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AN EFFICIENT SPECTRAL METHOD FOR ORDINARY

DIFFERENTIAL EQUATIONS WITH RATIONAL FUNCTION

COEFFICIENTS

EVANGELOS A. COUTSIAS, THOMAS HAGSTROM, AND DAVID TORRES

Abstract. We present some relations that allow the efficient approximate in-
version of linear differential operators with rational function coefficients. We
employ expansions in terms of a large class of orthogonal polynomial fami-
lies, including all the classical orthogonal polynomials. These families obey
a simple 3-term recurrence relation for differentiation, which implies that on
an appropriately restricted domain the differentiation operator has a unique
banded inverse. The inverse is an integration operator for the family, and it
is simply the tridiagonal coefficient matrix for the recurrence. Since in these
families convolution operators (i.e., matrix representations of multiplication by
a function) are banded for polynomials, we are able to obtain a banded repre-
sentation for linear differential operators with rational coefficients. This leads
to a method of solution of initial or boundary value problems that, besides
having an operation count that scales linearly with the order of truncation N ,
is computationally well conditioned. Among the applications considered is the
use of rational maps for the resolution of sharp interior layers.

1. Introduction

The solution of constant-coefficient ordinary differential equations with periodic
boundary conditions is especially simple in the Fourier spectral representation, since
differentiation of a smooth function is replaced by multiplication of its Fourier co-
efficient vector by a diagonal matrix. An analogous property is shared by Hermite
polynomial expansions in unbounded domains. Other spectral representations give,
in general, almost full triangular differentiation matrices. However, for polyno-
mial families such as the Chebyshev and Legendre, the matrices representing some
commonly occurring operators, such as the Laplace operator in various separable
geometries, are known to be reducible to simple, banded form through the use of
appropriate banded preconditioners ([12, Ch. 10], [9, 18]). The origin of most of
such simplifications is found in the fact that the matrix operator for integration in
any of the classical orthogonal polynomial families is tridiagonal [8].
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In this article we show how to exploit the properties of the operator of integration
for arbitrary classical orthogonal polynomial families to arrive at efficient spectral
algorithms for the approximate solution of a large class of ordinary differential
equations of the form

Lu =
n∑
k=0

(mn−k(x)Dk)u = f(x) , x ∈ Ω = (a, b),(1)

subject to the constraints

T u = c ,

where mk are rational functions of x, Dk denotes kth-order differentiation with
respect to x, T is a linear functional of rank n, and c ∈ Rn. (Typically, the
constraints are boundary or initial conditions, but this is not necessary.)

We must mention that the basic idea of the method presented here was first intro-
duced by Clenshaw [6]. He realized that solving for the highest derivative present in
a given ordinary differential equation leads to banded forms for Chebyshev Galerkin
discretizations for ODEs with low-order polynomial coefficients, which then he
solved by backward recurrence relations. The method is further discussed in the
monograph by Fox and Parker [11], again for the Chebyshev polynomials. Among
our main contributions are the development of an efficiently implementable algo-
rithm for general, nonsingular problems in arbitrary classical orthogonal polynomial
bases, together with its conditioning and convergence analysis, and the application
to the resolution of sharp layers through rational maps. We present now the basic
description of our method, followed by an outline of the rest of the paper.

The problem of approximating solutions of Ordinary or Partial Differential Equa-
tions (O or PDE) by spectral methods, known as Galerkin approximation, involves
the projection onto the span of some appropriate set of basis functions, typically
arising as the eigenfunctions of a singular Sturm-Liouville (SL) problem. The mem-
bers of the basis may satisfy automatically the auxiliary conditions imposed on the
problem, such as initial, boundary or more general conditions. Alternatively, these
conditions may be imposed as constraints on the expansion coefficients, as in the
Lanczos τ -method [15].

It is well known [5] that the eigenfunctions of certain singular Sturm–Liouville
problems allow the approximation of functions in C∞ [a, b] whose truncation error
approaches zero faster than any negative power of the number of basis functions
(modes) used in the approximation, as that number (order of truncation N) tends
to ∞ . This phenomenon is usually referred to as ‘spectral accuracy’ [12]. The
accuracy of derivatives obtained by direct, term–by–term differentiation of such
truncated expansions naturally deteriorates [5], but for low-order derivatives and
sufficiently high-order truncations this deterioration is negligible, compared to the
restrictions in accuracy introduced by typical difference approximations. Since
results on the accuracy of spectral methods are well documented in the literature,
we shall limit ourselves to the discussion of certain formal properties of orthogonal
polynomial families, which allow algorithmic simplifications in their use. Facts
about orthogonal polynomials that we shall need can be found in any of the standard
references (e.g. [16, 19]).

Throughout, we assume that we are working with a family of polynomials {Qk}∞0
which are orthogonal and complete over the interval (a, b) (here a and/or b can be
infinite) with respect to the nonnegative weight w(x). In the cases of interest, these
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are the eigenfunctions of a Sturm-Liouville problem

(p(x)Q′k)′ + λkw(x)Qk = 0.(2)

Then the Q′k form an orthogonal family as well, with nonnegative weight p(x) which
satisfies p(x) → 0 as x → a, b. In this paper we focus exclusively on the classical
orthogonal polynomials, i.e., the Jacobi (special cases of which are the Chebyshev,
Legendre and Gegenbauer polynomials), Laguerre and Hermite polynomials, which
are the only polynomial solutions of Sturm-Liouville problems of the form (2) [14].
We will assume that the functions under consideration possess sufficient differentia-
bility properties over (a, b) and can be expressed as a series involving the Qk. See
[5] for a discussion of the convergence properties in the relevant function spaces.

We introduce the spaces Qnm by

Qnm ≡ span{Qk|m ≤ k ≤ n}.
Our method constructs an approximate particular solution of (1) in a subspace of
codimension n (e.g. (Qn−1

0 )⊥) such that when nth-order differentiation is restricted
to this subspace it has a simple inverse. We also require that L be invertible when
restricted to this subspace and that T has full rank when restricted to the space of
solutions to the homogeneous problem ((1) with f = 0).

Of key importance for our purposes is the requirement that differentiation or
its inverse (‘integration’ in an appropriately restricted domain) must have banded
form. For example, the first derivative operator in the Chebyshev representation,
D has elements

1

2
Di,j =


0, i ≥ j,
0, i < j, i+ j even,
j, 0 < i < j, i+ j odd,
j
2 , i = 0, j odd.

Its inverse, when respective domains and ranges are appropriately restricted, is
given by

B =
1

2


0 0 0 · · · 0 · · · 0
2 0 −1 · · · · · · · · · 0
0 1/2 0 −1/2 · · · · · · 0

0 0
. . .

. . .
. . . · · · 0

0 0 0 1/k 0 −1/k · · ·

 .

