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We use techniques of singular perturbation theory to investigate the scattering of nonrelativistic
charged particles by a standing light wave (Kapitza-Dirac scattering). Unlike previous treatments,
we give explicit results for the effects of the time-dependent part of the field. For low field intensity
or low particle energy, we show that the leading-order effects can be found from an averaged equa-
tion, and we compute corrections. For the strong fields that can be produced by modern lasers
and/or high particle energies, we show that the time dependence of the potential leads to focusing.
Our methods can be applied to other problems with time-periodic potentials.

I. INTRODUCTION

In 1933 Kapitza and Dirac! predicted that electrons
traveling in a standing light wave would be reflected from
the planes of peak intensity. The probability per electron
for reflection was proportional to the square of the prod-
uct of the field intensity and the interaction time. Be-
cause the light sources available at that time were too
weak to generate an observable effect, the subject was
neglected until the discovery of the laser. Since then,
numerous theoretical and experimental studies have been
devoted to this subject.

The earliest of these theoretical papers®® followed
closely the original treatment of Kapitza and Dirac
inasmuch as they relied on a first-order expansion of the
wave function in terms of the standing-wave field. Like
the original paper, they are not valid for presently avail-
able laser intensities since they would predict scattering
probabilities in excess of unity. Fedorov* published the
first extensive treatment of the problem. By neglecting
the time-dependent part of the standing wave, he was able
to rewrite the Schrodinger equation in the form of a
Mathieu equation. Solutions were then found for the
cases of a low intensity field and a high intensity field.
Unfortunately, neither of these cases corresponded to in-
tensities used in the experiments.

Gush and Gush® used the nonrelativistic Green’s func-
tion for an electron in a standing-wave field to produce an
exact solution to the problem when the time-dependent
part of the field is neglected. This treatment is not only
valid for all intensities up to the point where the time-
dependent part of the field becomes important but also for
electron momenta that do not satisfy the Bragg condi-
tions. Furthermore, the probabilities for higher-order re-
flections are treated. Unfortunately, the final expressions
for the scattering probabilities are not in terms of known
functions and are unwieldy.

The question of what role, if any, the time-dependent
part of the standing-wave field plays in the scattering pro-
cess is still an unresolved issue. Gush and Gush® and oth-
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ers have argued that the time-dependent portion of the
field can safely be neglected for the intensities used in the
reported experiments. This conclusion has been disputed
by Ehlotzky et al.® whose calculations show that the time
dependence of the field has a significant influence on the
scattering of the electron. The validity of their calcula-
tion remains in doubt in view of the fact that except for
small interaction times and intensities the scattering prob-
abilities for the time-averaged case differ from those
predicted by the more exact treatment of Gush and
Gush.?

In this paper, the role of the time-dependent portion of
the standing wave is investigated using several different
approximation techniques. The geometry and governing
equations are introduced in Sec. II. Various nondimen-
sional parameters are also defined in this section and in-
terpreted in terms of physical quantities. In Sec. III
multiple-time-scale perturbation theory is used to calcu-
late scattering probabilities for the case when the
standing-wave field is not too strong. This case corre-
sponds to the one previously treated in the literature. The
time-averaged equation is derived with no further assump-
tion and the limits of its validity are discussed. This
equation is then solved in terms of Mathieu functions and
several new features of the scattering probabilities are dis-
cussed. In Sec. IV we treat the case that is characterized
by strong coupling and high electron energies. This case
is «discussed using a semiclassical approximation. The
wave function is again found to be quasiperiodic within
the limitations of perturbation theory. Under appropriate
conditions the corresponding classical problem leads to
focusing. In quantum-mechanical terms the focusing is
exhibited as sharp localized maxima in the scattering
probabilities. In Sec. V the conclusions are drawn.

II. MODEL

In this paper we will consider the problem of a nonrela-
tivistic, quantum-mechanical electron interacting with a
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FIG. 1. A schematic of Kapitza-Dirac scattering.

classical, electromagnetic, standing wave as illustrated in
Fig. 1. The electron has initial energy E and momentum
p which is chosen so as to lie in the x'-z’ plane. A stand-
ing wave of frequency w lies along the x' axis and is as-
sumed to be plane polarized along the y’ axis. The in-
teraction is turned on at t=0 and continues for a time
T=L /v where v=|p| /m is the electron velocity, m is
the electron mass, and L is the interaction length.
The standing wave is given by the vector potential,

A =A[cos(kx' —wt)+cos(kx’'+wt)]y
=2A cos(kx')cos(wt )y . (2.1)

Here A is the intensity of one of the two counterpropagat-
ing fields that combine to make the standing wave and
k=w/c.

Because the electron is nonrelativistic and spin effects
are not important for most cases of interest, its behavior is
described by the solution of the Schrédinger equation with
the external field (2.1). This equation can be written in the
following conventional nondimensional form:

R _
) —2q cos(2x)[1+4cos(27/€)] |Y=—i ar (2.2a)
where
x=kx', (2.2b)
2
r— % ) (2.2¢)
2
q:;_eh;Az, (2.2d)
e= zﬁ“’z : (2.2¢)
; mc

For all cases in which an experiment is feasible i << mc?
so that

e<<1. ‘ 2.3)

The initial condition for the wave function is specified by

its free-space value at the time when the interaction is

turned on N

P(x, 7=0)=exp(ifBx) ~ (2.4)
where

B=p,/Fk . (2.5)

A cursory inspection of Eq. (2.2a) shows that two types
of interaction of the electron with the field can occur. In
one case the particle only exchanges momentum with the
field. This is the elastic scattering mode that has been ex-
tensively investigated.!~> The term in the potential that
only has a spatial dependence determines this interaction.
The remaining term is a product of a spatial and temporal
piece. Here the electron experiences a change in both
momentum and energy each time it interacts with the
field. This is the inelastic portion of the scattering.

