qcp to compute the atom coordinate norms
and barycenters once per molecule rather than during each comparison, which is the way
the routines are set up in the distribution. There was also a problem with qcp’s handling of
identical files (present in the vhp mcmd:1vii dataset) for which the RMSD is obviously zero.
qcp always performs at least one Newton iteration in its quest to determine the maximum
eigenvalue of the F matrix, which is then used to compute the RMSD. In some cases,

4The differences between these options are slight, just the way the frmsd routines are invoked to illustrate
different calling sequences, that is, either providing an array of coordinates for all structures at once or the
coordinates for two structures at a time.

5-fx filters the atoms in the .pdb files being compared, where x may be one of
c Cα atoms,
b backbone atoms (N, Cα, C),
h heavy atoms (non-H) with no special symmetries,
s the above along with atoms with special symmetries,
a all atoms.
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roundoff would result in the difference of the initial estimate with the first iterate being
negative, leading to the square root of a negative number. We modified qcp to use the
absolute value of this difference in the RMSD computation.

Table SI2 presents timings for the various datasets under GNU (gcc 4.4.3) and Intel (icc
12.0.5) compilers on a lightly loaded machine with 8 processors (64-bit 2.4 GHz Xeon) and
24 Gb memory running Ubuntu 10.04.3 LTS. For each dataset, one series of runs computed
RMSDs only, while the other also produced rotation matrices.

In Table SI3, RMSD consistency is examined. Let U be the rotation matrix that produces
the RMSD e between the coordinate matrices X and Y , so that e and U are related by
e = ||Y − UX ||. Call ecode and U code the outputs of frmsd or qcp. We compared ecode with
e′ ≡ ||Y −U codeX||, that is, we checked how well U code reproduced ecode for each comparison
of atomic coordinates in the indicated datasets. The maximum values of the absolute error,
|ecode− e′|, and relative error, |ecode− e′|/ecode, and the number of instances when one or the
other error was > 10−10 are shown in the table.

A.2 Operation Counts

Table SI4 compares the basic operation counts for frmsd and qcp. The operation counts
for qcp reflect the first modification noted in the timings section (the second was only used
for timings on the vhp mcmd:1vii dataset and would simply add one absolute value to the
RMSD calculation). Therefore, any initializations along with the reduction to barycentric
coordinates and the computation of the norms of the reduced coordinate matrices is a pre-
processing step for both codes, indicated by the terms not multiplied by M in the table.
Both algorithms try to recompute the eigenvector of F associated with the maximal eigen-
value if the norm is too small, but the operation counts presented here are simply the basic
(best case) calculations in the situation of no degeneracy in the eigenspace of F .

In Table SI5, additional operation counts for computing the rotation matrix with frmsd
and qcp are presented for scenarios where there is degeneracy in the eigenspace of F . qcp
tests for the case of a simple leading eigenvalue (rankA = rank (F − λ1I) = 3) only, while
frmsd can deal with all possible deficiencies of F ’s eigenspace. The operation counts in each
section are for the worst possible case of computing all possible sets of appropriate minors
in the quest to find a nonzero set in order to construct a nontrivial eigenvector.

The operation counts for frmsd’s linear combinatorial algorithm are given in Table SI6. g
is the number of residue symmetry groups and B is half the total number of atoms involved.
In general, the term involving A counts the number of operations needed to compute the
RMSD given the matrix R, while the term involving B tabulates the work involved in
modifying R for each new permutation of atoms. Note that for the simple case when all the
νi, the number of atoms in the ith symmetry group, are 2, B = g. Also, if g = 0, then the
operation counts here reduce to the basic numbers given in Table SI4.

