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We study the effect of delay on the synchronization of two nerve impulses traveling along two
ephaptically coupled, unmyelinated nerve fibers. The system is modeled as a pair of delay-coupled
Fitzhugh-Nagumo equations. A multiple-scale perturbation approach is used for the analysis of
these equations in the limit of weak coupling. In the absence of delay, two pulses with identical
speeds are shown to be entrained precisely. However, as the delay is increased beyond a critical
value, we show that this precise entrainment becomes unstable. We make quantitative estimates
for the actual values of delay at which this can occur in the case of squid giant axons and compare
them with the relevant time-scales involved.

PACS numbers: 02.30.Ks, 87.19.lm, 87.19.lb

I. INTRODUCTION

Ephaptic coupling refers to interactions between nerve
fibers mediated by current flow through the extracellular
space without any specialized connecting regions such
as synapses for chemical transmission or electronic gap
junctions. These interactions occur due to physical
proximity of axons, especially those lacking an insulating
myelin sheath around them. The mammalian olfactory
nerve in which unmyelinated axons are arranged in
densely packed fascicles (see figure 1 in [1]) is an exam-
ple of a brain region that may favor ephaptic interactions.

Experimentally, ephaptic coupling can be detected by
observing several phenomena. One such phenomenon is
when an action potential on one nerve fiber changes the
excitability of the neighboring fibers, and in some cases,
evokes action potentials on them. In the second case,
adjacent nerve fibers can synchronize their firing pat-
terns i.e. the action potentials traveling along them can
travel at the same speeds and get phase-locked. These
observations were recorded by Katz and Schmitt in 1940
[2] in the case of crab motoneurons by placing two axons
in a medium with reduced extracellular conductance.
Similar experiments to detect ephaptic coupling have
been done using squid giant axons by Arvanitaki [3]
and Ramon and Moore [4], active single nerve fibers in
the spinal nerve roots of dystrophic mice by Rasminsky
[5] and algal strands by Tabata [6]. Early theoretical
studies of ephaptic coupling between unmyelinated
nerve fibers were done by Markin [7, 8], Luzader and
Scott [9], Barr and Plonsey [10]. More recently, Bokil et
al. [1] tested the hypothesis that ephaptic interactions
occur in a mammalian olfactory nerve by considering
the Hodgkin-Huxley model of impulse propagation and
showed that an action potential in a single axon can

evoke an action potential in all other axons in the fascicle
and that the action potentials in neighboring nerve fibers
can synchronize. Ephaptic coupling between myelinated
nerve fibers whose membrane is covered by a fatty
insulating myelin sheath except for some regions called
the active nodes, has been studied by Binczak et al. [11]
and Reutskiy et al. [12] and Bateman and Van Vleck [13].

Since these interactions occur via the spread of ionic
currents, it is reasonable to expect transmission time de-
lays in these processes, due to finite times of propagation
for these currents. Most experimental papers [3–5] on
ephaptic transmission mention that an action potential
on one fiber evokes an action potential on an adjacent
fiber after a certain time-delay often referred to as the
ephaptic transmission time. Ramon and Moore [4] found
that this time varied from 200 to 400 µs in the case of
squid giant axons. Rasmisky [5] measured an ephaptic
transmission time of 100-240 µs in the case of single
nerve fibers in the spinal nerve roots of dystrophic mice.
While, to our knowledge, there are no experimental
measurements of the speeds of the ion currents involved
in ephaptic transmission, the observations by Ramon &
Moore and Rasminsky strongly suggest the presence of
time-delays in ephaptic interactions. Since delays are
ubiquitous in dynamical systems and may have profound
effects related to stability and the onset of complex
behavior [14–17], understanding the impact of ephaptic
transmission time-delays on the stability of the entrained
state of nerve impulses could be of wider interest.

In this article, we study the effect of delay on the
entrainment of pulses on two ephaptically coupled,
unmyelinated nerve fibers. Our approach is an exten-
sion of some old work of Luzader and Scott [9] who
developed an analytical model of the ephaptic coupling
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between two parallel, unmyelinated nerve fibers, rep-
resenting giant axons of squid. Each individual fiber
was expressed mathematically by the piecewise-linear
Fitzhugh-Nagumo equations. By using a perturbation
expansion of the velocities of the impulses on two fibers
in terms of the coupling parameter they showed that
in the limit of weak coupling, the two coupled pulses
can be entrained to leading order. Eilbeck et al. [18]
integrated these equations numerically and confirmed
this result. These, as well as all the previous studies
assumed instantaneous transmission with no delays.

