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We propose a new theory of cell surface capping based on the principles of 
nucleation. When antibody interacts with cell surface molecules, the molecules 
initially form small aggregates called patches that later coalesce into a large 
aggregate called a cap. While a cap can form by patches being pulled together 
by action of the cell's cytoskeleton, in the case of some molecules, disruption of 
the cytoskeleton does not prevent cap formation. Diffusion of large aggregates 
on a cell surface is slow, and thus we propose that a cap can form solely 
through the diffusion of small aggregates containing just one or a few cell sur- 
face molecules. Here we consider the extreme case in which single molecules are 
mobile, but aggregates of all larger sizes are immobile. We show that a set of 
patches in equilibrium with a "sea" of free cell surface molecules can undergo a 
nucleation-type phase transition in which the largest patch will bind free cell 
surface molecules, deplete the concentration of such molecules in the "sea," and 
thus cause the other patches to shrink in size. We therefore show that a cap can 
form without patches having to move, collide with each other, and aggregate. 

KEY WORDS: Aggregation; phase transition; addition reactions; capping; 
sol-gel transformation; nucleation. 

1. I N T R O D U C T I O N  

When multivalent ligands interact with cell surface molecules, such as the 
immunoglobulin (Ig) receptor on the surface of a B-lymphocyte or the 
major histocompatibility (MHC) antigens found on the surface of all 
mammalian cells, a redistribution of the cell surface molecules may take 
place. At 37~ the receptors first form small microscopic clusters, called 
patches Under normal circumstances the patches coalesce, forming a single 
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macroscopic cluster called a capJ ~ In the case of surface Ig, the cap is 
thought to form by an active, energy-requiring process involving the cell's 
cytoskeleton. A second mechanism may apply to the capping of M H C  
antigens, the Thy.1 antigen on T lymphocytes, as well as some other cell 
surface molecules, c2 5~ that is thought to depend on receptor diffusion and 
aggregation via ligand cross-linking. 

In Fig. 1, we illustrate the time dependent formation of cell surface 
aggregates generated by cross-linking cell surface immunoglobulin at 4~ 
By 6 hr, large aggregates are observed. At 4~ energy-dependent processes 
are inhibited and thus this figure illustrates the type of aggregation that we 
analyze below. 

In this paper we propose a novel mechanism for the formation of a 
cap that involves neither the active pulling together of small patches by the 
cytoskeleton nor the cross-linking of patches brought together by diffusion. 
The mechanism we propose is one of nucleation and growth. Basically, the 
idea is as tbllows: the normal process of patching builds up a set of 
microaggregates on the cell surface. The patches are of a range of sizes, 
some small, some large. Patches are thought to interact more strongly with 
the cytoskeleton than single receptors do and to diffuse much more slowly. 
In fact, in the case of cell-surface-bound immunoglobulin E, aggregates 
larger than dimers rapidly become immobilized. "~ Thus, if patches diffuse 
more slowly or not at all as they become larger, it is not likely that they 
will coalesce into a cap by passive means. However, by comparison free 
receptors diffuse rather rapidly. 

If a large patch has free reactive sites, then it can interact with a free 
receptor. The addition of a receptor to the patch causes it to grow and 
lowers the concentration of free receptors. If larger patches have more 
growth sites than small patches, they will capture more free receptors than 
small patches and grow even bigger, allowing them to capture an ever 
increasing fraction of the remaining receptors. Because receptor-ligand 
interactions are reversible, the depletion of the free receptor concentration 
below its equilibrium value must cause a dissociation of receptors from the 
ends of existing patches of all sizes. If larger patches have proportionally 
fewer sites at which receptors can dissociate than smaller patches, this can 
result in a-size-dependent balance between association and dissociation 

Fig. I. Illustration of time-dependent formation of cell surlhce aggregates (anti IgE-lgE- 
receptor complexes) at 4~ IA) initial configuration, (B) 15 min, (C) 30min, (D) 2hr, 
(E) 4 hr, IF) 6 hr. Bar (in F) represents: (A} 0.5 l~m, {BJ-(F) l ltm. The photographs show 
that an initially disperse set of molecules (A), when cross-linked by antibody, I'orm extremely 
large aggregates (F). Micrographs were provided by Dr. J. M. Oliver and J. R. Pfeiffer. 
Department of Cell Pathology, University of New Mexico Health Sciences Center. 
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rates which is key to our theory. Thus, as large patches preferentially grow, 
small patches must keep supplying single receptors to the mobile pool. The 
net effect is that small patches disappear, and the largest patch grows into 
a cap. Interestingly, in this mechanism only single receptors need be trans- 
ported along the surface so that the slowdown in diffusion with increases 
in the patch size do not limit the rate of formation of the cap. 

Our theory is very closely related to classical nucleation theory in 
which a droplet that reaches a critical radius continues to grow, whereas 
droplets that do not reach critical size disappear. The attainment of critical 
size at which surface and volume energies balance is called nucleation. The 
analogous size dependent balance for a patch may be found in the ratio of 
growth sites versus breakable bonds. Naturally, the critical size depends on 
the amount of supersaturation in the medium. As larger nuclei keep depleting 
the medium by their growth, the instantaneous critical radius keeps increasing. 