Table SI6 is also the operation counts for the recursive algorithm given in Figure 5 that
handles general atom symmetries. In this situation, A and B take on different values as
noted in the table, but all other counts are otherwise exactly the same. A and B are 1 and
0, respectively, in the limit when g → 0. If all the atoms are indistinguishable, then g = 1,
ν1 = n and so A = n! and B = (n− 1)!.
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A.3 A Small Molecule Test Set

The distribution of frmsd includes a set of small molecules with various types of symmetries
together with setup files. The compounds are listed in Table SI7 and their symmetry types
are given in Table SI8, reproduced from Coutsias, Lexa et al.8. Table SI8 also shows RMSD
values found when comparing a dataset of 10, 000 alternative conformations of each com-
pound produced by an inverse kinematics algorithm to that compound’s crystal structure.
The three values given for each compound on the right are the maximum and minimum
RMSD between the target structure and the one structure among the dataset with the best
minimal RMSD fit to the target, while the middle value is what a typical comparison would
give, without accounting for symmetry. In most cases, accounting for symmetry allowed
finding a much better fitting structure in each set than would have otherwise been possi-
ble. Figure SI1 shows the compounds in each set with a color scheme identifying identical
building blocks in each compound.
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dataset molecules atoms comparisons
7ring 0.1deg 8736 7 38154480
vhp mcmd:1vii 6255 295 19559385
lattice ssfit:1beo 1998a 716 1995003

Table SI1 The number of molecules, atoms, and comparisons performed for
each dataset.

aIn the distribution from Decoys ‘R’ Us, the number of decoys listed was 2000, but one
of the files was empty and one was an empty directory.

frmsd qcp
gcc icc gcc icc

7ring 0.1deg 6.63740 6.29700 8.49800 7.61500
+U 9.64740 9.18570 10.93130 10.05750

1vii 39.23080 32.19600 51.30010 46.87990
+U 40.64030 34.00150 52.86920 48.43790

1beoa 7.18110 5.04520 11.02270 9.10200
+U 7.39080 5.25350 11.18120 9.28810

Table SI2 Timings (in seconds) of the two codes frmsd and qcp under gcc and
icc (Intel C) with -O2 optimization on the various datasets (similar trends
were observed for -O3 optimization). All timings were performed on the
same computer and are averages over 100 runs. Standard deviations were no
more that 0.05% of the means and are omitted. The calculations are listed
in pairs, where in the first entry only RMSDs were computed, while in the
second the rotation matrices were also produced (+U).

aSome of the files in this dataset were identical (the RMSD was identically zero), which
caused qcp to crash in some cases, so runs were performed using a version of qcp fixed to
avoid this error.

max (1) relerr (2) abserr err > 10−10

frmsd qcp frmsd qcp
7ring 0.1deg 5.982 · 10−9 5.237 · 10−9 16623 12854

3.440 · 10−12 2.553 · 10−12

1vii 2.156 · 10−13 1.371 · 10−13 0 0
4.583 · 10−13 4.228 · 10−13

1beo 1.004 · 10−13 6.276 · 10−14 28 27
8.788 · 10−7 7.808 · 10−7

Table SI3 Maximum relative error (first line of pair) and absolute error (second line of
pair) of RMSD consistency and number of instances when the relative or absolute error was
> 10−10 for the two codes on the datasets. Absolute error is expressed in Å.
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RMSDs (unweighted)

+ 6mn+M(9n+ 18 + 5Ī) 6mn+M(9n+ 35 + 5Ī)

− 3mn+M(8 + Ī) 3mn+M(19 + 2Ī)

× 3m(n+ 1) +M(9n+ 38 + 6Ī) + 1 3mn+M(9n+ 50 + 6Ī) + 1

÷ M(Ī) + 1 3m+M(1 + Ī)
√

M(1) M(1)

> M(3Ī) M(2 + Ī)

| | M(3Ī + 1) M(2Ī + 1)

RMSDs (additional with weights)

× 3mn mn+M(3n)

rotation matrices (best case)

+ M(17) M(14)

− M(21) M(27)

× M(40) M(44)

÷ M(2) M(4)
√

M(1) M(1)

> M(4) M(1)

| | M(4)

frmsd qcp

M ≡ 1
2
(m2 −m)

Table SI4 Operation counts for frmsd and qcp (modified as noted in the text) computing
RMSDs and then rotation matrices (the operation counts for the latter are in addition to
those needed to compute the RMSD). Here, m molecules, each with n atoms, are compared
with each other (so M = 1