We show that, when delay is included in the Luzader
and Scott model this precisely entrained state is desta-
bilized as the delay increases beyond a critical value and
the pulses maintain a stable, non-zero phase difference
between them. We calculate an estimate of this criti-
cal value of delay in the case of squid giant axons and
show that it is comparable to the ephaptic transmission
times measured by Ramon & Moore [4] and Rasminsky
[5]. Since the piecewise-linear form of Fitzhugh-Nagumo
equations captures the essential features of impulse gen-
eration and propagation on nerve fibers exhibited by
more complex models such as the Hodgkin-Huxley or the
Fitzhugh-Nagumo with cubic nonlinearity, this destabi-
lization of precise entrainment due to delay is expected
to be generic, independent of the precise nonlinearity in
the equations. Thus, careful experiments could be car-
ried out to measure phase differences between entrained
pulses which, in turn, can be used to estimate the ephap-
tic transmission times.

II. EPHAPTIC COUPLING WITH DELAY

In order to study the effect of delay on the synchro-
nization of pulses on two ephaptically coupled, unmyeli-
nated nerve fibers, we employ the model equations used
by Luzader and Scott [9] and include the delay in the
coupling terms. Thus the equations have the following
dimensionless form:

V1,t(x, t) = (1− α)V1,xx(x, t)− αV2,xx(x, (t− δ))
−F (V1(x, t))−R1(x, t) (1)

R1,t(x, t) = ε(V1(x, t)− bR1(x, t)) (2)
V2,t(x, t) = (1− α)V2,xx(x, t)− αV1,xx(x, (t− δ))

−F (V2(x, t))−R2(x, t) (3)
R2,t(x, t) = ε(V2(x, t)− bR2(x, t)) (4)

Here V denotes the normalized trans-membrane poten-
tial across each fiber and R is the recovery variable which
roughly represents the turn-on of potassium permeabil-
ity. Thus the individual fibers are modeled using the
Fitzhugh-Nagumo set of two coupled equations [19] that
capture the essential features of action potential gener-
ation and propagation of a four dimensional description
given by Hodgkin and Huxley [20]. The independent vari-
ables x and t are scaled in the units of 1/

√
rg and g/c

respectively with g, r and c being the trans-membrane
conductance (in mhos/cm), resistance (in ohm/cm) and
capacitance (in F/cm) per unit length respectively. ε can
be considered to represent any of a number of debilitating
effects such as temperature or narcotic concentration etc.
[9] and δ represents the time-delay involved in ephaptic
transmission. The nonlinear function for the potential,
F (V ), is approximated by a piecewise linear form con-
sidered originally by McKean [21]:

F̃ (Ṽ ) = Ṽ − V+H(Ṽ − ã) (5)

with H(Ṽ − ã) being the Heavyside unit step function,
ã being the threshold for the generation of an action
potential and V+ the peak value of the membrane
potential. We introduce dimensionless variables V, a,R
by normalizing with V+: Ṽ = V+V , R̃ = V+R and
ã = V+a so that the dimensionless nonlinear potential
function that appears in the equations (1,3) has the
form F (V ) = V −H(V − a), whose largest zero is unity.

For a single fiber, integration of the corresponding
Fitzhugh-Nagumo equations yields a family of traveling
wave solutions parametrized by velocity u(ε). Rinzel
and Keller [22] assumed b = 0 and showed that, for each
value of ε below a critical value εc, there exists a stable
pulse solution of higher velocity and an unstable pulse
solution of lower velocity.

Luzader and Scott [9] assume b = 0 and consider two
pulses traveling with the same velocity on identical fibers
coupled ephaptically. They assume instantaneous cou-
pling and hence set δ = 0. The coupling parameter α is
equal to the ratio of external to internal resistance/length
and is considered small. They assume the following ex-
pansions for the potential and the velocity of the pulse
on each fiber in terms of α:

Vi = Vi0 + αVi1 + . . . ; i = 1, 2

ui = u0 + αu
(i)
1 + . . . ; i = 1, 2

and solve for the first order corrections in the velocities
u

(i)
1 as a function of the phase difference between the

pulses. Requiring u(1)
1 = u

(2)
1 , they show that the phase

difference of zero between the pulses is stable, implying
that the two pulses can be entrained if they start with a
sufficiently small phase difference initially.

We introduce a slow time-scale in the problem owing
to the smallness of the coupling constant and study
the entrainment of the pulses in slow time-scale as a
function of the time delay δ.