Below we develop a detailed chemical model for the polymerization of 
trivalent monomers which exhibits the properties required of a nucleation 
theory: aggregates over some critical size grow, whereas small aggregates 
shrink. The use of trivalent monomers is a convenient approximation 
which demonstrates our thesis. In capping, at least two separate classes of 
molecules must interact, multivalent antigen and cell surface molecules. If 
the cell surface molecules are bivalent, they act as bridges between the 
ligands, and to some extent the topology of the resulting aggregate reflects 
the ligand's valence. In a more refined theory, one can incorporate both 
ligands and receptors, but existing theory indicates that the polycondensa- 
tion of trivalent monomers captures all the major effects that are also seen 
in the receptor-ligand system. ~7, 8~ 

2. THE MODEL 

We assume that trivalent monomers self-associate by any of the three 
sites on one monomer reversibly reacting with a free site on any other 
monomer or aggregate of monomers. Intramolecular rearrangements of 
aggregates are ignored, and thus the aggregate will resemble a tree. In the 
initial stage of the process during which patches form, monomers are plen- 
tiful and hence many small nearby aggregates form. Because aggregates are 
close together, diffusion does not provide a substantial impediment to 
aggregate growth, and any two aggregates can react with one another to 
form a larger aggregate as in classical polycondensation reactions. As the 
aggregates grow larger, there necessarily will be fewer aggregates on the cell 
surface and diffusion will become increasingly important in bringing 
aggregates together. Here we focus on this second stage of the process. To 
model it, we take an extreme point of view and assume that aggregates 
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containing two or more monomers do not diffuse at all, whereas monomers 
diffuse freely. Under this assumption, only monomers move and hence only 
addition reactions can occur. As is usual in nucleation studies, we shall 
proceed by ignoring spatial variation in the various concentrations. We 
shall thus derive expressions for the (spatially homogeneous) concentra- 
tions of polymers of different sizes growing by depletion of the monomer 
background. Related models in which monomers move and aggregates are 
stationary have been employed to study sequential adsorption on lattices/9~ 

The random polycondensation of trivalent monomers has been studied 
beginning with Flory, ~ ~o. i~ Stockmayer, t ~2~ and most recently, in the con- 
text of cell surface reactions, by Perelson and Goldstein tS~ and Macken and 
Perelson. t~41 For  this problem, the equilibrium distribution of aggregate 
sizes is known as a function of the total monomer concentration and the 
three equilibrium constants characterizing the binding of a monomer to a 
free site on another monomer containing three free sites, on a polymer unit 
containing two free sites, and on a polymer unit containing one free site, 
respectively/8~ The kinetics of polycondensation reactions have also been 
described for both solution-phase and cell-surface reactions/~2-~5~ 

The addition reactions of the type needed by our theory have not been 
as well studied and will be the focus of our attention. Only a subclass 
of dissociation reactions lead to monomer release. In order to keep track 
of these, we characterize an aggregate by two parameters: n, the number of 
monomers in the aggregate, and m, the number of "ends." By an end, we 
mean a monomer attached to the polymer by a single bond. Thus an end 
has two free reactive sites. The number of ends in a tree is simply the 
number of branch points + 2. Thus, an equivalent characterization could 
use nodes and branch points/81 

Polymers can be represented by graphs (Fig. 2). In the standard nota- 
tions of graph theory, each monomer corresponds to a node in the graph. 
The degree of  a node is the number of line segments or "branches" that 
intersect it. Thus, an "end" is a node of degree 1. A node of degree 2 corre- 
sponds to a polymer subunit containing one free reactive site and which 
acts as a connector in the graph. A node of degree 3 is fully connected (i.e., 
has no free reactive sites). As a shorthand, we shall sometimes refer to a 
node of degree i as an /-node, and to 2-nodes and 3-nodes as "internal" 
nodes. Also, we will call an end attached to an /-node an "/-end." Again, 
see Fig. 2. We define C,,.,,,(t) to be the concentration of a polymer with n 
nodes and m ends at time t. In what follows, we shall refer to these 
aggregates as "(n, m)-trees." Various quantities associated with an (n, m)- 
tree, constructed from monomers of valence f ,  are given in Table I (left), 
and quantities specific to an (n, m)-tree constructed from monomers of 
valence 3 are presented in Table I (right). 
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J 2-end i / 
free internal site ~ / ~ , , ,  

~ des " 

3-e/nds l~3.nodes 

~ ~ ~ f r e e  end sites 

Fig. 2. Schematic representation of a tree consisting of 8 nodes and 4 ends [an (8, 4)-tree], 
showing naming conventions for nodes, ends, and free sites. Angles are fictitious. 

W e  discuss  n o w  the c o m b i n a t o r i c s  a s soc i a t ed  wi th  revers ib le  m o n o m e r  

a d d i t i o n  react ions .  W e  res t r ic t  o u r  c o n s i d e r a t i o n  to  the  case  o f  t r iva len t  

m o n o m e r s ,  i.e., f = 3. T h e  c h e m i c a l  r eac t ions  are  g o v e r n e d  by the  fo l lowing  

ra te  cons tan t s :  

�9 k,,-+, ' a s soc i a t i on  (d i s soc i a t i on )  ra te  c o n s t a n t  o f  m o n o m e r  wi th  

m o n o m e r  ( in i t i a t ion)  

�9 k., +" a s soc i a t i on  (d i s soc i a t i on )  ra te  c o n s t a n t  for m o n o m e r  a d d i n g  to 

an  end  site ( s t r e t c h i n g / s h r i n k i n g )  

�9 k/+" a s soc i a t i on  (d i s soc i a t i on )  ra te  c o n s t a n t  for m o n o m e r  a d d i n g  to 

an  in te rna l  site ( b r a n c h i n g / b r e a k i n g )  

Table I. Properties of an (n, rn)-Tree wi th  Valence f =  arbitrary and f = 3 "  

J '=  arbitrary J =  3 

Total sites .1il 311 
Occupied sites 2(11- I ) 2{n - I ) 
Free sites I J ' -  2 ) n + 2 n + 2 
Free end sites ( J -  1 ) Ill 2n l  

Free internal sites ( . f -  1 )(11 - i l l )  - i i  + 2 i1 - 2111 + 2 

Ends (I-nodes) 2 ~< m ~< L./2_J + 1 
2-Nodes 1/-  2111 + 2 
3-Nodes i1, - 2 

"Ln/2] is tile greatest integer less than or equal to 11/2. 