Because the potential in Eq. (2.2a) only permits the
electron to change its nondimensional momentum by mul-
tiples of 2, the final state of the electron must be charac-,
terized by a momentum p, which satisfies

Pn=HkB,=%k(B+2n), n=0,+1,%+2,.... (2.6)

The probability amplitude that after an interaction time
7y the electron is in a state with momentum p, is given by

2
Po(B,ry)= % [ expl—iBuz iz, rp)dz| . @)

These probabilities must satisfy the condition

> P,=1. (2.8)

The strength of the interaction is determined by the pa-
rameter g introduced in Eq. (2.2d). In order to provide a
physical interpretation for this quantity it is convenient to
rewrite it in" terms of the individual wave intensities
I=ck*4%/8 so that

2mc?

2mrro kA
g= P (2.9)

fiwe

where r, is the classical electron radius and A=1/k.
When I is rewritten in terms of the photon number densi-
ty p (I=%wcp) then the quantity in the square brackets
reduces to 27rgA%p. The coupling constant g is therefore
proportional to the number of photons in a cylinder of
length 2r and radius A. For available laser sources g can
reach values of ~ 108 in unfocused beams although ¢ < 10
is more characteristic of the published experiments.’—12

Because we have been unable to find an exact solution
for Eq. (2.2a), we have had to resort to various perturba-
tion schemes to find approximate expressions for the wave
function in different regimes. These regimes are charac-
terized by the relative size of the adjustable parameters g,
€, and . In the remainder of this paper we will be con-
cerned with the range of values of the parameters accessi-
ble to the experimentalist.
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III. WEAK COUPLING

The weak-coupling limit is characterized by the two
conditions

1/e>>q
and
l/e>>|B] .

This case covers the conditions that characterize previous
experiments,” 1% ie., |B| <10, ¢<10, and e '~10°
Under these conditions multiple-time-scale (MTS) pertur-
bation theory!® can be used to find an approximate expres-
sion for the wave function.

In order to apply this perturbation analysis, the wave
function v is assumed to have the following asymptotic
expansion:

N
Wz, )= 3 €P,(x,0)+0(eV+), (3.1)

n=0

where each 9, is a function of the time scales
ty=€*r, k=—1,0,1,.... (3.2)

The reason for considering a sequence of time scales is
that each mode of the wave function has a characteristic
time scale 7=w(€e)7 that depends on €. The most con-
venient means of studying all the modes simultaneously is
therefore to isolate effects to a given order of €.

For this problem we need to expand the wave function
to order € so that only four time scales are necessary, i.e.,
t_1,t0,t1,t5. Of these four time scales, ¢; will make no
contribution to the calculation so it will be eliminated
from the start. The time derivative in Eq. (2.2a) is then
written as :

9 _ 19 +i+ezi .

or ot —1 ato at 2
“Once Egs. (3.1)—(3.3) are substituted in Eq. (2.2a) and
coefficients of the various powers of € are set equal to
zero, the following set of coupled differential equations
emerges:

(3.3)

9o

O(e™"): ——=o0, 3.4)
ar_,
. 0y
0(€°): L¢0:—lat_l , (3.5)
9,
1y. _
O(e'): Ly= lat_l , (3.6)
Ao Y3
2); ——=—1 , 3.7
O(€’): Lpp+i ar, zat_l (3.7)
where
Lza—z—chos(Zx)[l—i—cos(Zt 1)]+i—a—. (3.8
ax2 - ato
The initial conditions are then given by
1//,,(x, t_1=0, t0=0, tz=0)=5noexp(i[j’x) . (3.9)
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Equation (3.4) requires that v, is independent of r_,,
i.e., Yo=1g(x,t0,¢,). With this result Eq. (3.5) can be in-
tegrated over ¢_; to give an expression for v, in terms of

1/}0’ .
Y1=i[(Lpo)t_; —q cos(2x )sin(2¢ _; ] -

In general, this equation would contain an integration
constant that is a function of x, ¢y, and ¢,. Because this
function can be shown to be a part of 1, it will not ap-
pear in this discussion. The secular term in Eq. (3.10) is
removed by requiring that the coefficient of #_; be set
equal to zero. This condition yields

(3.10)

= | d? . 0

L= Ez-z——zqcos(ZxH—zEg Yo=0 (3.11)
and leaves

= —iq cos(2x )sin(2¢ _ )iy . (3.12)

Equation (3.11) is the one we would have obtain if we had
followed the traditional approach and averaged Eq. (2.2a)
over the rapid oscillations.

The solution of Eq. (3.11) which satisfies the initial
condition (3.9) is

Yo(x,t0,2,) = i a,(ty)meg7,(x,q)expl —iAgy2,(q)t]

ne— o
(3.13)

with
a,(0)=CP%2q) .

(3.14)

Here me,(z,q) is a Mathieu function'* of order a and
Aq(g) is its eigenvalue. The constants C$%.(q) are the
Fourier coefficients of me,(z,q), i.e.,

me,(z,g)= 3 C%.(qlexp[ila+2r)z].

r=—cw

(3.15)

The substitution of Eq. (3.12) into Eq. (3.6) and the sub-
sequent integration over z_; yields the following expres-
sion for ,:

¢2(x’t—]’t0’t2)

d
= 2g[cos(2¢_;)—1]cos(2x )ipy+sin(2x )%
X

2
+l4—cos(2x [cos(4t_)—11o+B(x,t0,t) , (3.16)
where B is an undetermined function that satisfies the ini-
tial condition

B(x,0,0)=0. (3.17)

There are no secular terms this time. In a similar manner
Eq. (3.7) can be integrated over ¢_, after the substitution
of Eq. (3.16). Because we are solving for the wave func-"
tion to O(€?), we only need to investigate the differential
equation,
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32 . 0
<2 _ = IB
tazz 2q cos(2x)+i atg
d 9
:—i%—kSq cos(2x)¢0+251n(2x)—:?0
82
— cos(2x)a—):/jz2

+3¢*[1—cos(4x )]y (3.18)

 Qay
b,= —zi—i—Sanq

2
{a%z——m cos(2x)+Agyan
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that arises from setting the coefficient of ¢z_; to zero.
The left-hand side of Eq. (3.18) contains the same opera-
tor that occurs in Eq. (3.11). We can therefore write B as