Assuming b = 0, equations (1)-(4) can be written as

V1,tt(x, t) = (1− α)V1,xxt(x, t)− αV2,xxt(x, (t− δ))
−F ′(V1)V1,t(x, t)− εV1(x, t) (6)

V2,tt(x, t) = (1− α)V2,xxt(x, t)− αV1,xxt(x, t)
−F ′(V2)V2,t(x, t)− εV2(x, t) (7)
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We assume

Vi(ξ, τ ;α) = Vi0(ξ, τ) + αVi1(ξ, τ) +O(α2) (8)

where ξ = x−ut is the traveling wave coordinate and u is
the speed with which each pulse travels down the axon.
τ = αt is a slow time variable.

∂

∂t
= −u ∂

∂ξ
+ α

∂

∂τ

∂

∂x
=

∂

∂ξ

Thus for i = 1, 2 we get,

Vi,x = Vi0,ξ + αVi1,ξ +O(α2)

Vi,t = −uVi0,ξ + α[Vi0,τ − uVi1,ξ] +O(α2)

Vi,tt = u2Vi0,ξξ + α[u2Vi1,ξξ − 2uVi0,ξτ ] +O(α2)

Vi,xx = Vi0,ξξ + αVi1,ξξ +O(α2)

Vi,xxt = −uVi0,ξξξ + α[−uVi1,ξξξ + Vi0,ξξτ ] +O(α2)

−αVi,xxt = αuVi0,ξξξ +O(α2)

−εV1 = −εVi0 + α(−εVi1) +O(α2)

−F ′(Vi)Vi,t = uVi0,ξF
′(Vi0)

+α[F ′(Vi0)(uVi1,ξ − Vi0,τ ) + uVi1Vi0,ξF
′′(Vi0)] +O(α2)

Substituting these expressions in equations (6) and (7)
we get the leading order equations for i = 1, 2:

u2Vi0,ξξ + uVi0,ξξξ − uF ′(Vi0)Vi0,ξ + εVi0 = 0 (9)

The solution to this equation, Vi0(ξ) is the traveling pulse
on each fiber (if they are uncoupled) with a speed u. We
assume that the solutions to equation (9) have the form,

Vi0 ≡ Vi0(ξ + ψi(τ)) (10)

Thus,

Vi0,ξ = Vi0,ξ

Vi0,τ = ψi,τVi0,ξ

Vi0,ξτ = ψi,τVi0,ξξ

Vi0,ξξτ = ψi,τVi0,ξξξ

Using the above expressions and equation (9), O(α) equa-
tions can be written as:

uVi1,ξξξ + u2Vi1,ξξ − uF ′(Vi0)Vi1,ξ
−Vi1 [uF ′′(Vi0)Vi0,ξ − ε] = ψi,τ

[
uVi0,ξξ(ξ′i)−

ε

u
Vi0(ξ′i)

]
+uVj0,ξξξ(ξ′i + η) + uVi0,ξξξ(ξ′i) (11)

Here, i, j = 1, 2; i 6= j, ξ′i = ξ + ψi(τ) and η = uδ.
Equations (11) are linear and hence, for i = 1, 2, each
can be written as,

LiVi1 = fi (12)

for which a solvability condition is

(wi, LiVi1) = (wi, fi) = 0 (13)

where wi is the solution of

L†iwi = 0

Here, L†i is the adjoint of Li under the inner product
employed in (13). Here we use the conventional definition
for the inner product:

(v, w) ≡
∫ ∞

−∞
v(ξ)w(ξ)dξ (14)

Integrating equation (13) by parts, we get,

L†iwi = uwi,ξξξ − u2wi,ξξ − uF ′(Vi0)wi,ξ − εwi = 0(15)

Then for i = 1, 2, (wi, fi) = 0 implies

ψ1,τ

∫ ∞

−∞
w1(ξ′1)

[ ε

u2
V10(ξ′1)− V10,ξξ(ξ′1)

]
dξ =∫ ∞

−∞
w1(ξ′1)V10,ξξξ(ξ′1)dξ +

∫ ∞

−∞
w1(ξ′1)V20,ξξξ(ξ′2 + η)dξ

ψ2,τ

∫ ∞

−∞
w2(ξ′2)

[ ε

u2
V20(ξ′2)− V20,ξξ(ξ′2)

]
dξ =∫ ∞

−∞
w2(ξ′2)V20,ξξξ(ξ′2)dξ +

∫ ∞

−∞
w2(ξ′2)V10,ξξξ(ξ′1 + η)dξ

These two equations can be solved for the change in
the phase difference between two pulses as a function
of the slow time variable τ , if we know the functional
form of Vi0 and wi which are the solutions to equation
(9) and (15) respectively. Solving these equations is
straight-forward and is done in the appendix.