A Nucleat ion Theory of Cell Surface Capping 1185 

An (n, m)-tree can grow by binding a m o n o m e r  at any of  its n + 2 free 
sites, while it can decay by dissociation of  any of  its m ends. Growing,  it 
can become an (n + 1, m)-tree by a t tachment  of  a m o n o m e r  to an end site. 
This "stretches" an existing branch and occurs at a rate k + The tree can 

s " 

also become an (12 + 1, m + 1)-tree by a t tachment  of  a m o n o m e r  to an 
internal site, generating a new branch ("branching"),  and this will occur at 
a rate k~ + . Decaying, it can become either an (n - 1, m)-tree or  an (17- 1, 
m -  1 )-tree according to whether the end lost was a 2-end ("shrinking" an 
existing branch,  rate k.s or  a 3-end ("breaking off" an existing branch,  
rate k~7 ). Since the numbers  of  3-nodes involved differ, the rates for stretch- 
ing and branching will generally be different. The problem of enumerat ing 
the number  of  ways that each process can occur  for a tree of  a given size 
is not  fully determinable within this level of  characterization of  trees, in 
which only their size and number  of  ends is recorded. As we shall show in 
subsequent sections, a more  complete description is not  needed when the 
rates of  stretching and branching are not  too  different. This may  be the 
case in many  biological situations. Further,  as a first model,  this level of  
description has advantages,  since we are able to incorporate  all the funda- 
mental  chemical processes into the model  while requiring a minimal set of  
assumptions. 

To proceed, we make a "scaling" assumption that allows us to estimate 
the relative probabilities of  branching and stretching. We define the 
"kernel" of  an (n, m)-tree to be the tree of  n - m  nodes formed by removing 
the m ends from the original tree. Its properties are given in Table II. 
Al though 2 0 1 -  m -  1) sites must  be occupied by kernel-kernel  bonds  and 
m by kernel-end bonds  (Table II), the distribution of  these two types of  
bonds  a m o n g  2- and 3-nodes varies a m o n g  different tree configurations. 
Clearly, each kernel node will have at least one site used for connecting to 
another  node in the kernel. This leaves n - 2 m  + 2 sites on 2-nodes and 
2 ( m - 2 )  sites on 3-nodes of  the original tree whose disposition might be 
different f rom one configurat ion to another,  and to which either an end 
or  a kernel node might  attach. We shall assume that  all possibilities can 

Ta.blell. Propert ies of the Kernel of an ( n , m } - t r e e ,  f = 3  

Total sites 
Sites that were occupied by ends 
Sites occupied by kernel bonds 
Previously existing free sites 

(belonging to 2-nodes of the original tree} 
Sites available to ends 

3(n - m ) 
ill 

2 (  n - -  I l l  - -  1 ) 

n - 2111 + 2 

n - 2 [ = 2(3-nodes) + { 2-nodes)] 
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occur with equal probability. Thus, we assign a probability of p2(n, m)=  
( n - 2 m + 2 ) / ( n - 2 )  to an end being attached to a 2-node and p3(n, in)=- 

1-p2(n ,m)  = 2 ( m - 2 ) / ( n - 2 )  to its being attached to a 3-node. By 
making this assumption and incorporating it into our kinetic scheme for 
addition reactions (see below), we have ignored the possibility of pro- 
ducing a distribution of tree shapes that leads to fractions of ends attached 
to 2-nodes and 3-nodes significantly different from the above computed 
averages. This assumption is examined below by Monte Carlo methods. 

3. ANALYSIS OF THE POLYMERIZATION REACTIONS 

We formulate the problem of aggregation of trivalent monomers by 
addition reactions as a set of polymerization reactions. Defining C~(t) to be 
the instantaneous concentration of monomer, we find that the law of 
massaction leads to the following rate equations for the concentrations 
C, ..... (the range of allowed n and m values is depicted in Fig. 3): 

d C  ...... =3k,.+(2m) C~C,,_~. + 3 k t + , ( n - 2 m + 3 )  C~C,, ~ . . . .  at " I l l  . 

- 3 k f ( 2 m )  Ci C ...... - 3kl+,(n - 2m + 2) CI C ...... 

- kT- (n  - 2m + 2 \  / 2 m  - 4 \  
�9 . . . . . .  - , < , :  . . . . . .  

(n-2,n+3"k ~ d2m - 2"~ 
+k ;  t L ~ f  .)me.,,+, .... +k,: \ n - I  ) (m+ l )C .  + I . m +  1 

(n>~5, 3 <~m<~L(n + 1)/23) 

m 

4 

3 

2 L ,S" 
_J//_///,, 

1 2 3 4 5 6 7 8 9 

Fig. 3. Tree state diagram for monomer addition and deletion. 
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dCi 9k , + " + L = - C ; - -  3k,. Cl (2m) C ..... 
dt 

tl, n l  ~ 2 

- 3k~+, C~ L (n-2m+2) C ...... 
II. m ~ 2 

+ 2 k , ~ , C ~ + k ~ -  L ( n - 2 m + 2 )  . . . .  , . . . . . .  ,_ ~ - ~  m C  ...... 

+ k~. L (2m-4"~ 
....... 2 \  n - 2  j m C  ...... 

dC2.2 9 , 
dt = 5 k"+ C~ - 12k, ) C, C2. 2 - k,7, C,. 2 + 2k.,7 C3. 2 

dC'"2=12k,~- C,C,,  t . , -12k,~-  C,C,,  ~ - 3 k ~ - ( n - 2 )  C,C,,  
dt " - . . . . . .  