B(x,to,tz): 2 bm(x,tz )exp[ _llﬂ+2m(q)t0] . (3.19)

When Egs. (3.13) and (3.19) are substituted in Eq. (3.18)
and the coefficients of exp[iAg,m(g)to] are set equal to
zero, the following equation arises:

cos(2x )+ 2 sin(2x )—(%— +cos(2x)Ag, p

—g°[5+11cos(4x)]lmeg, 2,(x,q) . (3.20)
We can now apply Fredholm’s alternative theorem!® to this equation which requires that
oa
TR (3.21)
where
L " me; 6 322
Ya@=— [ mehi2n(x0)8(g,x)meg, 2y (x,q)dx (3.22)
and
é(q,x): 8q |[1+Ag2,(g)]cos(2x)+2sin(2x )a% —q?[5+11cos(4x)] . (3.23)
Equation (3.21) with initial condition (3.14) has the obvious solution,
a,(q)=CE5g)expl —ivn(g)t2] . (3.24)

Equations (3.12), (3.13), and (3.24) can be combined by using Egs. (3.1) and (3.2) to give an approximate expression for

the wave function

Y(x,t)~[1—ieq sin(27/€)] S C‘i’;ﬁ”(q)me +2n(q,x)exp{—i[?»3+2,,(q)+627/,,(q)]1'}.
B

n=-—o0

This wave function is still properly normalized to terms
of O(€?). For the condition that we assumed at the begin-
ning of this section (€ 7!>>q and €~!>> | B|) the correc-
tions to the lowest-order wave function are negligible. As
an example consider the terms in the first set of square
brackets. If we calculate the probability (2.7) that the
electron will be in a particular momentum state after a
time 7 then the second term in the square bracket makes a
‘contribution that is a factor (eq)? smaller than the first
and can therefore be safely ignored as long as €~ !>>gq.
Even if there were some means of detecting this small am-
plitude correction, we would have to contend with the fact
that this term is oscillating at the frequency of the
standing-wave field.

The second term in the argument of the exponential in
Eq. (3.25) also does not appreciably influence the scatter-
ing probability as long as we are considering reasonable
interaction times (7<10). This term introduces a slow
modulation in time to the wave function. For g <<e™!,
the period of oscillation is much greater than conceivable

(3.25)

I

interaction times so again the correction induced by the
oscillating portion of the potential can be neglected. We
are thus led to the conclusion that as long as g <<€~ ! and
| B| <<€~! the temporally oscillating term in the vector
potential can be safely neglected. This result contradicts
the conclusions of Ref. 6.

The perturbation calculation is no longer valid when
€q~1 since the second term in the first set of square
brackets of Eq. (3.25) becomes comparable with the first
term. If we return to the definition of ¢, Eq. (2.9), and e,
Eq. (2.2¢), then the product can be rewritten as

2o

Fioe = 27T7‘0A.ZP

€q (3.26)
where I =7%iwcp has been used in the last step and p is the
photon number density. An estimate of when the time
variation of the vector potential becomes important is
2mroA’p=1. In other words, there is one photon in the vi-
cinity of the electron at all times. This condition makes
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sense. The time-dependent part of the standing wave
represents a stimulated emission or absorption of two
photons by an electron. This process will not be probable
unless there are two photons in the vicinity of the elec-
tron. Because a photon cannot be localized perpendicular
to the direction of motion to a distance less than a wave-
length, the vicinity of an electron is the volume 2mroAl.
We have therefore returned to the condition given by Eq.
(3.26). For A=1 um, Eq. (3.26) requires I~10"* W/cm.
Although these intensities can be achieved for focused
laser beams they cannot be achieved in the 1-cm beams
needed to generate a reasonable interaction time for the
electrons. On the other hand, CO, lasers (A=10 um) re-
quire I~10!" W/cm? for Eq. (3.16) to be satisfied. This
is presently possible.

When the small terms in Eq. (3.25) are dropped, the
wave function assumes the form

P(x,t)= i C’_’fﬁ"(q)megun(x,q)

n=-—o0

Xexp[ —iAgian(g)T] . (3.27)

The probability for scattering from an initial state with
momentum p;=p#%k to a final state with momentum
pr={(B+2r)fik after a time 7 is then given by Eq. (2.7) as

> P ChET, (9)

n=-—oo

Pr(B,T)—_‘

X exp[ —iAgi2,(q)7] (3.28)

and satisfies Eq. (2.8). Although very different in form,
the continued-fraction expression for the scattering ampli-
tude derived in Ref. 5 is identical to Eq. (3.27). The ad-
vantages of the Mathieu function expansion over its con-
tinued fraction form is that Eq. (3.28) is easier to approxi-
mate analytically and evaluate numerically. Because the
Fourier coefficients of the Mathieu functions satisfy a
three-term recursion relation,!* Mathieu’s equation can be
written as a matrix eigenvalue problem where the matrix
is tridiagonal. The eigenvalues Ag,,, and the Fourier
coefficients c£7%" are then easily found numerically using
any standard program to diagonalize the tridiagonal ma-
trix.

Figure 2 shows the scattering probability as a function
of g for p;=*#k; py="*ik,—*#k,3#k,—3%k and 7=2 for a
standing wave with a wavelength of 1 um. The interac-
tion time is chosen so as to represent the approximate
time a 200-eV electron takes to travel 1 cm. These values
of the parameters are chosen as representative of a feasible
experiment. One noticeable feature of these graphs is the
increasing sensitivity of the scattering probability to the
standing-wave intensity. This result is not surprising
since increasing ¢ increases the number of terms that con-
tribute to the summation in Eq. (3.13). Each additional
term adds another and higher frequency component to the
scattering amplitude. Even for relatively low intensities
(such as at the peak of the first maximum of the probabil-
ity for scattering from #ik to —#k [Fig. 1(c)], an increase

(a)
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(b)

0.5 4

1.0 4

(c)

0.5 1

T 1
(o] 5 10

q
FIG. 2. Scattering probability P as a function of ¢ when 7=2
for scattering from p;=#k to (a) p,=3%k, (b) py=#k, (c)
pr=—tk, (d) py=—3%k.

of g by a factor of 2 is sufficient to move the scattering
probability to near zero. This sensitivity could explain the
difficulty with seeing this effect in the early experi-
ments.”~!2 The variation of the probability with ¢ be-
comes less severe if B is increased and higher-order
scattering is considered. This result is shown in Fig. 3.
Although the peak scattering probability is reduced from
the case shown in Fig. 2 it is still respectable.