Now the first integrals on the right hand sides of above
equations are independent of ψ1 and ψ2 and when inte-
grated from −∞ to ∞, they are equal to constants. Sim-
ilarly, the coefficients of ψ1,τ and ψ2,τ on the left hand
sides of the equations are independent of ψ1 and ψ2 and
when integrated from −∞ to ∞, they are also equal to
each other and constants. Thus we can write:∫ ∞

−∞
w1V10,ξξξdξ =

∫ ∞

−∞
w2V20,ξξξdξ = H1

∫ ∞

−∞
wi

[ ε

u2
Vi0 − Vi0,ξξ

]
dξ = H2 . . . i = 1, 2

Hence the equation for the rate of change of the phase
difference between the two pulses with respect to τ be-
comes,

d∆ψ
dτ

=
[Iη−∆ψ − Iη+∆ψ]

H2
(16)
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Where ∆ψ = ψ2 − ψ1, H2 is as defined before and,

Iη±∆ψ =
∫ ∞

−∞
w(ξ)V ′′′0 (ξ + η ±∆ψ)dξ (17)

The expressions for Vi0 and wi can be divided into three
regions defined by L, the range of ξ for which the poten-
tial is above the threshold, as follows:

• Region I: ξ < −L ; Vi0 ≤ a

• Region II: −L < ξ < 0 ; Vi0 ≥ a

• Region III: ξ > 0 ; Vi0 ≤ a

Then, as done in the appendix, the functional forms of V0

and w in these three regions can be written as given below
(We drop the symbol i as the leading order expressions
for the solution and the adjoint are identical on both
fibers.) :
Thus, for ξ < −L,

V0(ξ) ≡ V1(ξ) = A1e
k1ξ +A2e

k2ξ (18)
w(ξ) ≡ w1(ξ) = A′e−k3ξ (19)

For −L < ξ < 0,

V0(ξ) ≡ V2(ξ) = B1e
k1ξ +B2e

k2ξ +B3e
k3ξ (20)

w(ξ) ≡ w2(ξ) = B′1e
−k1ξ +B′2e

−k2ξ +B′3e
−k3ξ(21)

And for ξ > 0,

V0(ξ) ≡ V3(ξ) = Cek3ξ (22)
w(ξ) ≡ w3(ξ) = C ′1e

−k1ξ + C ′2e
−k2ξ (23)

with k1, k2 > 0 and k3 < 0. Next, we want to find
expressions for Iη+∆ψ and Iη−∆ψ in terms of ∆ψ. Since
V ′′0 (ξ) is discontinuous at ξ = −L and ξ = 0, we can
write,

V ′′0 (ξ±) = V ′′1 (ξ±) + (V ′′2 (ξ±)− V ′′1 (ξ±))H(ξ± − (−L))
+(V ′′3 (ξ±)− V ′′2 (ξ±))H(ξ± − 0)

Here, ξ± = ξ + η ± ∆ψ and H(ξ) is the Heaviside step
function. Hence,

V ′′′0 (ξ±) = V ′′′1 (ξ±) + (V ′′′2 (ξ±)− V ′′′1 (ξ±))H(ξ± − (−L))
+(V ′′2 (ξ±)− V ′′1 (ξ±))δ(ξ± − (−L))
+(V ′′′3 (ξ±)− V ′′′2 (ξ±))H(ξ±)
+(V ′′3 (ξ±)− V ′′2 (ξ±))δ(ξ±) (24)

Thus,∫ ∞

−∞
w(ξ)V ′′′0 (ξ±)dξ =

∫ −L±

−∞
w(ξ)V ′′′1 (ξ±)dξ

+
∫ −η±

−L±
w(ξ)V ′′′2 (ξ±)dξ +

∫ ∞

−η±
w(ξ)V ′′′3 (ξ±)dξ

+w(−L±)(V ′′2 (−L)− V ′′1 (−L))
+w(−η±)(V ′′3 (0)− V ′′2 (0)) (25)

where L± = L+η±∆ψ and η± = η±∆ψ. Now, integrat-
ing each of the first three integrals on the right hand side
of equation (25) by parts, we see that the last two terms
on the right hand side of above equation, will cancel with
the contributions from the values of the integrands in the
first three integrals at the limits of the integration. Hence
we obtain,∫ ∞

−∞
w(ξ)V ′′′0 (ξ±)dξ = −

∫ −L±

−∞
w′(ξ)V ′′1 (ξ±)dξ

−
∫ −η±

−L±
w′(ξ)V ′′2 (ξ±)dξ −

∫ ∞

−η±
w′(ξ)V ′′3 (ξ±)dξ

However since w′(ξ) has different functional forms in dif-
ferent regions of ξ, each of the three integrals on the right
hand side of the above equation needs to be divided dif-
ferently for different ranges of values of ∆ψ. Here, then,
are the different cases and the various integrals involved
in the calculation of Iη+∆ψ:

• Case I: ∆ψ = 0 There is nothing to learn in this
case as the right hand side of the equation (16)
equals zero, hence, ∆ψ,τ = 0 as well and this just
implies that ∆ψ = 0 is a fixed point of equation
(16) irrespective of the value of η or the delay in
ephaptic coupling.