--2k.,s C,,.2 + 2k.,T C , ,+ l .2+k l ,  ( n - ~ )  C,,+l.3 (n>~3) 

dC2,. , + i 
dt 

3k~ + C, Cz,,_ t . , , - 6 k  2(n + I ) Ct C2 ..... + , - k ; ( n  + l ) C 2 ..... +, 

(/n+l "~ 
+k.,7 \ 2 n -  l J  C2,,+ I.,,+ t (n>~2) 

We first study the possible equilibrium solutions of the above system. 
Setting all time derivatives equal to zero, we use the fact (detailed balance) 
that each reaction between two states is in equilibrium. The balance equa- 
tions for reactions into and out of a general polymer state give 

6k,+ C, C,,-~ .... = k , 7 ( n - 2 m + 2 )  �9 . ~ c . . . . . .  

3 ( n - 2 r n + 3 ) k ~ C i C . _  I . . . . .  ~=2k;-  ~ m C  ...... 

9 + 

~k , , ,  C ~ = k , 7 ,  C,_,,_ 
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and two more redundant equalities. The detailed balance relations for the 
monomer  rate equation follow by summing the above equations and are 
also omitted as redundant. Figure 3 shows the relationship between 
polymers of different sizes and illustrates how all equilibrium concentra- 
tions can be deduced once the equilibrium concentration of the monomer  
is known. A state is related to the one directly to the left and below it (i.e., 
C, ..... is related to C,,_ ~ ..... ~) until the state with two ends is reached, which 
is then expressed in terms of the one below it, etc. Thus, we arrive at the 
following expressions, giving C, ..... in terms of C~ and the reaction rates: 

.~ 

C2,2=~ K,,,C-t 

C,, ,_=(6K,,CI)" "- C2,2 

C,,+/. 2 + / =  ( l + 2 ) ( / +  1)2/_ I C,,.2 ( 0 ~ < l ~ n - 2 )  

where we have introduced the equilibrium constants 

�9 k,S k + k + 
K , , , . = ~ , .  K ~ : - 7  2-,  K,," " �9 - k., "=k-~-~, (1 )  

(Throughout,  the notation := and =: are used for definitions.) Using these 
recursion relations, one can show for n >~ 2, m >/2 

{'K~, "~"' C = { ' n -  2 " ~ ( n -  m'~ 4K,,, ,(6K,.C,)"\-~--~j 
...... \m - 2 ] \ m - 2 ]  m(ni~-l) K 7 

o r  

where 

( n - 2 ) !  4K,,,  c(9 .... ( 2 )  
C ...... - (n - 2m + 2~ m ! (m -- 2)! K=~, 

Kb 
e:=6K, CI and r : =  (3) 

4K, 
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To determine C~, the equilibrium concentration of free monomer, we 
impose the condition of total mass conservation. We have, with Co the 
total concentration of monomer in all configurations, 

z Ln/2J + I 

C,)=Ci+ Z Z n C  ...... 
I t =  2 1 1 1 ~ 2  

or equivalently, 

L .  2 / +  I 

0 q ) = ~ + p  Z ~', 
t t ~ 2  m = 2  

nc . . . . . .  =: o c + p G ~ ( o q  r) (4) 

where we have defined 

24K.,K,, (n-2)! 
~ . : =  6K,.Co, p := c ...... := 

K~, ' ( n - 2 m + 2 ) !  m! ( m - 2 ) !  
O~tlrtll 

(5)  

and 

~ ,  Ln,2J + I 
G~(0c, r) := y" nc ...... (~, r) (6) 

1 1 = 2  . 1 = 2  

The subscript on G~(~, r) indicates that we have assumed the system is 
infinite in size, so that arbitrarily large aggregates can grow. Later, we shall 
examine the effect of limiting aggregates to a finite size. The nondimen- 
sional total monomer concentration ~o will be an important parameter in 
what follows. 

Solving (4) for ~ determines C, via (3) and completes the equilibrium 
description of the aggregate size distribution. An equivalent equilibrium 
description has been derived by Perelson and Goldstein, c8) who considered 
the aggregration of trivalent monomers by polycondensation reactions. 
Since both polycondensation and addition reactions may occur, and the 
equilibrium state is independent of the path used to derive it, both this for- 
mulation and the Perelson and Goldstein one give identical results. By a 
simple change of variables, (4)-(5) reduces to a sum analyzed by Perelson 
and Goldstein, resulting in the expression 

G,._(cq r )  = 
2 

(1 -0c)-" (~+  2 ) -  [4~2r + (1 - ~)(~ + 2)] x/(1 - c0-'-4=-'r 

+ 12~ 2 
(7) 
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for the scaled polymer concentration in (4), with 

1 
0 ~  2,A+l --~-: 0 (ma  x 

Although this formula was derived for cr < ~ ...... it remains valid for cr equal 
to this value. 

3.1. The Appearance of Infinite-Sized Aggregates 
(Cell Surface Caps) 

The biological problem that our model is aimed at addressing is the 
formation of one large aggregate on the surface of a cell, a "cap." Here and 
in subsequent sections we examine the conditions under which the forma- 
tion of a cap is predicted by our model. 

We start by showing that there exists a critical concentration Co. ~r~tic~,~ 
such that if Co > Co, criti~,, then there is no solution to the conservation 
equation (4). Although the sum on the right hand side of (4) goes from 0 
to Go, it does not include the point at infinity. (Such sums are defined by 
first considering a finite sum, say for n going from 0 to N, and then taking 
the limit as N---, oo.) Hence, if any mass is in an infinite-sized aggregate, the 
conservation equation is not satisfied, because the right-hand side of the 
equation is less than the total mass. This breakdown in conservation of 
mass is a charcteristic of sol-gel phase transitions, and the amount of mass 
"missing" is used to determine the mass of the gel. 1161 Here we show that 
such a transition occurs by finding an upper bound for the right hand side 
of (4). Hence, for values of s o greater than this bound, mass must be con- 
tained in an infinite-sized aggregate. As has been done previously/13~ we 
associate the existence of this infinite-sized aggregate with the formation of 
a cap. 