The probability for scattering from 7k to —#k and
from 3#%k to — 37k as a function of the interaction time 7
is shown in Figs. 4 and 5, respectively, for several values
of q. Again, an increase in g causes the probability to
fluctuate more rapidly but this time as a function of 7.

The last parameter that can be easily varied in an exper-
iment is the angle between the electron beam and the axis
of the standing wave or equivalently 3. In Fig. 6 the

0.4

0.2

0 - T 1
o 5 10

q

FIG. 3. Scattering probability P as a function of ¢ when 7=2
for scattering from p,= — 3%k to 3#ik.
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FIG. 4. Scattering probability P as a function of 7 for
scattering from p; = —#k to py=*#ik when (a) g =3, (b) g =5.

scattering probability for the transition from p#ik to
(B—2)#k as a function of B is shown for two different
values of ¢q. These graphs show clearly that for this par-
ticular transition the scattering probability is symmetrical
about the point 3=1. However, =1 is not necessarily
the point of maximum scattering. This could also explain
the failure of several of the experiments to observe
Kapitza-Dirac scattering.

10 (a)

P

0.5 -
o T 1
07 (b)

P

0.5 |
o T 1

o 2 4
T
FIG. 5. Scattering probability P as a function of 7 for

scattering from p; = — 37k to py =237k when (a) g =3, (b) ¢ =5.

1.0 q
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1.0

0.5 1

B

FIG. 6. Scattering probability P as a function of B for the
transition from p;=p#k to py=(B—2)%k when =2 and (a)
q=3, (b) g=6.

IV. STRONG COUPLING AND HIGH ENERGY

As was pointed out in Sec. III, the MTS analysis that
gave the leading behavior in the form of slowly modulated
eigenfunctions of the time-averaged problem breaks down
if g=0(1/€).. To examine this case, we employ a variant
of the WKB method that allows for the possibility of res-
onance, caused by the time dependence of the potential.
We find that if certain conditions are met between the
wave characteristics of the incoming electron wave func-
tion and the standing wave field, the amplitude evolves to
very large localized maxima near focal points and caustics
of the rays of the corresponding classical system. We ex-
pect that near such caustics the effects of many-particle
interactions and self-radiation will become important. A
realistic analysis of these, including relativistic effects,
will be presented in a subsequent paper.

This section is organized as follows. In Sec. IVA we
discuss the expansion used and outline the calculation. In
Sec. IVB we present a perturbative treatment of the
Hamilton-Jacobi equation' for the rays; a lowest-order
resonant case is investigated in detail, and found to lead to
the focusing of rays and caustic formation. Finally, in
Sec. IV C we analyze the effects of focusing in the classi-
cal problem on the probability amplitude.

A. The quasiclassical expansion

Although problems where a high-frequency approxima-
tion is relevant have been studied extensively for time-
independent potentials very few results of this type exist
for the nonseparable time-dependent case.!® In our dis-
cussion of the Kapitza-Dirac problem we shall use the po-
tential
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V(x,t)=cos’x cos’t

but the method can be used for more general time-
periodic potentials. For problems of this type we expect
quasiperiodic behavior.

In the previous section we saw this quasiperiodicity
arise in our MTS treatment which was valid (at least for-
mally) for moderate energies. In examining the high-
energy—high-frequency behavior in a system without
internal degrees of freedom, whose classical counterpart is
described by a Hamiltonian H(p,q,t) the ansatz

(@.1)

Y=A exp(iS /#)
is used. Substitution in the Schrédinger equation
H(p,q,t)t,b(q,t):_iﬁ?lﬁ 4.2)

[where p=—(i#)(3/9q)] results, to leading order in #~!
in the equation

as
g gt

+a_S=0 s

H ot

(4.3)

i.e., the classical Hamilton-Jacobi equation, showing that

the phase S corresponds to the classical action. The next

order produces an equation for the amplitude (IT=42):
+ 2

(vH )= (4.4)

where

_aH [as
- ap aq ’qv

whose characteristics (rays) are the same as those of (4.3).
From (4.4) it is seen that II is conserved in ray tubes so
that if a tube collapses Il (and A4) becomes infinite. This
happens on caustics of the Hamilton-Jacobi equation
which are envelopes of families of rays in the (g,¢) plane.
If we think, in (q,t,S;) space, of the surface formed by
the rays through some initial curve [e.g., if S,(g,0) is
given], then the caustics are the singularities of its projec-
tion on the (g,t) plane, corresponding to folds, etc., of the
surface.

It must be understood, as was shown by Buchal and
Keller,!” that the higher-order terms neglected in (4.4) will
become large at the caustic and thus they must be includ-
ed there. This effectively gives rise to a boundary layer in
the vicinity of the caustic in which the amplitude is large
but still finite. The theory of geometrical optics allows us
to connect through a caustic by including an appropriate
phase shift in the (complex) amplitude. The value of this
phase shift is m (7/2) where m is the order of degeneracy
of the projection, or equivalently, the number of dimen-
sions lost by the ray tube at the caustic or the change in
the number of branches in the vicinity of the point con-
sidered. The sign is chosen according to whether the
caustic is traversed in the direction of increasing (—) or
decreasing (+) S.'® This was first realized by Keller in
his 1958 paper'® where he also pointed out the need for
many-branch descriptions of the form

r
Y= 3 Arexp(iSy/#), (4.5)
k=1

where r is the number of rays through the point under
consideration. Demanding single valuedness for ¢ he
showed that in nonseparable systems, quantum numbers
for bound states are in general quarter integers (asymptot-
ically). Maslov!® proved the asymptotic character of this
approximation as #—0 for a special class of problems:
essentially “nice” time-independent potentials in several
space dimensions and initial conditions that vanish out-
side some finite region. He showed that for Eq. (4.2) with
H in the form