• Case II: 0 < ∆ψ ≤ L− η∫ ∞

−∞
w(ξ)V ′′′0 (ξ+)dξ = −

∫ −L+

−∞
w′1(ξ)V

′′
1 (ξ+)dξ

−
∫ −L

−L+

w′1(ξ)V
′′
2 (ξ+)dξ −

∫ −η+

−L
w′2(ξ)V

′′
2 (ξ+)dξ

−
∫ 0

−η+
w′2(ξ)V

′′
3 (ξ+)dξ −

∫ ∞

0

w′3(ξ)V
′′
3 (ξ+)dξ

• Case III: −L− η ≤ ∆ψ < 0∫ ∞

−∞
w(ξ)V ′′′0 (ξ+)dξ = −

∫ −L

−∞
w′1(ξ)V

′′
1 (ξ+)dξ

−
∫ −L+

−L
w′2(ξ)V

′′
1 (ξ+)dξ −

∫ 0

−L+

w′2(ξ)V
′′
2 (ξ+)dξ

−
∫ −η+

0

w′3(ξ)V
′′
2 (ξ+)dξ −

∫ ∞

−η+
w′3(ξ)V

′′
3 (ξ+)dξ

• Case lV: L− η ≤ ∆ψ <∞∫ ∞

−∞
w(ξ)V ′′′0 (ξ+)dξ = −

∫ −L+

−∞
w′1(ξ)V

′′
1 (ξ+)dξ

−
∫ −η+

−L+

w′1(ξ)V
′′
2 (ξ+)dξ −

∫ −L

−η+
w′1(ξ)V

′′
3 (ξ+)dξ

−
∫ 0

−L
w′2(ξ)V

′′
3 (ξ+)dξ −

∫ ∞

0

w′3(ξ)V
′′
3 (ξ+)dξ
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• Case V: −∞ < ∆ψ ≤ −L− η∫ ∞

−∞
w(ξ)V ′′′0 (ξ+)dξ = −

∫ −L

−∞
w′1(ξ)V

′′
1 (ξ+)dξ

−
∫ 0

−L
w′2(ξ)V

′′
1 (ξ+)dξ −

∫ −L+

0

w′3(ξ)V
′′
1 (ξ+)dξ

−
∫ −η+

−L+

w′3(ξ)V
′′
2 (ξ+)dξ −

∫ ∞

−η+
w′3(ξ)V

′′
3 (ξ+)dξ

These integrals can be done analytically or numerically,
given the functional forms of Vi0 and wi, for particular
values of ε and a, and hence Iη+∆ψ can be calculated for
a given value of η. Iη−∆ψ can be calculated in a similar
fashion and hence the vector field in equation (16) can
be found as a function of ∆ψ.

In the case considered by Luzader and Scott [9], i.e. when
the coupling is instantaneous and hence η = 0, there are
five fixed points with 0, ∆ψ2 and −∆ψ2 being the stable
fixed points while ∆ψ1 and −∆ψ1 being the unstable
fixed points, as shown in figure (1). Since ∆ψ = 0 is a
stable fixed point, the two pulses will get entrained with
no phase difference between them, if they start with a
small initial phase difference, as was shown by Luzader
and Scott.
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!#$%
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!0$%
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0$%

#

#$%

!"

!
"
,# !!"#

!"#'
!"2'
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FIG. 1: The Luzader-Scott result: a plot of the right hand
side of (16) for the zero delay case (η = 0) [9] showing five
fixed points with 0 and ±∆ψ2 being the stable fixed points.
(Here a = 0.3, ε = 0.1 and both x and y axes are plotted in
units of traveling wave coordinate (ξ).