Now, DB = IQ∞0 while BD = IQ∞1 . Clearly, DkBk = IQ∞0 as well. However,

BkDk 6= I. If we apply k-fold differentiation to an arbitrary function, all informa-
tion about the first k coefficients in its Chebyshev expansion is lost. If however we
restrict the action of Dk to the space Q∞k , then Bk is a left inverse provided its
range is restricted to the same space. We introduce the notation A[k] to denote a

matrix A with its first k rows set to zero. Thus, we have that Bk[k]D
k = IQ∞

k
. We

note that these relationships carry over to finite truncations if we replace the last
column of B and the last k columns of Bk[k] with zeros, since Dk : QNk → QN−k0

while Bk[k] : QN−k0 → QNk . It is easy to see that these simple inversion (integration)

operators originate in the recursions

T ′k+1

k + 1
−
T ′k−1

k − 1
= 2Tk , k = 1, . . . ,(3)

T ′0 = 0 , T ′1 = T0,
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T ′′k+2

4(k + 2)(k + 1)
− 2T ′′k

4(k2 − 1)
+

T ′′k−2

4(k − 1)(k − 2)
= Tk , k = 1, . . . ,(4)

T ′′0 = 0 , T ′′1 = 0 , T ′′2 = 4T0,

and so on for higher derivatives. Clearly, B and B2
[2] are the matrices of recur-

sion coefficients for equations (3), (4), respectively. In the discussion we use the
same symbol for an infinite-dimensional matrix operator and its finite-dimensional
truncation, where the distinction is clear from the context.

More generally, if {Qk(x)}∞0 is a family of orthogonal polynomials, then a three-
term recurrence for multiplication by the monomial x

1∑
l=−1

Qk+lak+l,k = xQk , k = 0, 1, . . .(5)

follows easily from the orthogonality of the Qk [19]. Since the Q′k are orthogonal
(with weight p(x), as is easily seen by integrating (2) by parts), they also satisfy a
relation of form (5):

1∑
l=−1

Q′k+la
(1)
k+l,k = xQ′k , k = 0, 1, . . . .(6)

Therefore, by differentiating (5) and combining with (6), we arrive at [8]

1∑
l=−1

Q′k+lbk+l,k = Qk , k = 0, 1, . . . ,(7)

which allows the efficient inversion of differentiation to all orders. The coefficients in
(7) can be derived from those of the basic recurrence (5), which defines the family.

The method we shall present in §3, explained in detail for 2nd-order operators
but not limited to them, relies on restricting the domain of Dn to the subspace
QNn = span{Qk}Nn , thus ensuring the existence of a unique inverse. Throughout,
we tacitly assume that the operator LN , the Nth-order Galerkin approximation to
L, has rank N−n when acting on elements of QN0 . Thus, the problem of solving the
resulting algebraic system for right-hand sides restricted to QN−n0 has a solution
containing n free parameters. We moreover assume that the operator is nonsingular
when restricted further to QNn . Thus, the null space contains no element orthogonal
to Qn−1

0 . These assumptions are not as restrictive as one might at first expect. The
method is most effective when the above problem needs to be solved repeatedly for
several right-hand sides f and high accuracy is desired. This type of problem
arises, e.g., when the Navier-Stokes equations are solved in a geometry in which
the Laplace operator is separable, and the boundary conditions are periodic in all
directions except one. Common examples are provided by the Laplace operator in
various separable curvilinear coordinates, where expansions of smooth functions in
terms of eigenfunctions of the Laplacian in the bounded direction do not possess
good convergence properties.

In §3 we give some examples of the inversion of the Laplacian in some common
geometries, including a disk and an annulus in cylindrical and helical coordinate
systems. The use of the method for initial value problems is demonstrated through
a study of the Airy equation, while the biharmonic equation, analyzed in §4, pro-
vides an example for a higher-order problem. Also considered is the Stokes problem:
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here a coupled system of two second-order equations is studied with boundary con-
ditions given for only one. The method is easily extended to cover this case. The
Chebyshev polynomials are an especially important family, because of their optimal
approximation properties as well as the applicability of the Fast Fourier Transform.
Thus, most of our explicit calculations are carried out for Chebyshev-Galerkin ma-
trices. In §4 we carry out a detailed conditioning analysis for typical problems. It
is found that if the leading coefficient m0(x) does not vanish in the interval under
consideration, the method generically produces well-conditioned operators. Finally,
in §5 we discuss how to use rational mappings to stretch the coordinate system near
points where the solution of a BVP exhibits rapid variation, thus ensuring a more
efficient representation of the solution without sacrificing the speed of the method.

2. Recursive determination of derivatives

Throughout, we assume that {Qk(x)}∞0 is a family of orthogonal polynomials in
[a, b] with weight w(x), such that if u ∈ C∞[a, b] and if we set

uN =
N∑
0

û0
kQk

with

û0
k =

1

hk

∫ b

a

u(x)Qk(x)w(x)dx , where hk =‖ Qk ‖2w ,

then the error ‖ u− uN ‖wN→∞→ 0 faster than any negative power of N . This is for
example true for the eigenfunctions of certain singular Sturm–Liouville problems
[5].

We shall write Dn
N for the restriction of the nth-derivative operator with respect

to x on QN0 = span {Qk}N0 . We adopt the notation

Dnu = Dn
∞∑
0

û0
kQk ≡

∞∑
0

ûnkQk,(8)

and we write ûN = col(ûi) ∈ RN+1 (i = 0, 1, . . . , N). In the sequel we will drop the
subscript N when the distinction between truncated and nontruncated expansions
is clear. Also, as stated earlier, we shall write A[k] for a matrix A whose first k
rows have been set equal to zero.

We now prove the following theorem, which is a special case of Theorem 2.2, but
because of its simplicity serves to explain ideas. In this form, the theorem applies,
e.g., to the Legendre polynomials.

Theorem 2.1. If the family {Qk(x)}∞0 satisfies the recurrence

Q′k+1 −Q′k−1 = f(k)Qk , k = 0, 1, . . . ,(9)

with Q−1 ≡ 0, then

û1
k+1

f(k + 1)
−

û1
k−1

f(k − 1)
= −û0

k , k = 1, 2, . . . .(10)

Proof. Clearly,

Q′k+1(x) =
k∑

m=0
m+k even

f(m)Qm(x) ,
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so that

u′ =
∞∑
k=0

û0
kQ
′
k ≡

∞∑
k=0

û1
kQk

=
∞∑
k=0

û0
k

k−1∑
m=0

m+k odd

f(m)Qm

=
∞∑
m=0

f(m)
∞∑

k=m+1
m+k odd

û0
k

Qm ,

and finally

û1
m = f(m)

∞∑
k=m+1
k+m odd

û0
k ,

resulting in the recurrence claimed above.

Applying the formula of Theorem 2.1 repeatedly, we can derive similar recursions
for the inversion of higher derivatives as well. For example, for D2 we have

û2
k+2

f(k + 1)f(k + 2)
− û2

k

(f(k + 1) + f(k − 1))

f(k + 1)f(k)f(k − 1)
(11)

+
û2
k−2

f(k − 1)f(k − 2)
= û0

k , k = 2, 3, . . . .

The above formulae lead to simple algorithms for the computation of derivatives
of functions expanded in terms of the Q’s as well as for the solution of simple Initial
(I) or Boundary Value Problems (BVPs). For example, the solution to the problem

ux = g(x) , u(a) = α ,

where

g(x) =
∞∑
m=0

ĝmQm(x),

can be found in the form

û0
k =

ĝk−1

f(k − 1)
− ĝk+1

f(k + 1)
, k = 1, 2, . . .

while

û0
0 =

(
α−

∞∑
m=1

û0
mQm(a)

)
/Q0(a).