H(p,q)=+5 3 p*+ V(g
and with initial conditions of the form
¥(q,0)=a(q)explib(q)/#] 4.7)

with a(q) zero outside a finite region that an asymptotic
expression for ¢ is given by

(4.6)

lg,t)= algp)(g;qor)~ " exp
k=1

i
—_— t —_
hSk(q, )

P
2 223

+O(#) . (4.8)

Here J is the Jacobian of the mapping from the initial
point g of the kth ray through g to the point g induced
by the classical Hamiltonian flow, S is the classical action
along that ray, and pu; is the Morse index of the ray, equal
to the sum of the numbers m for every encounter of the
given ray with caustics. This expression fails at caustics,
where the Jacobian becomes singular.

In IVB, we derive a formula similar to (4.8) for our
problem, without attempting a rigorous justification (for
which we would have to replace our plane-wave initial
conditions with a function equal to it inside some finite
region, that is large compared to the wavelength, and zero
outside). The classical problem for the Kapitza-Dirac po-
tential corresponds to a pendulum with oscillating
strength, described by the Hamilton-Jacobi equation

S, +82+€*q cos®x cos?t =0 (4.9)
with initial condition
S(x,0)=¢€*px (4.10)

Here B is the wavenumber of the incoming plane wave.
We consider especially B~O0(1/€?), g~O(1/€*). It can
be seen that when 3 is in a rational relation with the
periods of the potential the classical problem exhibits res-
onance (at least, in the sense of perturbation theory), re-
sulting in strong bending of the rays. We treat the case
B=1/2€? (lowest-order resonance) which leads to caustic
formation in a time scale of order 1/e.
The leading behavior of the rays is found as

x=t+Co(1,&)+0(e)
4.11)
P=1+4e(4+Cy)+0(Y),
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where Cj is a solution of the pendulum equation

2C07"r +Sln(2C0):O ,
(4.12)
C0(0’§)2§’COT(0,§)=0 s

and &, fixed along a ray, gives its position at =0 (r=et is
a slow time scale). We see that the rays are split into
groups performing an oscillation around centers which
drift with uniform velocity. It is clear from (4.11) and
(4.12) that caustics (locations of crossing rays character-
ized by the condition x =0) are cusplike. They form at
the center of each group (Fig. 7) and move out, toward the
saddle points. New cusps form periodically (with period
T =2m/¢). Every cusp marks an S-shaped folding of the

surface P=P(x,t) (Fig. 8) (caustics are singularities of the -

projection of this surface on the x-t plane, i.e., they corre-
spond to p, becoming singular). The amplitude is found
to leading order as

Ao(7,£)=(Cog) ">+ 0(e) .

On caustics xg=0 implies Cos=0 and A appears to be-
come singular. The reason is easy to see if we rewrite the
amplitude equation

(4.13)

A, +2PA,+P,A—i€’A,, =0,

(4.14)
A(x,0)=1
in characteristic coordinates (#,&) in which it becomes

P 1 2
A+—Lfa-éi|—2 | 4=0 (4.15)

Xé— x€ aé‘

(a)
\_///\/

et

w2 o w2
X-T
FIG. 7. (a) Phase plane for Eq. (4.12). (b) Rays [Eq. (4.11a)]
in x-¢ plane.

gp-1/2)

X
FIG. 8. Surface P=P(x,t) (scales as shown).

Clearly, the O(€?) term which was neglected in deriving
(4.8) becomes important near the caustic. This suggests
studying Eq. (4.15) by techniques of singular perturbation
theory. This approach was taken for the reduced wave
equation by Buchal and Keller.!” It produces the correct
leading behavior near a smooth convex caustic.

An expansion for 1 is utilized in the form

Y~ 3 Apexp(iSy /€*) (4.16)
k
with k ranging over the number of distinct branches of
the surface P=P(x,t). Branches join at caustics. A local
coordinate system is introduced at caustics and Eq. (4.15)
is scaled to give the leading behavior in their vicinity.
Away from cusps, two branches join at a caustic, an in-
coming and an outgoing branch. Using a matching pro-
cedure, we can determine 4 on the outgoing branch from
the (presumed known) values of 4 on the incoming
branch. To carry out the matching it is necessary to
analytically continue A4 into the (classically forbidden)
side of the caustic inaccessible to the rays and demand
that the amplitude decreases exponentially away from the
caustic in this region (Fig. 9). The main result of this
analysis, applied to our problem, is that near the caustic
the amplitude is of order
A~0(e 1% 4.17)
which might play a very significant role in situations
where there exists the possibility of nonlinear interaction
(e.g., refractive media, radiation, etc.). The singular per-
turbation analysis of Eq. (4.15) can be carried out for oth-
er cases, e.g., near the “cusp” [which only appears as a
cusp in the x-¢ plane, being a smooth curve on the surface
P=P(x,t) itself] or even for higher-dimensional caustics.
One can use this approach to get leading-order estimates
for the amplitude. To carry out the calculation, especially
in higher-dimensional problems, one can be guided into
the proper scaling by considering the normal forms that
exist giving generic coordinate systems of the surface near
various types of caustics (for a classification and a list of
normal forms see, e.g., Arnold.?® This way we can find,
for example, that near the cusp

A~0(e~ ). (4.18)
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FIG. 9. Structure of solution near a fold of the surface
P=P(x,t). (a) Outer (classically accessible) region: solution
can be given as the superposition of two waves. (b) Boundary
layer: solution is an Airy function oscillating with large ampli-
tude to the left of x. (caustic) and decaying to the right. (c)
Outer (classically inaccessible) region: solution decays exponen-
tially. This is only a schematic, true 4 complex.

B. The expansion away from caustics
In Sec. ITI we were led to study a problem of the type

¢xx —qV(x,t'/62)= _i¢t’ ’
(4.19)
¥(x,0)=exp(iBx) ,

where
€="%w/2mc?
and
Lt
2 fiw ‘
Rewriting in terms of 1 =t'/€?, Eq. (4.19) becomes
Yy —qV(x, )] = —it, ,

Y(x,0)=exp(ifx) .