However, as the value of the delay is increased from zero,
while ∆ψ = 0 remains a fixed point, it undergoes a pitch-
fork bifurcation giving rise to two new fixed points. These
new fixed points are stable while 0 becomes unstable, in
turn destroying the precise entrainment of the two pulses.
This new, non-zero, stable phase difference between the
two pulses increases as the delay increases further. The
other nonzero fixed points (±∆ψ1 and ±∆ψ2 in figure
(1)) present in the zero delay case also increase in mag-
nitude but don’t change their stability. These effects of a

higher-than-critical value of the delay can be seen in fig-
ure (2c) (with a closer look near ∆ψ = 0 in (2d)) while
figure (2a) (with a closer look near ∆ψ = 0 in (2b))
shows that, for a lower-than-critical value of the delay,
the locations as well as the nature of stability of all the
fixed points in the zero delay case (figure (1)) remain un-
changed; the only difference is in the value of the slope
at ∆ψ = 0.
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∆ψ

FIG. 2: Plots of the right hand side of (16) for two values
of the delay showing the change of stability for the precisely
entrained state. (a) and (b): η = 0.08L ≈ 0.38 (δ ≈ 7.4µs for
squid axons); ∆ψ = 0 is stable.(c) and (d): η = 0.16L ≈ 0.76
(δ ≈ 14.7µs for squid axons); ∆ψ = 0 is clearly unstable
while two new fixed points at ∆ψ ≈ ±0.98 (19 µs for squid
axons) are now stable. The value of this new, non-zero, stable
phase difference increases as the delay increases further. Here
ε = 0.1 and a = 0.3 and both x and y axes are plotted in
units of traveling wave coordinate ξ.

As mentioned in the last section, Rinzel and Keller [22]
showed that for a given value of the threshold poten-
tial a, there are several values of ε < εc for which the
Fitzhugh-Nagumo equations for a single nerve fiber admit
stable pulse solutions. We calculated the critical values
of the delay, at which the precise entrainment between
the two pulses is destabilized, for several such values of
ε. As shown in figure (3), the critical value of the de-
lay increases as ε increases. It indicates that for slower
recovery (i.e. smaller values of ε), the threshold values
of the delay in ephaptic transmission beyond which the
pulses will maintain a stable, non-zero phase difference
between them, is smaller than those for quicker recovery.
In other words, shorter pulses (i.e. those having quick
recovery) can maintain precise entrainment for compara-
tively higher values of the delay in ephaptic transmission
than longer ones.
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FIG. 3: Figure shows the plot of the critical values of delay
at which the phase difference of zero between the pulses on
neighboring fibers loses stability, as a function of the recovery
parameter ε for a = 0.3.

III. DISCUSSION

Ephaptic interactions happen between neurons that are
in close proximity of each other, through spread of ionic
current. It is reasonable to expect that they occur with
some delay due to finite time of propagation of these
currents. In this article, we showed theoretically, that if
the delay is sufficiently large, then it can destabilize the
precise entrainment between impulses traveling down
two identical, parallel nerve fibers. We now make a
rough estimate of the actual value of this critical delay,
in the case of squid giant axons.

For ε = 0.1 and a = 0.3, the value of η at which ∆ψ = 0
bifurcates, turns out to be ≈ 0.11L where L, in the
units of the traveling-wave coordinate ξ, is ≈ 4.72. Now
η = uδ where u, the dimensionless velocity of each pulse,
is ≈ 0.71. This gives the value of δ, but since the origi-
nal equations (1-4) are dimensionless themselves, the ac-
tual value of delay is obtained by multiplying δ by g/c,
the relevant time-scale in the problem. For the giant
axon of squid the typical values of g and c are 0.0108
mhos/cm and 1.5 × 10−7F/cm respectively [23]. Thus
the value of the transmission delay at which the pulses
are de-synchronized, turns out to be ≈10.1 µs. The time
interval between the arrival of the action potential at
the preephaptic fiber and the firing of the postephap-
tic fiber was found to be, in the range of 200-400 µs
by Ramon and Moore [4] in the case of squid giant ax-
ons and, in the range of 100-240 µs by Rasminsky [5] in
the case of spinal nerve roots of dystrophic mice. Con-
sidering that the processes involved in generation of an
action potential on a resting fiber by an active adjacent
fiber are more complex and time consuming than the
case when both fibers have action potentials traveling
along them, our estimate of the time delay responsible
for the destabilization of precise entrainment between the
two impulses seems quite reasonable and relevant. Thus

our results suggest that careful experiments could be car-
ried out to measure the stable, non-zero phase difference
between the pulses thereby calculating the transmission
time-delay. On the other hand, if the pulses get entrained
precisely, with zero phase difference between them, our
result gives an upper limit for the time delays involved
in ephaptic transmission.
In this article we demonstrated the effect of finite ephap-
tic transmission time (delay) qualitatively and gave an
estimate of the critical delay for loss of synchrony be-
tween two fibers. Extending this work to study the effect
of time delay on the synchronization of a collection of
ephaptically coupled fibers would be of considerable bio-
logical interest.