It is clear that G~.~ is maximized for ~ as large as possible, hence, 

G .... := G~(0~ ...... r) = r(8 x / ~ +  3) 
6(2 x / ~ +  1) 

(8) 

Accordingly, the maximum total (scaled) monomer concentration for 
which there will be an equilibrium solution is 

1 r(8 x/~ + 3 ) 6 +p r (8  x/~ + 3 ) 
OCO. c r i t i c a l ' - -  - -  "t- p (9) 

2 v / ~ +  1 6(2 v /~+  1 ) 6(2 x /~+  1) 
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For  example, if we take K,,, = K,  = K~, then r = 1/4, p = 24, and therefore 

[I0. crilical = 4 a n d  Co critical "--  SO. critical 2 ( 1 O) 
6K~. 3K~, 

If  the total initial m o n o m e r  concentra t ion exceeds this value, the total mass 
in trees of  finite size cannot  account  for the total m o n o m e r  mass present, 
and an infinite-sized agreggate will form. As we shall discuss in Section 5, 
if the series (4) is t runcated at finite N, which is suitable for simulations 
involving finite total mass, then for 0t ~> 0c . . . . .  all mass will be concentrated 
in the largest allowable tree with overwhelming probability. 

3.2. The Most  Probable Tree of a Given Size 

If  we consider the behavior  of  c ...... for fixed n at equilibrium, we can 
compute  a most  probable  shape for a tree o f  a given size. We do this by 
showing that  c ...... has an internal max imum (i.e., for 3<~m<~[_n/2_l). 
Suppose n is fixed and c ...... is a maximum. F r o m  c ....... ~ <<. c,,,,/> c ...... + ~, we 
find after cancellation that  

1 -~< 
r m ( m - 2 )  

(n - 2m + 3)(n - 2m + 4) > ( n - 2 m +  1 ) . . . ( n - 2 r n + 4 )  r 

m ( m  + 1)(m - 2 ) ( m  - 1) 

which implies that  

m ( m  - 2) (m + 1 )(m - 1 ) 
~<r~< 

( n - 2 m + 3 ) ( n - 2 r n + 4 )  ( n - 2 m + l ) ( n - 2 m + 2 )  

For  large n , m = ( 9 ( n ) ,  the above inequalities become approximate  
equalities and the mos t  probable  tree of  size n is found to have a ratio of  
nodes to ends of  

" : U + I  

Note  that  the value of  2 can vary from 0 ( K b ~ K ~ )  to 1/4 (K~,=K~.) to 1/2 
(K/,>> K,.). Equat ion  (11) implies that the geometrical properties of  the 
most  likely tree for a given n depend only on r, and not  on ~ or  0%. 

4. M O N T E  CARLO S I M U L A T I O N S  

We simulated the kinetics of  m o n o m e r  association/dissociation using a 
computer  program,  ant igen,  an t igen  starts with an initial finite pool  of  
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monomers and performs a single association/dissociation event per time- 
step. The progress of a particular simulation is determined by the initial 

- +  /~_+ - +  
size of the monomer  pool N, the reaction rate constants k,g, ., , and k~7, 
and the seed for the pseudo-random number generator. The reaction rate 
constants /~+ used in antigen are proportional  to the chemical reaction 
rate constants k +-- defined in Section 3 (discussed below). Details on the 
algorithm used are given in the Appendix. A typical calculation, run for 
one million steps, starting with an initial pool of 1000 monomers,  takes a 
few minutes of CPU time on a Sun SPARC 10. All results reported are 
ensemble averages taken over 100 distinct runs, except for the 2000-node 
simulations, which are averaged over 25. 

4.1. Physical Considerations and Parameters 

For antigen-antibody reactions in solution, typical reaction rate con- 
stants are k + =  105 (M sec) -~ and k - = 0 . 0 1 - I  sec ~, where M :=moles /  
liter, q~v' For simplicity, we set k,, + =k~ +, =k. + and k,,, =k~,  = k , . ,  so that 
typical values of the equilibrium constants will be K, , ,=Kh=K~= 
105-107 M -  ~. Since the reactions that we are modeling occur on a cell sur- 
face, we can assume that the reaction volume is a layer, say 10 nm thick, 
around the surface of a cell which can be modeled as a sphere of radius 
4l lm. Thus, the region in which the reactions occur is a spherical shell of 
volume V ...... t~,,, = 2 x 10 ~5 liter. Given the number  of molecules in a mole, 
N..~ = 6 x 10 '-3 mole -  ~, N monomers  in the reaction volume will correspond 
to a concentration Co. ,v := N/(N..I V,-~,,~ti,,,,) = N/( 1.2 x 10 ̀7 M - i ) .  

For example, if we take K,, = K~, = K~, then the critical concentration 
C~,.~,.~,~,,~ = 3/K, [see Eq. (10)]. In the simulations, which use monomer  
number, the critical number of monomers N~,.~,~c~,~ := ~N.,~ V,.~,,~.~i,,,,/K,. For 
V~,,,.~i,,,, = 2 / ~ m  3 and K , =  106M i, this gives N~i~i~,l= 800 molecules. For 
test runs, if we employ K,. = 10 v M -  ~, then N~.~,i~,~ = 80 molecules. In this 
case, the relative probability for a binary disassociation will be of order 
10 -2. In the analysis, we scale concentrations with K ,  so we will employ 
the same scaling for the simulations. The relationships between antigen 
parameters and the chemical parameters are given in Table III. 