2
(m − 1)m comparisons). Ī is the average number of iterations

(≤ 50 for frmsd and qcp) that are needed to compute the maximum eigenvalue of F in each
comparison. For the datasets 7ring 0.1deg, 1vii and 1beo, Ī was approximately 5.428, 8.346
and 9.509 (frmsd), 5.428, 8.346 and 9.510 (qcp), respectively, with a standard deviation of at
most 0.01%. The operation counts given are for the best case of no recomputed eigenvectors.
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rotation matrices (worst case additional)
simple leading eigenvalue of F

+ M(1) M(21)

− M(3) M(18)

× M(9) M(60)

> M(2) M(3)

multiple leading eigenvalue of F
× M(1)

> M(3) not available

| | M(3)

frmsd qcp

Table SI5 Additional operation counts for frmsd and qcp computing rotation matrices in the
worst case of degeneracy in the eigenspace of F (see text). Here, m molecules are compared
with each other (so M = 1

2
(m − 1)m comparisons). Note that qcp does not handle cases

where the leading eigenvalue of F is double or triple.

RMSDs (combinatorial)

+ 6mn+ M(9n+ A(18 + 5Ī) +B(9))

− 3mn+ M( A(8 + Ī) +B(18))

× 1 + 3m(n+ 1) +M(9n+ A(38 + 6Ī) +B(9))

÷ 1+ M A(Ī)
√

M A(1)

> M A(3Ī)

| | M A(3Ī + 1)

A B

LRS g + 1 1
2

∑g
i=1 νi

GAS
∏g

i=1 νi!
∏g

i=1(νi − 1)!

Table SI6 Operation counts for computing RMSDs using either the linear combinatoric
algorithm to handle residue symmetries (LRS) or the recursive algorithm to handle general
atom symmetries (GAS). Here, m molecules, each with n atoms, are compared with each
other (so M = 1

2
(m − 1)m comparisons). Ī is the average number of iterations needed

to compute the maximum eigenvalue of F in each comparison. Given g symmetry groups
containing νi, i = 1, . . . , g atoms per group, the values of A and B for the two algorithms
are as provided above.
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compound name database ID (CSDS/PDB) or article source
1P2 cyclic pyrrole-imidazole polyamide 3OMJ
AAS a-Thr ascidiacyclamide NEPMIE
ACX alpha-Cyclodextrin 2XFY
BIX cryptophane (±)-anti-1 BIMXUR
BPH biphenyl derivative PEWTAO
CD4 cryptophane E (±)-2[SbF6]6 RAYFED
CRP cryptophane E analogue PICKUH
HAX sandramycin HAXMOI10
KCR hemicryptophane KASGAO
MST compound 5a xtal from Mastalerz et al. Angew Chem Int Ed

2013 v52 p3611
RH9 rhizopodin 2VYP
SWI swinholide A 1YXQ
TET compressed tetrahedron xtal from SI in Wang, Day, and Bowman-James

JACS 2013 v135 p392

Table SI7 All compounds used in this study, listed alphabetically by short name, with
source and full compound name.

number of symmetry RMSD RMSD RMSD
compound alignments symmetry max given min
MST 24 tetrahedral 3.04 3.02 0.42
TET 24 tetrahedral 2.19 2.08 1.87
BIX 6 dihedral(3) 2.80 0.75 0.46
CD4 6 dihedral(3) 4.41 0.73 0.68
CRP 6 dihedral(3) 2.59 0.30 0.30
ACX 6 cyclic(6) 0.71 0.65 0.55
KCR 3 cyclic(3) 1.55 0.61 0.57
1P2 2 cyclic(2) 1.39 1.39 1.33
AAS 2 cyclic(2) 0.22 0.22 0.22
BPH 2 cyclic(2) 0.52 0.52 0.48
HAX 2 cyclic(2) 0.57 0.57 0.57
RH9 2 cyclic(2) 1.27 1.24 1.24
SWI 2 cyclic(2) 1.39 1.37 1.37

Table SI8 For each compound in the study, the number of possible alignments and symmetry
type, as well as the maximum and minimum RMSDs computed over all the alignments. The
given RMSDs are computed ignoring atom symmetries. All RMSDs are given in Å.
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Figure SI1 The symmetric molecules in the dataset. The colored components depict the
main backbone atoms included in the RMSD computation from each identical building block.
Hydrogens are not shown, while non-backbone atoms not included in RMSD computations
are shown in gray.
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