Other simple linear BVPs of the form

Lu = g , Bu = l ,

can be solved efficiently by the inversion of banded matrices if the differential op-
erator L has constant coefficients. For example, let

L = − d2

dx2
+ λ2.(12)
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In order to solve the BVP (12) with boundary conditions

u(a) = α , u(b) = β(13)

numerically, by assuming a truncated expansion for u(x) of order M , we set

û2
k = λ2û0

k − ĝk
in Eq. (11) for k = 2, . . . ,M to get, together with the τ -conditions

M∑
m=0

û0
mQm(a) = α ,

M∑
m=0

û0
mQm(b) = β ,

an almost pentadiagonal system (except for the first two rows, which are full) for
the coefficients û0

m. This can be easily solved by LU decomposition. Thus the
τ -conditions are viewed as the first two equations, followed by the first M − 1
recurrence relations for the determination of the û0

k , k = 2, . . . ,M , with û0
k =

ĝk = 0 , k > M . This is equivalent to the usual way of stating the τ -method [12].
An alternative approach is suggested here. We specifically look for null vectors in

the form ek = Qk + uk , uk ∈ (Qn−1
0 )⊥ , k = 1, . . . , n− 1. Then, if up ∈ (Qn−1

0 )⊥

is a particular solution, the solution to the BVP can be written as u = up+
∑
αkek,

with αk satisfying an n× n system. Note that if repeated solution of the system is
required with different right-hand sides, the uk need only be determined once, and
there is a slight reduction in computational overhead of our method when compared,
e.g., with an efficient implementation of the τ -method. In fact, our method can
effectively optimize the conditioning of a problem by restricting attention to the
most stable subspace. So, for example, if one is required to solve the Poisson
equation 4u = −g in a region Ω, where Ω is a 2-(3-)dimensional rectangle with
one (two) periodic directions and one bounded direction several times by adopting
a Fourier-(Fourier)-Q expansion, the problem decomposes to equations of type (12)
in the bounded direction for each Fourier mode. The LU decomposition can be
performed in a preprocessing stage and the results stored, resulting in only ≈ (10M)
operations per solution per Fourier mode at all subsequent stages. The cost is
thus comparable to solving the Poisson equation in the pure Fourier case! Similar
results can be easily derived for other ordinary differential operators with constant
coefficients.

A straightforward generalization of the previous formulas, which is useful in
deriving properties for the Chebyshev polynomials, follows [8]:

Theorem 2.2. If the family {Qk(x)}∞0 satisfies the recurrence

1∑
l=−1

Q′k+lbk+l,k = Qk , k = 0, 1, . . . ,(14)

with Q−1 ≡ 0, then, if f(x) =
∑∞
k=0 f̂kQk(x) is a sufficiently differentiable function,

there holds

f̂
(0)
k =

1∑
l=−1

bk,k+lf̂
(1)
k+l , k = 1, 2, . . . ,(15)

where the lth derivative of the function f(x) has expansion coefficients f̂
(l)
k .
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Thus, even in this more general case, the expansion coefficients of a function can
be calculated from those of its derivative in O(N) operations. The more general
form in Theorem 2.2 will be useful dealing with Chebyshev polynomials, for which
it agrees with the usual normalizations. The proof is straightforward, but we give
it for completeness.

Proof of Theorem 2.2. We can introduce the vectors

f̂ (l) =
(
f̂

(l)
0 , f̂

(l)
1 , . . .

)T
and

qx = (Q0, Q1, . . . ) , q′x = (Q′0, Q
′
1, . . . ) .

Then, f(x) = qxf̂ and f̂ ′ = q′xf̂ . Also, by assumption, q′xB = qx, where B is the
coefficient matrix for recurrence (14). Combining, we find

q′x

(
f̂ −Bf̂ (1)

)
= 0.

Assuming that the Q
(k)
i , i = 1, 2, . . . , are independent (true for all families that

satisfy Eq.(5) ), we find the relation claimed.

We note that the Chebyshev polynomials in the standard normalization satisfy
(14) with bk,k±1 = (±1)/(2(k ± 1)). Also the Jacobi polynomials in their standard
normalization satisfy a relation of type (14). Strictly speaking, Theorem 2.1 applies
only to the Legendre polynomials (although we can scale the symmetric Jacobi
polynomials so that (9) applies). In any case, (14) shows that integration is always
banded, and of a simple form (the recurrence coefficient matrix) for all the classical
orthogonal polynomial families. The discussion following Theorem 2.1 was given to
clarify ideas, and in principle could have been omitted.

We now focus on the operatorD. This operator has a one-dimensional null space,
and if appropriately restricted, it has an inverse. An especially useful restriction
involves the subspace Q∞1 . In this space, the operator D has a well-defined inverse,
which we will denote as B. Although D has a full upper triangular matrix rep-
resentation, B is banded. Indeed, assuming the recursion in the form of Theorem
2.2, we have that B is the coefficient matrix for the recurrence (14) (note that this
matrix had zeros in the first row since Q′0 = 0).

Similarly, Dn must be restricted to Q∞n . Indeed, N (Dn) = Qn−1
0 , so that the

operatorDn is nonsingular onQ∞n , the orthogonal complement of its null space, and
it has a unique inverse, denoted Bn[n] : Q∞0 → Q∞n . Any two images of an element

z ∈ Q∞0 under n-fold integration differ by an element of Qn−1
0 . The specific form

of Bn[n] fixes that element of Qn−1
0 to be the zero element. Thus, the solutions of

Lu =
n∑
k=0

(mn−k(x)Dk)u = f(x) , u ∈ Q∞n ,(16)

and

Lu =
n∑
k=0

(mn−k(x)DkBn[n]) z = f(x), z ∈ Q∞0 ,(17)

are equivalent. Clearly, DkBn[n] 6= Bn−k[n−k]. These operators differ since the second

matrix has zeros in its first n − k rows while the first has some nonzero elements
there.
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Example . The operator B2
[2] : Q∞0 → Q∞2 (for families that satisfy Theorem 2.1)

is

B2
[2] =



0 0 0 · · · 0 · · · 0 0
0 0 0 · · · 0 · · · 0 0
1

f0f1
0 − f1+f3

f3f2f1
0 1

f3f4
· · · 0 0

0 1
f1f2

0 − f2+f4

f2f3f4
0 1

f4f5
· · · 0

0 0
. . . 0

. . . 0
. . . · · ·

0 0 · · · 1
fk−2fk−1

0 − fk−1+fk+1

fk−1fkfk+1
0 1

fk+1fk+2


,

and using

D =


0 f0 0 f0 · · · 0 f0 · · ·
0 0 f1 0 · · · f1 0 · · ·

· · · · · · · · · . . .
. . . · · · · · · · · ·

0 · · · · · · · · · 0 f2k−1 0 · · ·
0 · · · · · · · · · · · · 0 f2k · · ·

 ,

we find that

B[1] 6= DB2
[2] =


0 f0

f1f2
0 −f0 0 · · · 0

1
f0

0 − 1
f2

0 · · · · · · 0

0 1
f1

0 − 1
f3
· · · · · · 0

0 0
. . .