To keep the discussion general, we leave g as a free pa-
rameter. We assume that 3 has the form

A?.

(4.20)

=§(/30+a/31+02/32+ ), 4.21)

where

o=¢eq'"?.

In Sec. III, the case ¢=0(1),8=0(1) was studied. Here
we extend the discussion to other interesting limits. Using
the ansatz

Y~ 3 ApexpliSy /€®) (4.22)
k
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we find that each branch must satisfy (for simplicity we
drop subscripts)

— %(S,ZJFSX +e*qV)—i(A, 4285, Ay + S A)+ €A, =0 .
€

(4.23)

We recognize the expression in the first parentheses as the
Hamilton-Jacobi equation for the classical action and we
resolve the apparent ambiguity in 4,S by requiring that .S
is precisely the classical action, so that

S, +S2+€e*qV(x,t)=0. (4.24)
Then the amplitude A satisfies
A, +2S, A, +S A —ie*d,, =0 (4.25)
with initial conditions
S(x,0)=€’Bx, A(x,0)=1. (4.26)

It is easily seen that the subcharacteristics of Eq. (4.25)
found by neglecting the term —i€?A4,, are the same as the
characteristics (rays) of Eq. (4.24). Since the phase equa-
tion is independent of the amplitude it is studied first, to
determine the ray structure of the problem.

Utilizing ¢ as the parameter along the rays and £ as the
ray variable, i.e., assuming that the equation of a ray is
x=x(t,§) with x(0,§)=¢&, we rewrite Eq. (4.24) in
characteristic form,

dx

—=2P, (4.27a)

ot

~a£=——02Vx , (4.27b)

ot

%—f=2p2+Q:P2_UZV , (4.27¢)

d

a—?= —o*V,, (4.27d)
where we let S, =P, S;=0Q, and

9_0d|_98| x|

or 9r |, dr |, 9 | dx |,

is the directional derivative along the rays. The x-P sys-
tem [Egs. (4.27a) and (4.27b)] can be solved first, then
Egs. (4.27¢) and (4.27d) to allow us to find S.

We shall study Egs. (4.27a) and (4.27b) using MTS per-
turbation theory. We expect the weak [O(0?)] forcing to
result in a slow modulation of the rays. The time scale
for the lowest-order resonant case we shall consider is

T=o0t, a:equ/z ) (4.28)
while
x=x0(t,1',§)+ax1+g2x2+0(03) ;
(4.29)
P=P0+O'P1+O'2P2+O(U3) s
with initial conditions
x(0,8)=¢,
(4.30)

P(0,&) =Byt 0Bo+ 0B+ -+ .
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Substituting the expansions (4.29) into (4.27) and equating
coefficients of like powers of € we find [recall that
0/0t =0/0t +0(3d/97)] the hierarchy of equations

0(1): x0,=2P0, P0,==0, (4.31)
O(o): x1,=2P1 —X0rs Plt:_POT y (432)
O(0?): x9,=2P,—Xo;, Py=—P1,—Vy(x0,1),
(4.33)
with initial conditions
x0(0,6)=§, x;(0,§)=0, i=1,2,...
(4.34)
Pi(0,§)=ﬂi, i:0,1,2, s e e
Solving we find
Oo(1): =2Bot +Co(7,E), Cp(0,6)=
( xo=2Bpt +Co(7,§ 0(0,6)=¢§ (4.35)
PO:BO(T’g)y BO(Oyg):BO
O(0): x; =By, t*+ (2B, —Cy, )t +C(T,E) , ‘
(4.36)

Pl = —BOTt+B1(T,§) .

To ensure that the expansions (4.30) are well ordered
(asymptotic) we must disallow unbounded growth in
x;,P;,i >0, so the secular terms must be suppressed. This

means B,, =0, i.e., Bo=[3; and
B, =~5Co,—Cy,(0,£)=2B(0,£)=2p, . (4.37)

So far, Cy(t,£) has been undermined. To find it we need
to consider the next order, O(o?). We get

L
Py=|—=+Com—-, [, V2Bt +Co,0)dt |t +By(1,8)

(4.38)
By0,9)=5, .
Again, to suppress unbounded behavior in P,, we demand

L Corrt+ Jim [ | Va(2Bot +Co,1)dt =0 (4.39)
(assuming the limit exists, which it does for V periodic in

t). The construction can be continued to higher order, but
here we only need the leading behavior. We found

_x=2ﬁot+C0(T,§)+0(U) 5

(4.40)
P=By+0(5Co.)+0(0?),
where C|, satisfies Eq. (4.39). For the potential
V(x,t)=cos®x cos’t— V, = —cos’t sin(2x) (4.41)
we have
t 1
fo V,dt=— B—B()cos[2(2b’ot+co)]
1 2[(2B+ '
T RQBED) cos{2[(2B+ 1)t + Co]}‘ o

a bounded function if By£0, i%. In this case, Eq. (4.39)
gives Cy(&,2)=p 7+ & and the slow time scale 7 only ap-
pears as a modification of the fast scale #. In general for a
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problem of this kind, we should consider a modified fast
time scale

t*=w(o)t=(wp+0ow;+ - )t
and a slow time scale
T=0%,

where a is determined by the type of resonance expected.
To treat the simplest case, we consider

Bo=%, Bi=0, i=1.2,...

-2
q=¢€ 7,

(4.42)
og=¢€.