4.2. Computations 

To validate our statistical assumption about the relative probability of 
2-ends and 3-ends (see Section 2), we examined the relative probability of 
an end being attached to a 2-node, p2(n, m), comparing the theoretical 
value, ( n - 2 m + 2 ) / ( n - 2 ) ,  to that obtained by simulation. Comparing 
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Table  III. Re la t ionsh ips  B e t w e e n  Parameters  Cor respond ing  to  the  antigen 
Program and Those Defined in the  Chemica l  Model" 

Description antigen Chemical Model Physical units 

Association rate COllStants 1~ + 
Dissociation rate constants  /~ 
Equilibriunl constants  /s 
Initial nttnlber of monomers  N 
Scaled m o n o m e r  equilibrium concentrat ion ~x = 6/~,N 
Simuhlted time i 

k ~/NI I/~cacti,m sec t 
k - sec - t 

K/ N z I;,c;,cti,m 
N A l/rc~hcti,m C 

a = 6 K ~ C  
I sec 

" Here. the free Ibrward reaction rate constants  /~,,+,. k.,~. /~l, ~ tire abbreviated by /~% and 
correspondingly for the reverse rate and equilibrium constants.  The physical units of the 
parameters  used by ant igen  tire given in the r ightmost  cohmm,  where a dash denotes a 
dimensionless quantity. 

Fig. 4a, generated with N = 50, to Fig. 4b, generated with N = 2000, for the 
case K',, = K'~ =/(~, = K" = 1, one sees that in both cases, the theoretical curve 
approaches the Monte Carlo results, although fewer nodes imply stronger 
statistical fluctuations. A cell typically contains 5x l 0  4 t o  10 5 MHC 
molecules, so we expect excellent agreement for this number of nodes. For 
the situation in which the equilibrium constants are not all equal, the 
agreement with theory was also extremely good. In general, if /(~ >>/s 
then long, skinny trees are produced and P2 ~ 1. If /(~, >>/~., then full, 
branched trees are created and p_, ~ 0. (If/s ~> K', and/s then numerous 
little trees are formed.) 

Using the results of Table I, we obtain the ratio of free internal sites 
to free end sites in an (17, m)-tree of valence f :  

l l  : =  (7_z5_ 1) __  2 ( f - 1 ) ( n - m ) - - n + 2 _  f - 2  n 1+ 
( f - -  1 ) 171 m ( f -  1 ) m 

If n is sufficiently large and K~, > 0, then ill on average will also be large. 
Using Eq. (11 ), we can then write 

j - 2  1 n 1 f - 1  
p ~ ( ~ _ l ) ~ - - I  and hence . . . .  m ~ 2  "" (~:-~-2) (P+ 1) (12) 

For f =  3, n/m ~ 2(p + 1 ). 
Figure 5a shows that after an initial transient, p is effectively 1 and 

n/m is just below 4 as predicted above. Here N = 100 and/s = / ~  = K), = 1 
(higher equal equilibrium values produced nearly identical results). Varying 
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Computed (solid line) and predicted (dashed line) values of p2(n, m) versus time for 
k§ = / < - =  1 and (a) N=50, (b) N =  2000. 

the number of nodes and equilibrium constants, the behavior ofp and n/m 
follows the same trends as the relationship between the actual and theoreti- 
cal 2-ends/3-ends did in Fig. 4. Moreover, Eq. (12) tracks n/m well for 
valences other than 3, as shown in Fig. 5b for f =  10, where we expect 
n/m  ~ 9 (~l + 1 ). 
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( a l l = 3 ,  ( b ) f =  1 0 .  

The theory presented in Section 3 suggests that a sol-gel-like phase 
transition should occur as ~0 passes a critical value. In Fig. 6, we show the 
total number  of trees and the size of the largest tree n ... .  as a function of 
time. The results are for N taking on values from 50 to 500 and 
/~,,,=/~,.=K'h ranging from 0.001 to 0.1, which correspond to the range 
~0 =0.3 to ~o = 300 (see Table IV). For  equal values of the equilibrium 

8 2 2 / 8 7 / 5 - 6 - 1 5  
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Fig. 6. n .... (solid line) and the number of trees (dashed line) versus time for ( a ) / ~ = 0 . 0 0 1 ,  
N=500, %=3 ,  (b) /(=0.01, N=50,  ~o=3, (c) /~=0.01, N=I00 ,  ~o=6, (d) /~'=0.01, 
N=500, ~()=30, (e) /~=O.l, N=50, ~o=30, (f) /~=0.1, N=500, ~o=300. For all cases 
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Table IV. Asymptotic Values Averaged over 100 Runs 

1197 

ao = 6/~ N p 

K, , ,=K~= Kh N =  50 100 200 500 N =  50 100 200 500 

0.001 0.3 0.6 1.2 3.0 0.101 0.185 0 . 3 3 1  0.608 
0.01 3.0 6.0 12.0 30.0 0.577 0.780 0 . 9 0 1  0.964 
0. I 30.0 60.0 120.0 300.0 0.931 0.977 0 . 9 8 1  0.992 

Number of trees nm~,x/N 

/~,,, = K,. = Kh N = 50 100 200 500 N = 50 100 200 500 

0.001 6.688 18.714 41.620 80.025 0.072 0.053 0.050 0.090 
0.01 8.636 10 .400  10 .263  9.689 0.285 0.424 0.643 0.860 
0.1 2.152 2.039 1.961 1.905 0.840 0.919 0 . 9 6 1  0.982 

constants, the critical value So. cr~,c~,t = 4. The panels of this figure span a 
transition from a number of uncoalesced, smaller trees (~o<a0, cr~t~.0 to 
one large "cap-like" tree that consists of essentially all the nodes available 
(0(-o > So. critical)" 

The asymptotic trends taken by p, the number of trees, and n . . . .  / N  are 
presented in Table IV. Below the phase transition, as N increases, so does 
the number of trees, with nm.x/N remaining fairly constant. Above the 
phase transition, increasing N results in fewer trees and a monotonically 
increasing value of n ..... /N, indicating that the system is becoming 
dominated by a single tree. Furthermore, increasing N and/or increasing 