. . .
. . . · · · 0

0 · · · 0 1
fk−1

0 − 1
fk+1

· · ·

 .

In the general case, the operator D is hard to write explicitly, as it is the ‘inverse’
(in the sense discussed above) of a general tridiagonal matrix. However, all that is
needed in our method is the expression for DkBn[n], which is identical to the matrix

Bn−k[n−k] except for the first n− k rows which, in general, will contain some nonzero

elements. These elements are easy to compute however, as they can be expressed
in terms of elements of B[1] and the n× n principal submatrix of D. For example,

the operator DB2
[2] for the general case is identical to B[1] except for the first row,

whose elements are

row0

(
DB2

[2]

)
= −d01

(
b10b11, b

2
11 + b12b21, b12(b11 + b22), b12b23, 0, . . . , 0

)
.

Here, the elements bij for the classical orthogonal polynomials can be found in Table
1, together with the elements of the matrix A and other relevant quantities using the
standard notation [1]. Also, d01 is the corresponding entry of the differentiation
matrix D, which is simply the derivative of Q1 expressed in terms of Q0. For
example, for the general Jacobi polynomials, d01 = (α+ β + 2)/2, etc.

The relations for the Gegenbauer polynomials C
(ν)
n can be constructed from those

of the Jacobi polynomials since

C(ν)
n =

Γ(α+ 1)Γ(2α+ n+ 1)

Γ(α+ n+ 1)Γ(2α+ 1)
P (α,β)
n ,

where α = β = ν − 1/2. Arrays are indexed from 0 to N , the maximum order of
truncation.
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3. The method

We present now a method for the efficient inversion of operators resulting from
the spectral solution of the ODE

Lu =
n∑
k=0

(mn−k(x)Dk)u = f(x) , x ∈ Ω = (a, b),(18)

subject to the constraints
T u = c.

The constraints are represented by a linear functional T of rank n.
We assume now that the matrices Mk, representing multiplication by mk, are

banded. This is for example the case if the original DE had rational coefficients.
After multiplying out the denominators, we are left with low-order polynomial co-
efficients, and as a result of the simple recursion operator A of multiplication by the
monomial x (5), these have banded representations as convolution operators. The
simplest form is found if we expand the resulting polynomial coefficients in terms
of the Qk, then exploit the properties of the banded operators of multiplication by
Qk. In constructing an approximate solution, we look for a solution of

LNuN = fN ; uN ∈ QN0 , fN ∈ QN−n0 ,

with LN the Galerkin approximation to L, as usual [12]. The main result can be
expressed as follows:

Theorem 3.1. Assume that the Mk are banded. Also assume that QN0 = N (LN )⊕
QNn . Then, if there is a solution uN , it can be written as a combination of an
element w ∈ N (LN ) and an element up ∈ QNn such that LNup = f . The solution
of the latter problem can be performed in O(N) operations.

To construct the particular solution, let z = Dnup ∈ QN−n0 so that up = Bn[n]z ∈
QNn is uniquely defined. Then the equation can be rewritten

n∑
k=0

(Mn−kD
k)Ûp =

n∑
k=0

Mn−kD
kBn[n]Ẑ = F̂ ,(19)

where we have introduced Ûp, Ẑ, F̂ to represent the vectors of expansion co-
efficients. (We use the same notation, however, for the differential and integral
operators as for their matrix representations.) Since a solution up of this problem
was guaranteed to exist, z, its nth derivative, exists as well. Here we must note
that in the case of weak solutions the highest derivative must be handled carefully,
but in this case convergence would be slow and the method would be impractical.
Now we address our main question: Is the new system any easier to solve than the
original? This is clearly true: the integration operators are all banded, and to find
u from z we perform one more banded matrix multiplication. To simplify the nota-
tion, in the rest of the paper, unless otherwise stated, we will write Dj−n ≡ DjBn[n],

j = 0, . . . , n−1, where n is the order of the differential operator under investigation.
Finally, we need to determine a convenient basis for the nullspace of the operator

LN . We define
ek = Qk + wk , wk ∈ QNn ,

with
LNek = 0⇒ LNwk = −LNQk.
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Then

T u = T up +
n−1∑
k=0

αkT ek = c ,

so that, when the numbers Tkl = (T ek)l are found, we have

n−1∑
k=0

αkTkl = cl − (T up)l.

In other words, for every new right-hand side we simply need to solve the standard
BVP for up, then evaluate the quantities (T up)l and solve an n× n system for the
αk. The condition of this system is known in advance.

Example . The radial Laplace equation for the nth Fourier mode is

(x+ a)
∂

∂x

(
(x+ a)

∂u

∂x

)
− n2u = f , u ∈ QN2 .

This leads to the pentadiagonal matrix

(x+ a)2I + (x+ a)D−1 − n2D−2.

Example . The helical Laplace equation for the nth Fourier mode is

1

r
∂r

(
r

1 + r2α2
∂ru

)
− n2

r2
u = f.

This is transformed to the (almost nine-diagonal) matrix

r2(1 + r2α2)I + r(1− α2r2)D−1 − n2(1 + α2r2)D−2.

Example . The initial value problem for the Airy equation,

y′′ − α3(x− x0)y = 0 , y(0) = .355029403792807 , y′(0) = .258819403792807α ,

has the solution
y(x) = Ai(α(x− x0)),

the Airy function of the first kind. Here we include the parameters α, x0 ∈ [−1, 1]
in order to scale the interval over which the problem is solved, since Chebyshev
expansions apply naturally over the interval [−1, 1]. For x > 0 the solutions decay
exponentially and the numerical algorithm converges rapidly. However, for x <
0 the solutions exhibit oscillatory behavior with ever increasing frequency, and
convergence can only be achieved if sufficient modes are included to resolve the most
rapid oscillations present. In Figure 1 we show the solution to the problem with
x0 = −1, α = 10 with N = 30, 40, respectively. The first case is underresolved, and
the maximum absolute error is O(10−2), while the second case is barely resolved,
and the error is O(10−5). A slight increase in the order of truncation improves the
solution dramatically. With N = 64, the error is already less than 10−11.