APPENDIX A: CALCULATION OF Vi0 AND wi

The equations for the leading order solution Vi0 and
its adjoint wi are as follows:

Vi0,ξξξ + uVi0,ξξ − F ′(Vi0)Vi0,ξ +
ε

u
Vi0 = 0 (A1)

wi,ξξξ − uwi,ξξ − F ′(Vi0)wi,ξ −
ε

u
wi = 0 (A2)

Let us take equation (A1) first. This has a pulse solution,
which when plotted as a function of ξ, can be divided into
three regions:

• Region I: ξ < −L ; Vi0 ≤ a

• Region II: −L < ξ < 0 ; Vi0 ≥ a

• Region III: ξ > 0 ; Vi0 ≤ a

We can write a general form of the solution in all three
regions as:

Vi0 = A1 exp(k1ξ) +A2 exp(k2ξ) +A3 exp(k3ξ) ; in I
= B1 exp(k1ξ) +B2 exp(k2ξ) +B3 exp(k3ξ) ; in II
= C1 exp(k1ξ) + C2 exp(k2ξ) + C3 exp(k3ξ) ; in III

Since Vi0 → 0 as ξ → ±∞, we get

Vi0 = A1 exp(k1ξ) +A2 exp(k2ξ) ; in I (A3)
= B1 exp(k1ξ) +B2 exp(k2ξ) +B3 exp(k3ξ) ;

in II (A4)
= C exp(k3ξ) ; in III (A5)

k1, k2 > 0 and k3 < 0 are the roots of the characteristic
equation obtained from equation (A1):

k3 + uk2 − k +
ε

u
= 0 (A6)

Thus k1, k2, k3 are functions of ε and u. Now we use
the continuity of the solution and its first derivative and
the discontinuity in the second derivative at ξ = 0 and
ξ = −L to solve for the constants in equations (A3)-
(A5) and also for L. The discontinuity in the second
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derivative comes from the form of the function F (V ) and
is expressed as follows:

(V ′′i0)II − (V ′′i0)I = −1
(V ′′i0)III − (V ′′i0)II = 1

Thus using these matching conditions at ξ = 0 we get
three equations that can be written in a compact form
as follows:

km3 C =
3∑
i=1

kmi Bi . . . m = 0, 1, 2 (A7)

and at ξ = −L,

2∑
i=1

kmi Aie
−kiL =

3∑
j=1

kmj Bje
−kjL . . . m = 0, 1, 2 (A8)

There are two additional conditions:

Vi0(ξ = 0) = Vi0(ξ = −L) = a (A9)

which along with (A7) imply C = a. Then we can solve
for B1, B2 and B3 in terms of k1, k2 and k3:

B1 =
(k2 − k3)

D
(A10)

B2 =
k3 − k1

D
(A11)

B3 =
k1 − k2

D
+ a (A12)

with D = k2k3(k3 − k2) + k1k3(k1 − k3) + k1k2(k2 − k1).
We can then solve for L:

L =
−1
k3
lnη (A13)

Here,

η(k1, k2, k3, a) = 1− a

B3

=
k1 − k2

(k1 − k2) + aD
(A14)

We can then solve for A1 and A2:

A1 = B1[1− η−k1/k3 ] (A15)

A2 = B2[1− η−k2/k3 ] (A16)

Now using the final condition i.e. Vi0(ξ = −L) = a we
get,

B1η
k1/k3 +B2η

k2/k3 +B3 = 2a (A17)

This is an equation in terms of k1, k2, k3 which are in
turn in terms of u, the velocity. Thus we can solve this
equation for u for particular values of ε and a. Once we
know u, we can calculate k1, k2, k3 from which we can
know A1, A2, B1, B2, B3 and L and hence the functional

−30 −25 −20 −15 −10 −5 0 5 10

−0.3

0

0.3

0.6

0.9

ξ

V
i0

Region IIIRegion I II

L

FIG. 4: Functional form of Vi0 as a function of ξ - a stable
pulse solution for the Fitzhugh-Nagumo equation with ε = 0.1
and a = 0.3.

form of Vi0. The plot of Vi0 is given in figure (4) and it
matches the plot in the article by Luzader and Scott [9].