Now we have a lowest-order resonance; the integral in Eq.
(4.39) becomes

t
fo Vydt = +cos(2t +2Cq) + -z cos(4t +2Cq)

— Zcos(2Cy) — isin(2Co) (4.43)

and the equation reads
2Co,+sin(2Cy) =0 (4.44)

with initial conditions

Co(0,6)=E, Cu,(0,6)=0. (4.45)

Finally, utilizing Eq. (4.40) in Eq. (4.27¢) we find

S=7t+5Co+0(e) .
Turning our attention to the amplitude equation

A;+2PA, + P, A—€id,, =0, (4.46)

we transform it to characteristic coordinates
9 __ 18 8 ,,8 3

ax 6 g ar T ax o
to find

(4.47)

2

A +x57'Ped € A=0. (4.48)

xg_l—aag
Assuming
 A=Ag+ed;+0(e)
and using
xg=Cpe+0(e) ,
Pe=e(5Core)+0(€)
we have
A +[Coe+0(€)] el 5Coe) +O0(e)]A=0(?)  (4.49)
from which we find

O(1): Ap=0—Ag=Ap(7,§) with 45(0,§)=1,



31 NONRELATIVISTIC KAPITZA-DIRAC SCATTERING 3165

1
Y COT§

Ay
O(e): Ay+Agp+— )

Coe

=0—d;=— |+ A

Cog

1 Cng ] ¢

+ (bounded part)

so finally, demanding that 4; be bounded we find that
Ay is given by

Ao(T,§)=(Co§)_l/2 .

Collecting our results we see that the leading asymptotic
behavior of v is given as

(4.50)

¢'~[(COE)_1/2+0(6)]expEi—2[%t+C0(T,§)+O(€)]

(4.51)

with C, satisfying Eqs. (4.44)—(4.55). We see (Fig. 7) that
the resonance causes a slow-time bending of the rays so
that the surface P=P(x,t) given by

X = %t+C0(7‘,§)+0(6) >
(4.52)
P=++e(5Co)+0(€?)

develops folds at points where X, =0, or equivalently,
X¢=0—Cp=0. Clearly this vanishing leads to a blowup
in Eq. (4.50), invalidating our asymptotic solution at such
points. What went wrong in our analysis is apparent: Eq.
(4.48) was analyzed by a regular perturbation expansion,
effectively neglecting the O(€?) term in finding 4. In the
neighborhood of envelopes of rays, where x,=0, this
term clearly will be important so that 4 would stay finite,
although it will become very large there. For this reason
points where x,=0 are called caustic points. In the next
section we complete the picture that this analysis presents
by discussing the behavior of solutions in the neighbor-
hood of caustics.

C. The behavior near caustics

We now investigate the behavior of the amplitude near
caustics. Following Ludwig,?! we recognize expansions of
the form

Y~ 3 ApexpliSy /€*) (4.53)
k

as resulting when expanding integrals of the type
f A(x,t,z)exp[iB(x,t,z)/ez]dz

by the method of stationary phase. Clearly, assuming that
1 can be represented as a superposition of plane waves, we
will have, as e—0, contributions from points where

B,=0, B,+0. (4.54)

Such points can be shown to correspond to regions away
from caustics, where the expansion (4.8) is valid. Smooth
caustics correspond to

B,,=0, B,,,=0 4.55)
while, finally cusped caustics are found if
B,,=0, B,,,#0. (4.56)

Systems of rays in two dimensions have in general singu-
larities of the “fold” (i.e., smooth caustics) or “tuc” (i.e.,
cusped caustics) kinds (see Arnold?®), unless some excep-
tional situations happen. An easy calculation shows that
for our problem the worse thing that can happen is a
cusp, so we only need to consider the cases for Egs. (4.55)
and (4.56). We can encompass all cases by the exact
change of variables
2 §4

B(x,t,2)=8(x,t)+riE—r& +7
[with r;=r;(x,2)] which is related to the normal form
that obtains near a tuc singularity [Eq. (56)]. Then, by
following the same procedure as in Ref. 21 for the
Schrodinger equation, we can construct uniformly valid
expansions which, away from caustics, reduce to Eq. (4.8),
near smooth caustics have leading terms involving the
Airy function and its first derivative and near the cusp in-
volve a generalized Airy function with two arguments and
its two first derivatives. By considering the asymptotic
behavior of the Airy functions we can find the order of
the amplitude in the vicinity of caustics, and by analyti-
cally continuing to the classically inaccessible regions we
see that our solutions decay exponentially there. Since
here we are not as much interested in the detailed
behavior at all regimes but mainly on the order of magni-
tude of the focusing at caustics we shall follow instead a
singular perturbation approach due to Buchal and Kell-
er.!” We introduce boundary layers at caustics and deter-
mine the solution in their vicinity by stretching coordi-
nates and matching with the “outer” solution. We shall
use this method to give the expansion near a smooth con-
vex portion of the caustic and then we shall give an argu-
ment about the behavior near the cusp. We prefer the

(4.57)

. singular perturbation approach because it would be ap-

plicable in a more interesting setting, namely a weakly
nonlinear equation that has singularities related to folding
subcharacteristics. Clearly, in such cases, it would be im-
possible to argue from the point of view of integral repre-
sentations, while the boundary-layer idea would still be
relevant (after suitable modification).
We wish to study the equation
2
19 A=0

P
A+ £y —ie?
Xg O

Xg

(4.58)

near characteristics where xg,=0 and the second-
derivative term becomes singular and cannot be ignored.
The equation of a ray was found to be (to the leading or-
der)

x=t+Cy(&,7)+0(e) (4.59)
while on caustics xg=0, i.e., Coe=0. We let
C0§(§,T)=O—>T=b(§) ,

ie.,
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1
t=—>b(§) . (4.60)
€
Then the equation of a caustic will be
! (4.61)

x=:b(§)+Co[§,b(§)]+0(6) .