Example . The two-dimensional Stokes problem is expressed by the system

4N ψ = −ω,(20)

Hω = f ,(21)

where 4N is the nonperiodic part of the Laplacian for the mth Fourier mode in
a two-dimensional geometry with one nonperiodic and one periodic direction; like-
wise, H is a second-order linear operator with rational coefficients. No conditions
are given on ω while ψ and ψx are specified at x = ±1. Such a system results, e.g.,
from the time discretization of the Stokes equations in appropriate two-dimensional
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Figure 1. Computed solutions with 30 modes (triangles) and 40
modes (circles) are plotted versus the exact solution of the Airy
equation for α = 10

domains. We consider projections f → fN−4 ∈ QN−4
0 , ω → ωN−2 ∈ QN−2

0 and

ψ → ψN ∈ QN0 . We determine a particular solution for (21) as ωp ∈ QN−2
2 and

homogeneous solutions ωk = Qk + Ωk, k = 0, 1, with Ωk ∈ QN−2
2 . The general

solution for (21) is then

ωN−2 = ωp + α0ω0 + α1ω1.(22)

The general solution of (20) can now be written as ψN = ψp + β0ψ0 + β1ψ1, where
ψk = Qk + Ψk+2, k = 0, 1 (with Ψk+2 ∈ QN2 ) are the homogeneous solutions and
ψp = Ψp + α0Ψ0 + α1Ψ1 ∈ QN2 is a particular solution with 4NΨp = −ωp and
4NΨk = −ωk, k = 0, 1. The boundary conditions can now be applied to ψN to
produce a 4× 4 system in the αk, βk, k = 0, 1:

Aσ = φ,

with

A1,j+1 = Ψj(1), A2,j+1 = Ψj(−1),
A3,j+1 = Ψj,x(1), A4,j+1 = Ψj,x(−1)

(j = 1, 2, 3, 4), so that A need only be evaluated once, σk+1 = αk , k = 0, 1, and
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σk+3 = βk , k = 0, 1, and φ1 = ψ(1)−Ψp(1) etc. If this problem is solved as part of
a time integration of the Navier Stokes equations in a two-dimensional region, the
only functions that need to be computed repeatedly are Ψp ∈ QN2 and ωp ∈ QN−2

2 .
Finally, we comment on the solution of the BVP with arbitrary BC. In this case,

we need to determine the null space, and add an arbitrary combination of nullvectors
to the particular solution to satisfy any desired BC. An alternative form of our
method can also be considered. It is based on commuting the polynomials with
the differential operators and multiplying on the left by the integration operator
Dn, so that the differential operator matrix becomes banded. This approach is
discussed in [8]. This is in fact the τ -method, and various instances that have been
worked out (e.g. [12, 9]) are of this type. Theorem 2.2 establishes the success of
this approach as a consequence of the basic recurrence relation (14).

However, other preconditioners may be available, depending on the special struc-
ture of the matrix operator LN [18]. The present method’s main appeal, besides
the fact that a convergence analysis is available (see §4) is its simplicity and gener-
ality. Indeed, the complicated expressions for the differential operators are entirely
avoided. Of course, it should be expected that in special cases simpler forms and
preconditioners might be possible. An example of this is provided by the Laplace
equation in a circle, for which the integration preconditioner leads to pentadiagonal
forms while a simpler tridiagonal form is in fact possible [18]. This is related to the
special properties of the operator (x+1) d

dx . We have not yet explored the flexibility
of the choice of spaces, which may sometimes lead to more efficient algorithms.

4. Stability and convergence

As differential operators are unbounded (in the usual norms), so are their dif-
ference and spectral analogues under mesh refinement. Numerical studies have
shown that the spectral radii of Chebyshev and Legendre differentiation matrices
are O(N), where N is the dimension of the subspace. Moreover, these matrices
are far from normal, so that their norms can grow even faster. For example, the
maximum norm of the differentiation matrix, D, for a family satisfying the simple
recursion (14), such as the Legendre polynomials, satisfies the lower bound

‖D‖∞ ≥ max
m≤N

f(m)
N −m

2
.(23)

From Table 1 we see that f(m) = O(m), so that the lower bound above is O(N2).
This lower bound grows accordingly with the order of the derivative being approx-
imated. (For example the second derivative can behave as O(N4).)

The poor conditioning of the matrices arising from spectral discretizations both
limits the accuracy of solutions, owing to roundoff errors, and imposes severe lim-
itations on the time step for explicit solutions of dynamic problems [17] or on the
convergence rate of iterative solvers. It is well known that the reformulation of
differential equations as integral equations often leads to bounded operators and
well-conditioned problems. As our formulation of the discrete equations is based
on integral operators, we also expect to obtain well-conditioned linear systems.
For some constant-coefficient problems, Greengard [13] has directly analyzed spec-
tral approximations to equivalent integral equations and demonstrated the gains
in accuracy which can be attained. In this section we generalize and expand on
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Greengard’s results to cover the algorithms we have proposed. We use the stability
estimates we obtain to prove convergence of the method.

4.1. Estimates of the condition number. We assume the differential equa-
tion takes the form (18) where the coefficients mj(x) are polynomials and m0 is
bounded away from zero on [a, b]. Of course, this last condition is required to avoid
singularities in the solution, where the spectral approximation itself may not be
well behaved. We concentrate on the system (19), used to determine a particular
solution M0 +

n∑
j=1

MjD
−j

 Ẑ ≡ AẐ = F̂ ,(24)

where the Mj are the Galerkin approximations to multiplication by the polynomial
coefficients and D−j = Dn−jBn[n]. The additional problem to be solved, involving

the boundary conditions, will be of much lower dimension, and its conditioning
will depend on the specific constraint conditions. We begin by estimating various
norms of the integration operators. We view these, now, as operators on l2 and
l∞. The bounds we derive obviously extend to finite truncations. We make the
following assumptions about the orthogonal family, which are satisfied for proper
normalizations of any of the Jacobi polynomials, as well as the Hermite polynomials
(see Table 1):

Assumption 4.1. The orthogonal family Qk satisfies

supk〈Qk, Qk〉ω
infk〈Qk, Qk〉ω

= κ2
Q <∞,(25)

|bkj | ≤
α

kp
, p > 0.(26)

Here, 〈·, ·〉ω denotes the weighted inner product defining the family. The best
exponent, p, is 1 for the Jacobi family and 1/2 for the Hermite family.

(To use Table 1 to verify the statement concerning p, form the normalized families

by dividing Qk by
√
hk and note that bkj is transformed to bkj

√
hk/hj.) We have

the following lemma, describing the structure of the integration matrices:

Lemma 4.1. The matrices D−j, j = 1, . . . , n, are banded with bandwidth j, with
the possible exception of a finite number of elements in the first j rows, and there
exists a constant B̄j such that |(D−j)kl| ≤ B̄jk−jp.

Proof. We first note that the integration operatorBn[n] = D−n coincides with (B1
[1])

n

except for the first n rows which are zero. Since B1
[1] is tridiagonal with elements

satisfying (26), the result is immediate. For the other terms we use the fact that
DB1

[1] = I to write

D−j = Dn−jBn[n] = Dn−j((B1
[1])

n + C) = (B1
[1])

j +Dn−jC,(27)

where the nonzero elements of C are simply the negatives of the nonzero elements
of (B1

[1])
n in the first n rows. Since Dn−j is upper triangular with nonzero elements

only in superdiagonals n−j to∞, we see that the nonzero elements of D(n−j)C are
restricted to the first j rows and 2n+ 1 columns. Since the result holds for (B1

[1])
j ,

the lemma is proved.
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This leads immediately to the following theorem:

Theorem 4.1. For r = 2 or r =∞, the operators D−j : lr → lr are compact.