The functional form of wi would be similar since the dif-
ferential equation for the adjoint, (A2) is similar to (A1)
although a main difference is that equation (A2) is lin-
ear. The only change would be in the signs of k1, k2, k3

as the characteristic equation corresponding to (A2) can
be obtained from that for (A1) by replacing k by −k.
A general form of the solution to (A2), in all the three
regions defined before, can be written as:

wi = A′1 exp(k′1ξ) +A′2 exp(k′2ξ) +A′3 exp(k′3ξ) ; in I
= B′1 exp(k′1ξ) +B′2 exp(k′2ξ) +B′3 exp(k′3ξ) ; in II
= C ′1 exp(k′1ξ) + C ′2 exp(k′2ξ) + C ′3 exp(k′3ξ) ; in III

where k′1, k
′
2, k

′
3 are the roots of the characteristic equa-

tion:

k3 − uk2 − k − ε

u
= 0 (A18)

Comparing this equation with equation (A6) we see that
k′1 = −k1, k′2 = −k2 and k′3 = −k3 which implies that
k′1 < 0, k′2 < 0,k′3 > 0. Hence the functional form of wi
becomes,

wi = A′ exp(−k3ξ) ; in I (A19)

=
3∑
i=1

B′i exp(−kiξ) ; in II (A20)

= C ′1 exp(−k1ξ) + C ′2 exp(−k2ξ) ; in III (A21)

Now we use the continuity of the solution and its first
derivative and the discontinuity in the second deriva-
tive at ξ = 0 and ξ = −L to solve for the constants
in equations (A19)-(A21). The discontinuity in the sec-
ond derivative comes from the form of the function F (V )
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FIG. 5: A solution of the adjoint homogeneous equation that
corresponds to the pulse shown in the above figure. The or-
dinate scale is arbitrary. (a = 0.3, ε = 0.1)

and is expressed as follows:

(w′′i )II − (w′′i )I =
−w′i(−L)
V ′i0(−L)

(A22)

(w′′i )III − (w′′i )II =
w′i(0)
V ′i0(0)

(A23)

Thus using these matching conditions at ξ = 0 we get
the following set of equations:

2∑
i=1

kmi C
′
i =

3∑
i=1

kmi B
′
i . . . m = 0, 1 (A24)

2∑
i=1

k2
iC

′
i =

3∑
i=1

kmi B
′
i +

k1C
′
1 + k2C

′
2

k3C
(A25)

And at ξ = −L:

km3 A
′ek3L =

3∑
i=1

kmi B
′
ie
kiL . . . m = 0, 1 (A26)

k2
3A

′ek3L =
3∑
i=1

k2
iB

′
ie
kiL − k3A

′ek3L∑2
j=1 kjAje

−kjL
(A27)

Eliminating B′1, B
′
2, B

′
3 leads to the following three equa-

tions for C ′1, C
′
2 and A′:

(1 + c11)C ′1 + c12C
′
2 − a11A

′ = 0 (A28)
c12C

′
1 + (1 + c22)C ′2 − a12A

′ = 0 (A29)
c13C

′
1 + c23C

′
2 − (1 + a13)A′ = 0 (A30)

where,

c11 = −k1B1

k3C
; c12 = −k1B2

k3C
; c13 = −k1(B3 − C)

k3C

c21 = −k2B1

k3C
; c22 = −k2B2

k3C
; c23 = −k2(B3 − C)

k3C

a11 = − k3β1e
(k3L)

k1α1 + k2α2
; a12 = − k3β2e

(k3L)

k1α1 + k2α2

a13 = − k3β3

k1α1 + k2α2

where αi = Aie
(−kiL), i = 1, 2, βj = Bje

(−kjL), j =
1, 2, 3 and Ai, Bj and C are the coefficients in the func-
tional form of Vi0. The above relations can be obtained
from the expressions (A10) - (A12) for these coefficients
and using the condition for the discontinuity in the sec-
ond order derivative of wi - equations (A22)-(A23). It can
be easily proved that two of the three equations (A28) -
(A30) are redundant and hence we can solve for two of
three coefficients C ′1, C

′
2 and A′ in terms of the third one.

Hence we solve for C ′1 and A′ in terms of C ′2, which then
yields all the coefficients in the functional form of wi.

C ′1 =
[
a11(1 + c22)− a12c21
a12(1 + c11)− a11c12

]
C ′2 (A31)

A′ =
c13C

′
1 + c23C

′
2

(a13 + 1)
(A32)

B′1 = a11A
′ (A33)

B′2 = a12A
′ (A34)

B′3 = (a13 + 1)A′ (A35)

With these coefficients, we now plot wi as functions of ξ
for a = 0.3 and ε = 0.1 in figure (5) and it matches with
the one given in [9].
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