Table V. The Mean and Standard Deviation of § Averaged over 
One Hundred Runs 

N =  100, 
f = 3 ,  N =  100 . / '=3,  K., , ,=gs=Kb=lO 4 K,,,,=K~=Kh=IO 4 

g,, ,=K~= K;, ~ N ? f 

10 -2 69267.9+6839.7 50 166.4+11.7 2 1552.98+91.86 
10 - i 750.448 + 43.336 100 447.7 _ 26. I 3 447.66 + 26.06 
10 ~ 432.928 + 25.065 200 ! 073.0 + 61.8 4 331.29 + 17.64 
l0 t 446.103 +24.769 500 3197.1 + 178.4 5 327.12+ 19.87 
10-' 431.445 +25.905 1000 7233.1 _ 442.1 10 293.44+ 15.29 
105 454.905-t-26.782 2000 18965.2+2502.1 
104 447.663 + 26.062 
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the g"s results in p ~ 1, n/m ---, 4, so that the simulation ratio of 2-ends to 
3-ends asymptotically approaches the theoretical mean-field value. 

Let the time of formation of the cap-like tree be called z and the 
corresponding dimensionless time of formation ~= k.,7 r. In Table V, we 
show how ~ varies with the simulation parameters. Notice that for constant 
N and equal equilibrium constants (Table V, left), "? becomes independent 
of the value o f /~  once c% = 6K,.N is is substantially greater than its critical 
value. Further, Table V, center, shows that for equal K's, the data fit the 
power law ~.~ N ~3, which allows one to extrapolate our results to numbers 
of nodes larger than what is easily simulated. Lastly, Table V, right, shows 
that, as one might expect, aggregation is faster if the molecules have a 
larger number of reactive sites. We remark that for the typical case, the 
time of cap formation is dominated by the monomer dissociation rate. 

5. PHASE T R A N S I T I O N  

In comparing the conclusions reached by the equilibrium analysis in 
Section 3 with those of the dynamic simulations in Section 4, we must bear 
in mind the different statistical assumptions underlying the two approaches. 
The chemical analysis of Section 3 essentially assumes a large collection of 
systems, in which mass is conserved on average. Thus, it is not contra- 
dictory to speak of the formation of an infinite-size aggregate in a system 
with finite mass. On the other hand, in the Monte Carlo simulations, we 
produce ensemble averages in which individual members of the ensemble 
conserve mass in detail. Consequently, in the simulations, trees of size 
greater than N, the total number of monomer units, cannot exist. In the 
simulation, there is not an abrupt transition to the gel phase. Rather, the 
single tree state is attained as a gradual process, as the expectation for a 
single tree of maximal size approaches one. 

The mass conservation condition for the simulations with maximum 
tree size N is 

N L n / 2 J  + I 

~o=C~+p ~ ~ nc ...... =:ct+pGN(oqr) (13) 
n = 2 ot = 2 

To compare with Eq. (4), where infinite-size trees are allowed, we note that 
in either case the scaled total concentration 0~ 0 is the experimentally 
specified control parameter, where for the finite system 

O:o:=6K,.Co N=6Ks ( N 
�9 ' \ N  A V . . . .  t i o n .  ] 

(14) 
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In the sequel, we  specify whether we  are using the f inite-system Eq. (13) or 
the infinite-system Eq. (4)  by introducing the symbols  O:o,~r and ~to, ~ ,  
respectively.  Unl ike  the infinite-system mass  conservat ion Eq. (4), which is 
only  defined for 0 ~< oc ~< 0c . . . .  the plot  of  0~o. N(00 for various values of  N 
(Fig. 7a) shows  that in the finite system, the conservat ion Eq. (13) has a 
solut ion for all values of  o~. 

As N is increased, the signature of  the phase transition is seen to be 
an overwhe lming  growth of  the expectat ion for a single tree of  m a x i m u m  

I0 
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Fig. 7. (a) eo.~.(~) (solid line) and eo.s(•) For N=32, 64, 128, 256, 512 (dotted lines), 
(b) equilibrium concentration c,,, versus n and m for e = 0 58 > a ..... = 1/2 with r= I/4. Note 
the sharp maximum at m/n=a= I/4 for fixed n, and the exponential rise oFthe maximum for 
increasing n (the "spin"). The spike on the right corresponds to free monomer (n = 1). 
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size. The g raph  of the concent ra t ion  c ...... versus n and m shown in Fig. 7b 
gives a clear indication of  this p h e n o m e n o n  as follows: if e < ~ . . . .  then the 
concentra t ion  is a strictly decreasing function of  n and m along the "spine" 
(or  line of  m a x i m u m  concent ra t ion)  for increasing values of  n and m. 
However ,  for e > 0c ...... the concentra t ion  starts increasing a long the spine 
for n sufficiently large, and as the g rowth  is exponential ,  it can be seen that  
c ....... the expectat ion of a given size tree, becomes  maximal  for the tree of  
size N, and it is overwhelmingly larger than that  for smaller  trees (Fig. 7b). 