Proof. The boundedness of the infinity norm follows directly from Lemma 4.1 and
the fact that the norm is equal to the maximum absolute row sum. For the 2-norm
we have

‖D−jy‖2 =

 ∞∑
i=1

∣∣∣∣∣∣
max(2n+1,i+j)∑
l=max(1,i−j)

(D−j)ilyl

∣∣∣∣∣∣
2


1/2

≤
√

2n+ 1B̄j

 ∞∑
i=1

max(2n+1,i+j)∑
l=max(1,i−j)

|yl|2
1/2

(28)

≤ (2n+ 1)B̄j‖y‖2.

To prove compactness it is sufficient to show that D−j can be approximated by a
sequence of bounded operators of finite rank, {D−jM }. For these we simply take the
operators defined by setting all rows below M to zero. Repeating the arguments
above we have, for r = 2 or r =∞,

‖D−j −D−jM ‖r ≤ (2j + 1)B̄jM
−jp → 0, M →∞,(29)

completing the proof.

We would now like to bound the norms and condition numbers of the Galerkin
polynomial multiplication matrices, Mk. We begin by showing that the Galerkin
matrix representing multiplication by an arbitrary polynomial, φ(x), is nonsingular
if the zeros of φ lie outside [a, b].

Theorem 4.2. Let Φ be the matrix representation of the Galerkin approximation
to multiplication by the degree-q polynomial φ(x) relative to the orthogonal system
{Qj(x)}N0 on [a, b]. If the zeros of φ lie outside [a, b], then Φ is nonsingular.

Proof. Suppose the contrary. Then there exists a nonzero polynomial, µ, of degree

N such that φµ =
∑N+q
j=N+1 ckQk(x). We then have that φµ is orthogonal to all

polynomials of degree less than or equal to N and has at least q zeros (counting
multiplicities) outside [a, b]. This implies that φµ has at most N zeros of odd multi-
plicity in (a, b). Let ri, i = 1, . . . , s, denote these zeros. Then ψ(x) =

∏s
i=1(x−ri) is

a polynomial of degree less than or equal to N such that φµψ is of one sign on [a, b].

However, we also have
∫ b
a
ωφµψdx = 0 by the orthogonality of φµ to polynomials

of degree not more than N . This is a contradiction, so µ cannot exist.

An immediate corollary of this theorem is:

Corollary 4.1. The spectrum of Φ is contained within {y = φ(x), x ∈ [a, b]}.

Proof. Suppose Φ− λI is singular. Since Φ− λI is the Galerkin approximation to
multiplication by φ − λ, we conclude φ − λ must have a zero in [a, b], completing
the proof.

From the eigenvalues we can easily bound the norms:
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Theorem 4.3. The matrix, Φ, satisfies the following bounds:

‖Φ‖2 ≤ κQ max
x∈[a,b]

|φ(x)|, ‖Φ−1‖2 ≤ κQ max
x∈[a,b]

|(1/φ(x))|.(30)

Proof. Let Φ̃ denote the matrix representing the Galerkin approximation to multi-
plication by φ relative to the orthonormal basis obtained by normalizing the Q’s.
Since Φ̃ is symmetric, its 2-norm and the 2-norm of its reciprocal are bounded,
respectively, by the largest and the inverse of the smallest eigenvalues (in absolute
value). These are in turn bounded by maxx∈[a,b] |φ(x)| and maxx∈[a,b] |(1/φ(x))|
from Corollary 4.1. Let R = diag(

√
〈Qi, Qi〉ω). Then Φ = R−1Φ̃R. Taking norms

yields the final result.

We have shown that the system defining the particular solution has the form
M0+K, where, for regular problems,M0 has a bounded condition number uniformly
in N , and K approaches a compact operator. To complete our analysis, we must
develop lower bounds on M0 +K, which can only be expected if the homogeneous

differential equation admits no nontrivial solutions in
(
Qn−1

0

)⊥
. We make this

explicit in the following assumption.

Assumption 4.2. If w is a solution of the homogeneous problem ((18) with f = 0)
satisfying 〈w,Qk〉ω = 0 for all k = 0, . . . , n− 1, then w = 0.

We remark that the existence of a nontrivial solution of the homogeneous dif-
ferential equation which is orthogonal to all polynomials of degree less than n is
clearly not generic. If it holds, the difficulties with the method can be remedied
by looking for particular solutions in a different subspace. In the future we plan to
consider the case of singular problems in more detail, particularly in cases where
the lead coefficient is zero somewhere in [a, b].

We now define the operator K̃ : l2 → l2 by(
K̃y
)
k

= h−1
k

〈
Qk, (m0)−1

n∑
j=1

mj

( ∞∑
i=0

(
D−jy

)
i
Qi

)〉
ω

.(31)

We then have:

Lemma 4.2. The operator K̃ is compact and, if Assumption 4.2 holds, (I + K̃)−1

is bounded.

Proof. The proof of compactness again follows by approximating D−j by D−jM . If

K̃M denotes the resulting approximation to K̃, it is clear that K̃M is bounded and
has finite rank. Moreover, as M →∞,

‖(K̃ − K̃M)y‖2 ≤ nκQ max
j=1,... ,n

(
max
x∈[a,b]

|m−1
0 (x)mj(x)|

)
‖(D−j −D−jM )‖2‖y‖2 → 0.

(32)

Therefore, K̃ is compact. By the Riesz-Schauder theory the boundedness of
(I + K̃)−1 holds if and only if (I + K̃)z = 0 has no nontrivial solution in l2.
Suppose such a solution exists. Let w = D−nz, w =

∑∞
k=nWkQk. Then we can

write

Lw = m0(1 +m−1
0

n∑
j=1

mjD
−j)Dnw = m0

∑
k

(
Qk((I + K̃)z)k

)
= 0.

(33)
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That is, w is a weak solution of the homogeneous problem in
(
Qn−1

0

)⊥
, with n

derivatives in L2
ω. By repeated differentiation and use of the fact thatm0 is bounded

away from zero, we establish that arbitrary derivatives are in L2
ω. Since ω is bounded

above and below in arbitrary closed subintervals of (a, b), Sobolev’s inequality im-
plies that w is a classical solution, violating Assumption 4.2. This completes the
proof.

We are now in a position to uniformly bound the condition number of A.

Theorem 4.4. Suppose Assumption 4.2 holds. Then there exist constants C0 and
C1 and an integer N0 such that for all N > N0 and vectors y with Euclidean norm
1,

C0 ≤ ‖Ay‖2 ≤ C1.(34)

Proof. The finite system can be written in the form AN = M0,N(I +KN ), where

KN = M−1
0,N

n∑
j=1

Mj,ND
−j
N .(35)

Here, the subscript N indicates that the degree-N Galerkin approximation is being
considered. The existence of the uniform upper bound, C1, follows from Lemmas
4.1 and 4.3. To deduce the existence of the lower bound, we define K̄N : l2 → l2 by

(K̄Ny)k =

{
(KNyN )k, k = 0, . . . , N,
0, k > N .