With Ref. 17 we introduce a new coordinate system (r,s)
where r is arclength along the caustic and s is arclength
along the ray tangent at r, measured respectively, from
some fixed point and from the point of contact (positive
after, negative before) (Fig. 10). An easy calculation
shows that, near the caustic [i.e., for T7—b(&) “small”]

s:?[f—b(g)Hom . (4.62)

Along the caustic we find (for &; some fixed number)

rz—‘/e—i[b(§)—b(§o)]+0(l)

(4.63)
while the radius of curvature of the caustic p is found
from

2
C b:C
_l_ 6( 0§r+ I3 OTT) (464)

P be[1+(1+€Co.’ PP |(een

where Cog, <0, bCos, >0 on the caustic (Fig. 11). The
analysis we present here will be valid unless p= oo, which
happens at the inflection point. The difficulty is not a
real one though: it can be resolved by using a better coor-
dinate system, e.g., arclength along the caustic and normal
distance from the caustic (our present coordinate system
would become rather awkward). In the convex part of the
caustic, we set

p=-5R(E), R=0(1).
€

(4.65)

Utilizing Egs. (4.62) and (4.63), we find that the equation
becomes (to leading order)

. 2
x/iAs+—1—A_-’2~—— 9

1 1
V2s e s V2 0s

—A4, |=0 (4.66)
S

all the terms of this equation will be of the same order if
we introduce a scaled variable

FIG. 10. Ray-caustic coordinates: r is arclength along caus-
tic (solid line), s is arclength along ray (dashed line). At C, s=0
while at 4, r=0.
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4
2
Co
Ts
T2/ U
To
-
2w w
2 2
FIG. 11. Snapshots of Cy(&,7) as a function of £ for

0=7To<Ti<T2<73. At the caustic (Cos=0) we have Cp, <O,
sgnCy, = —sgné& (mod ) while at £ (mod 7)=0 we have an in-
flection point (Cpge =0).

Clearly [see Eq. (4.62)], o is another slow time scale,
o~e*3[t—b(£)/€]. In terms of it we have

1 R¥r) 3

. 1
2Ao+;A —1

o

=0. (4.67)

o

o do

This equation is analyzed in Ref. 17 where a matching
with the outer expansion is carried out to leading order.
Adapting the results to our case, we have that the outer
solution is

Ao=|Coe| 7= | [r—b(E)]Coe,(&,b) | 12, 7<b(£)
Ao=exp(—mi/2) | Coe | ~'% 7>b(£)

[in agreement with Eq. (4.8) and the discussion in Sec.
ITI A], while the inner solution is

Am e V/625/6, 120 =173 | —1/2x J_rLi
| 057 | p 12
2/3 3
xAil- & or “Zexp |+=— | |exp | —i
2 - 3R2

(according to 7—bS0). Therefore we can say that the
caustic boundary layer is of thickness €3 (
amplitude there is

A=0(e"1%) .

in 7) and the

We are able to carry the matching out between incoming
and outgoing branches by superimposing

"/’ = tﬁincoming + woutgoingv

and demanding that the continuation in the classically
inaccessible region is exponentially decaying away from
the caustic.

It must be noted that we did not give a uniformly valid
expansion but only leading terms near and away from the
caustic. As shown in Ref. 21, a uniformly valid expan-
sion contains a term that in the caustic is of O(e!/%) in-
volving the derivative of the Airy function, which in some
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intermediate region becomes important and must be in-
cluded. A similar term should be obtainable by the
matched expansion method if we carry it to the next or-
der.

We close this discussion by giving an argument for the
order of A at the cusp. By introducing

T=1—719 Z=E£-&

where (70,&p) is the position of the cusp with
7o
Xo="" +Co(0,70)

we have that in the neighborhood of the cusp rays are
given by (to leading order)

x—xo~ % +CogrZT + 4 Cogee Z? (4.68)

[all functions evaluated at (79,£3)]. Then

X§2C0§TT+ %Cogggzz—l— ey,

Pe~e5Cope+ -
It can be easily seen that at (£o,70), Cogr <0, Cogge >0, s0
that Eq. (4.68) is a surface in (x,Z,T’) space that forms a
fold at T=0 as expected. Transforming the amplitude
Eq. (4.58) to (Z,T) we have (letting Co.e=a, Cogge =)

2

1 ()

€a ) A=0
aT ++bZ? 0Z

1
€A+ — —————A —ie
T2 ar4 Lpz2

and all terms are of the same order if we introduce scaled
variables

Z =€%,

T =€%0,

where

INEN

a=

We note that @+ +b£*=0 giving the caustic is a smooth
curve: its projection in the x-t plane has a cusp at
o=E=0 (x=xg). The outer expansion Ao=(Cog)~'"?
becomes, in the vicinity of the cusp

Ao=(Coe, T+ %Cogggzz)l/z

and in terms of inner variables
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Ag~e"V*laog+5bE%| V2. (4.69)

Without being proof that 4~O(e~!/#) near the cusp, it
still provides us with a good indication as to what we can
expect there (it turns out to be what we would get if we
carried out Ludwig’s method for this case).??

V. CONCLUSION

In this paper we have investigated Kapitza-Dirac
scattering in two experimentally interesting regimes of
values of the governing parameters ¢, B, and €. The
choice of two regimes was based on the distinct methods
used for their study as well as qualitative differences in
the behavior of the system. Previous analyses of this
problem led to conflicting answers on the role of the
time-dependent portion of the Hamiltonian. In the first
case examined in this paper (gq,8<<e™!) it was found
that, to lowest order, treatment of a tlme—averaged prob-
lem was basically justified. Time-dependent effects were
essentially of two types: a small [O(eq)], rapidly oscillat-
ing correction to the amplitude and an O(€?) correction to
the frequency. This analysis breaks down as g or 3 be-
comes comparable to €~!. We showed how to treat a
representative case using a semiclassical approximation.
It was found that again the behavior is quasiperiodic but
under certain “resonance” conditions focusing leading to
large localized maxima of the probability amplitude is
possible.

One obvious advantage of an analysis in the weak cou-
pling regime is that it provides a solution that can easily
be used to study scattering probability as a function of
any of the parameters. For instance, we provide the first
study of the sensitivity of scattering to the standing-wave
intensity. From our studies, we find the inconclusive re-
sults of the experiments not to be surprising.

Finally, we would like to point out the general applica-
bility of the perturbation technique employed in our study
to other nonseparable time-dependent situations. In fact,
the qualitative aspects of our results only depend on the
potential being a periodic function of space and time. Ex-
tension to more general time periodic potentials is
straightforward. Of course, results of this type are sub-
ject, especially in their long-time applicability, to the limi-
tations of multiple-scaling perturbation theory.
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