To  establish this, we rewrite c ...... in terms of  the cont inuous  variables 
x a n d , a  by setting n = x  ( 2 ~ x ~ < o o ) ,  m = a x  ( 0 ~ < a ~ l / 2 ) ,  and use 
Stirling s formula,  n! = 2 x / ~  (n/e)" [ 1 + 1/(121,) + (9(1/n2)], to obta in  

x ! (o'x - 1 ) am") ..... 

c ........ - ( x -  1)[(1 - 2 c r )  x ] !  [(1 - 2 a )  x +  1][ (1  - 2 a ) x + 2 ] ( a x ) !  2 

1 1 crx-- 1 

2 z r x / l - - 2 a x ( x -  I ) [ (1  --2or) x +  1][ (1  - - 2 a )  x + 2 ]  

where 

Of./" o" 

h'(a) . -  o.2~ ( 1 -- 2a)  1-2~ 

Now,  c,. ~,. ~ x(a)" ,  and x ( a [  is maximized  at a = 2 = x/~/(2 x/~ + 1), where 
it has ti~'evalue x ( 2 ) =  (2 x / r  + 1)0c As ment ioned  earlier, the tree of  most  
likely shape will exhibit the ratio m / n  ~ 2, and thus the spine in Fig. 7b will 
cor respond to the line m = 2 n ,  i.e., a = 2 .  Looking  a long this line for 
pa ramete rs  such that  x(2) < 1, i.e., for 

1 2 
~ < 2 x / ~ +  1 -  x / ~ -  e ...... (15) 

we expect c.,.. z,. to decrease as x increases. However ,  if c~ > cc ..... so that  
x(2) > 1, c.,.. z,- will increase exponent ia l ly  as x increases and the expected 
size of  a tree will be maximal  when x = N. 

6. C O N C L U S I O N S  

We have shown that  a model  of  addi t ion react ions between trivalent 
m o n o m e r  units undergoes  a phase  transi t ion above  a critical value of 
~o = 6/(.,. Co, where Co is the total  concent ra t ion  of m o n o m e r  units and K~. 
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is the equilibrium constant for a reaction between a monomer and the end 
of an existing aggregate. This type of transition could underly the 
phenomenon of capping observed on the surface of many types of cells, 
such as lymphocytes. During capping, a molecule, such as an antibody 
which can cross-link two cell surface molecules, is added to the medium 
surrounding a cell. In our model, the addition of the antibody allows cell 
surface molecules to coalesce and hence increases all of the association con- 
stants (k,+,,, k[ ,  and kh +). During a capping experiment, one first observes 
the formation of small aggregates of cell surface molecules called patches, 
followed by the formation of a macroscopic aggregate, the cap. Because dif- 
fusion of large aggregates is very slow compared with the diffusion of single 
cell-surface molecules (monomers), we have suggested that the cap can 
form by monomers dissociating from small aggregates, and ultimately reac- 
ting with the larger number of free sites available on large aggregates. 
Kinetically, this process should resemble a nucleation process, where an 
aggregate above a critical size will grow while aggregates below the critical 
size shrink. For  a homogeneous system, we have shown that this is the case 
by Monte Carlo simulation in which we maintained a complete description 
of the time-evolving aggregates. We also found general agreement with 
predictions of the phase transition made on the basis of a mean-field, mass- 
action-based scheme of the aggregation process enlisting a two parameter 
model in which aggregate size and shape were characterized. We were able 
to show that at equilibrium, an aggregate will have a most probable shape 
and so the dynamics of the phase transition are solely a function of the 
aggregate size (for a given set of reaction rates). 

APPENDIX A. D Y N A M I C S  OF THE MONTE CARLO 
S IMULATIONS 

antigen is a computer program written in C. It represents a node as 
a data structure, with pointers to other similar data structures acting as 
molecular bonds. A null pointer indicates a free site. A tree is thus a collec- 
tion of interconnected nodes, while an isolated node represents a monomer. 
Associated with each node and each tree are numbers detailing various 
quantities 15ertaining to that object, such as the number of free sites on a 
node or counts of 2-ends and 3-ends on a tree. 

Initially, there are no trees and all the nodes are free monomers residing 
in a fixed pool. At the beginning of each timestep, a random event is selected 
to happen. The actual choice is made by picking a pseudo-random number 
from an interval which is divided into subintervals whose lengths represent 
the likelihoods of each alternative event. There are six possible events, the 
probability of each one weighted by a different reaction rate constant. 
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Table VI. Likelihoods of Possible Events in an antigen Run 

Event Weigh t  Unweighted probability 

Creating a 2-tree from free nodes k,,+, 
Destroying a 2-tree k,. 
Attaching a node to an end site /~ 

(stretching a branch) 
Detaching a 2-end /~.,7 

(shrinking a branch) 
Attaching a node to an internal site k~ 

(growing a branch) 
Detaching a { ~>3)-end /~t7 

~,j-2 (ffee-nodes)( free-nodes - I ) 
2-trees 
f (free-nodes)lend-sites) 

2-ends 

f (free-nodes)(internal-sites) 

(/> 3 )-ends 

These are illustrated in Table VI for an arbitrary valence f ,  where ends 
attached to order-3 or greater nodes are treated as essentially similar since 
their removal always involves breaking a branch. The hyphenated quan- 
tities are instantaneous totals taken over the entire system. Once an event 
has been chosen, the site to attach to, the end to break off, or the 2-tree 
to break apart  is randomly selected from all available possibilities. The 
pool of free nodes will grow or shrink accordingly. 

In the program, an event takes place by modifying pointers. For  exam- 
ple, attaching a free node to a tree requires that the node be removed from 
the pool of free nodes and then linked into the tree by setting one of its 
formerly null pointers to point to the appropriate node on the tree where 
a free site of the proper kind exists. The free site is then set to point back 
to the former monomer,  completing the bond. All bookkeeping totals are 
then updated and the algorithm repeats. 

The simulations are event driven in the sense that exactly one 
association/disassociation event occurs during a single timestep. This fact 
permits a Poisson process to be used as a model for the simulations. 
A benefit of this is that the simulations can then be naturally embedded in 
time as the length of a timestep can be given a value which will be 
associated with the likelihood of the particular event that occurs during the 
timestep. In particular, we defined the timestep length to be in units of the 
reciprocal of the weighted probability of the event that takes place within 
Table VI for all of our antigen runs. These units can be converted into 
dimensionless quantities by multiplying by/~,7. 
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