(36)

Here, yN is the (N + 1)-vector formed from the first N + 1 components of y. Let

ε > 0 be given. We will find N(ε) such that ‖K̄N − K̃‖ < ε for N > N(ε). Given
any element, y, of l2 with norm 1 and any M > 0, set y = yM + xM , where only
the first M + 1 components of yM are nonzero and the first M + 1 components
of xM equal 0. For M sufficiently large, independent of y and N , the estimates
in the proof of Lemma 4.1 imply that ‖K̄NxM‖, ‖K̃xM‖ < ε/4. Moreover, for
N > M + n+ q, where q is the maximum degree of mj , j = 1, . . . , n, we have

s(x) =
n∑
j=1

mj(x)

(
M+j∑
i=0

(D−jyM )iQi(x)

)
=

n∑
j=1

M+q+j∑
i=0

(Mj,ND
−j
N yM)iQi(x).

(37)

Set e = (K̄N − K̃)yM and let e = ē+ ẽ, where ē is nonzero only in the first N + 1
components and the first N + 1 components of ẽ are zero. Note that

ẽk = −h−1
k 〈Qk,m

−1
0 s〉ω, k ≥ N + 1.(38)

Denote by S the vector of expansion coefficients of s, recalling that all components,
Sk, are zero for k > M + n+ q. Then, treating vectors whose nonzero components
have index no greater than N as N + 1 vectors, we obtain

M0,N ē = S −M0,N(K̃yM)N .(39)

However, by the bandedness of M0, we have

S = M0,N,N+q(K̃yM)N+q,(40)
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where M0,N,N+q = (M0,N EN,q) is the rectangular matrix formed from the first
N + 1 rows of M0,N+q. Therefore,

M0,N ē = (M0,N EN,q)(K̃yM )N+q − (M0,N O)(K̃yM)N+q = (O EN,q)(K̃yM )N+q.

(41)

Hence,

‖ē‖ = ‖(O M−1
0,NEN,q)(K̃yM)N+q‖ ≤ ‖M−1

0,N‖ · ‖M0,N+q‖ · ‖ẽ‖.(42)

Therefore, we have, for some constant C̄,

‖(K̄N − K̃)yM‖ ≤ C̄‖ẽ‖.(43)

For fixed M the functions m−1
0 s as well as any of their derivatives may be bounded

independent of yM , ‖yM‖ ≤ 1. Therefore, for any integer µ > 0, standard approxi-
mation results (e.g. [5, Ch. 9]) imply the existence of constants C(µ,M) such that
the right-hand side of (43) is bounded above by C(µ,M)N−µ. We may then choose
N(ε,M) sufficiently large that

max
‖yM‖≤1

‖(K̄N − K̃)yM‖ <
ε

2
, N > N(ε,M).(44)

We finally have, for M = M(ε), N > N(ε,M(ε)) and ‖y‖ = 1,

‖(K̄N − K̃)y‖ ≤ ‖(K̄N − K̃)yM‖+ ‖K̄NxM‖+ ‖K̃xM‖ < ε.(45)

By the Banach lemma,

‖(I + K̄N )−1‖ ≤ ‖(I + K̃)−1‖(1− ε‖(I + K̃)−1‖)−1,(46)

for N > N(ε) and ε < (‖(I + K̃)−1‖)−1. Since (I + KN )−1 is a block diagonal
submatrix of (I + K̄N)−1 it follows that ‖(I + KN)−1‖ ≤ ‖(I + K̄N)−1‖. As we
have uniform lower bounds on M0, the existence of C0 follows, completing the
proof.

4.2. Error estimates. Given these bounds on the condition number of the linear
system, a convergence result is easily proved. We restrict attention to symmetric
Jacobi (Gegenbauer) polynomials, where good results for interpolation have been
obtained by Bernardi and Maday [4]. We explicitly assume that the original problem
has the following properties:

Assumption 4.3. (a) The constraint/boundary operators T satisfy an inequal-
ity of the form |T w| ≤ ‖w‖ω,n.

(b) The forcing function, f(x), is in Cr([a, b]), r ≥ 1.
(c) If w is a solution of the homogeneous problem ((18) with f = 0) satisfying
T w = 0 or 〈w,Qk〉ω = 0 for all k = 0, . . . , n− 1, then w = 0.

We now prove a sequence of estimates of various parts of the error. For the
continuous problem, Assumption 4.3 implies the following (e.g. [7]):

(i) There exists a basis, {uj}n−1
j=0 ∈ C∞([a, b]), for the space of solutions to the

homogeneous problem taking the form uj = Qj + ũj, with ũj orthogonal to

Qn−1
0 .

(ii) There exists a unique solution, u ∈ Cn+r([a, b]), which can be written u(x) =

us(x) +
∑n−1
j=0 cjuj(x) with us orthogonal to Qn−1

0 .



630 EVANGELOS A. COUTSIAS, THOMAS HAGSTROM, AND DAVID TORRES

(iii) The n× n matrix

Te =
[
T u0 T u1 . . . T un−1

]
is nonsingular.

Let vs(x) denote the approximate particular solution, that is, the polynomial whose
expansion coefficients are given by D−nz, and vj(x) denote the approximate solu-
tion of the homogeneous problem taking the form Qj + ṽj with ṽj orthogonal to

Qn−1
0 . We assume that the right-hand side of the inhomogeneous equation is ob-

tained via interpolation at the relevant Gauss or Gauss-Lobatto points. Let

Ta =
[
T v0 T v1 . . . T vn−1

]
.(47)

We then have:

Lemma 4.3. There exists N0 such that for N > N0:

(i) There exist constants Gl,µ such that

‖u(l)
j − v

(l)
j ‖ω ≤ Gl,µN−µ, 0 ≤ l, µ <∞, j = 0, . . . , n− 1.

(ii) There exist constants Rµ such that

‖Te − Ta‖ ≤ RµN−µ, 0 ≤ µ <∞.
(iii) There exist constants Dl such that

‖u(l)
s − v(l)

s ‖ω ≤ DlN
−r‖f‖ω,r, 0 ≤ l ≤ n.

Proof. We rely extensively on the approximation results listed in [4] and [5, Ch. 9].

Now uj−vj = ũj−ṽj. Let ũj = ũj,N+w̃j, where ũ
(n)
j,N ∈ QN−n0 and w̃

(n)
j ∈ Q∞N−n+1.

Then

ũj − ṽj = (ũj,N − ṽj) + w̃j .(48)

Estimates of the last term and its derivatives follow directly from results on ap-
proximation by singular Sturm-Liouville eigenfunctions and the smoothness of ũj.

For the first, we rewrite the expansion coefficients as Bn[n]Ẑu,j,N and Bn[n]Ẑv,j and

introduce Ẑe,j = Ẑu,j,N − Ẑv,j . Let Z̄u,j,N = Ẑu,j,N+Q − EN+QẐu,j,N , where Q is
the bandwidth of the matrices A and E represents extension by 0 of a vector to
a longer vector. Denoting explicitly by Am the matrix A associated with degree-
(m+ n− 1) truncations and by Pm the restriction of a vector of order larger than
m to the m-vector containing its first m components, we have

AN−nẐe,j = PN−nAN−n+QZ̄u,j,N .(49)

By the properties of A we have

‖Ẑe,j‖2 ≤ C‖Z̄u,j,N‖2.(50)

Now Z̄u,j,N can be estimated by derivatives of w̃j . Therefore, we have estimates

of the nth derivative of the error in terms of the difference between ũ
(n)
j and its

projection into QN−n0 . From [5] we directly obtain the estimate in (i). For lower

derivatives we simply apply the bounded operators D−j to Ẑe,j . For higher deriva-
tives we apply the derivative operators, which, though unbounded, still contribute
only polynomial growth. To derive (ii), we use the estimates in (i) and assumption
(a) on the constraint operators.
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Estimates of the particular solution follow the same pattern. Introduce f̄N , the
polynomial approximation to f used to compute vs, and fN , the orthogonal pro-

jection of f into QN−n0 . Write u
(n)
s = u

(n)
s,N +w

(n)
s , where u

(n)
s,N ∈ Q

N−n
0 and w

(n)
s ∈

Q∞N−n+1. Let the expansion coefficients of us,N and vs be given by Bn[n]Ẑs,u,N and

Bn[n]Ẑs,v respectively. Let R̂s = Ẑs,v−Ẑs,u,N and Z̄s,u,N = Ẑs,u,N+Q−EN+QẐs,u,N .

Then we have

AN−nR̂s = PN−nAN−n+QZ̄s,u,N + F̄N − F̂N .(51)

From the boundedness of the A’s, the first term can be estimated in terms of

‖w(n)
s ‖ω = O(N−r) · ‖w(n)

s ‖ω,r. (This holds because us,N was constructed by pro-

jecting u
(n)
s into QN−n0 and applying integration operators.) The second is bounded

by ‖f − f̄N‖ω + ‖f − fN‖ω = O(N−r) · ‖f‖ω,r. The boundedness of A−1 then im-
plies (iii) for the nth derivative. The bounds for the lower derivatives then follow
by application of the bounded integration operators.

We are now in a position to prove:

Theorem 4.5. For some N0 <∞ there exist constants Hl such that, for all N >
N0, the difference between the true solution, u, and the approximate solution, v,
satisfies

‖u(l) − v(l)‖ω ≤ HlN
−r‖f‖ω,r, l = 0, . . . , n.

Proof. We have

u = us +
n−1∑
j=0

γjuj, Teγ = c− T us,(52)

v = vs +
n−1∑
j=0

δjvj , Taδ = c− T vs.(53)

Introducing e = u− v, ν = γ − δ and taking the difference of the equations above,
we obtain

e = us − vs +
n−1∑
j=0

(γj(uj − vj)− νjvj) , Taν = (Ta − Te)γ − T (us − vs).

(54)

Applying estimates (ii) and (iii) of Lemma 4.3 and the Banach lemma to the second
equation, we obtain |ν| = O(N−r)‖f‖ω,r. Substituting this into the first equation
and again using parts (i) and (iii) of Lemma 4.3, we obtain the desired result.

We note that the estimate for the nth derivative is of optimal order for finite
r. Of course, for f ∈ C∞([a, b]), we have convergence at a rate faster than any
negative power of N .

4.3. Direct computations of the condition number. Finally, we illustrate
the conditioning results by computing the singular values of the matrix used in the
numerical example in §3, namely Airy’s equation with a Chebyshev discretization,

A = I + α3(x+ 1)D−2.(55)

The singular values for various N and α were computed using the lapack routine,
dgesvd. The results are presented in Table 2.
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Table 2. Extreme singular values for I + α3(x+ 1)D−2

α = 5 α = 10 α = 20
N σ1 σN−1 κ2 σ1 σN−1 κ2 σ1 σN−1 κ2

32 46.3 .077 605 374 .007 53517 2992 .100 29891
64 46.3 .077 605 374 .023 16015 2992 .042 71295
128 46.3 .077 605 374 .023 16015 2992 .008 378611
256 46.3 .077 605 374 .023 16015 2992 .008 378611
512 46.3 .077 605 374 .023 16015 2992 .008 378611
1024 46.3 .077 605 374 .023 16015 2992 .008 378611

Table 3. Extreme singular values for I − αD−4

α = 1 α = 100 α = 10000
N σ1 σN−1 κ2 σ1 σN−1 κ2 σ1 σN−1 κ2

32 1.00 .995 1.01 1.31 .602 2.17 69.9 .070 1004
64 1.00 .995 1.01 1.31 .602 2.17 69.9 .070 1004
128 1.00 .995 1.01 1.31 .602 2.17 69.9 .070 1004
256 1.00 .995 1.01 1.31 .602 2.17 69.9 .070 1004
512 1.00 .995 1.01 1.31 .602 2.17 69.9 .070 1004
1024 1.00 .995 1.01 1.31 .602 2.17 69.9 .070 1004

We see that the extreme singular values and, hence, the condition number of
the system matrix are independent of N , once N is taken large enough to resolve
the problem. (The large condition number for large α simply reflects the large but
bounded condition number of the integral equation.) To illustrate the insensitivity
of this result to the order of the underlying differential equation, we have carried
out the same computation for the biharmonic; that is for A = I − αD−4, with the
results tabulated in Table 3.

Here, the results are quite independent of the truncation, as the extreme singular
values are resolved with N = 32, so the only growth in the condition number is
associated with the growth of α.

5. Rational maps for layer resolution

The Chebyshev approximation to a function with a region or regions of very rapid
variation may exhibit Gibbs-type phenomena, that is large amplitude oscillations of
the error, unless many basis functions are used. Therefore, adaptive computations
using coordinate mappings to stretch these regions have been proposed. Bayliss
and Turkel [3] have made a comparative study of various functional forms, all of
which were transcendental functions.

In order to be able to use our fast solvers, we consider rational maps. That is,
we directly solve (1) in y-space, where

x =
P (y; η)

Q(y; η)
;(56)

the polynomials P and Q are of low degree, and η is a parameter vector. In an
adaptive procedure, η would be chosen to minimize some measure of the error, for
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example the error functional proposed by Bayliss and coworkers [2]. A very simple
construction of an appropriate map can be motivated in the following way: Let
g(y) = P/Q. The convergence of the Chebyshev expansion (in y) depends on the
behavior of

dku

dyk
=

(
dg

dy

)k
dku

dxk
+ · · · .(57)

This suggests that improved convergence will follow from making dg/dy small where
dku/dxk is large. We imagine an underlying linear map (so that the limits of the
computational region will be [−1, 1]) stretched near a finite number of points, xj .
This can be accomplished by subtracting scaled and shifted multiples of the function

hs(y;α, β, γ) =
αy + γ

1 + βy2
.(58)

Note that h′s(0;α, β, γ) = α and that the derivative approaches zero as βy2 →∞.
We then propose

g(y) = Sy + C −
∑
j

hs(y − yj ;αj , βj , γj) .(59)

The number of terms in the sum, and, hence, the degree of the map and bandwidth
of the resulting matrices, depends on the number of layers present. Then, if S−αj
is small and βj is large, enhanced resolution at g(yj) will be obtained.

We demonstrate the idea on the following simple boundary value problem:

ε
d2φ

dx2
+ x

dφ

dx
= 0, φ(±1) = ±1.(60)

This problem has the exact solution

φ(x) = −1 +

∫ x

−1

e−x
2/(2ε)dx,

which, for ε small, exhibits a region of rapid transition near x = 0 whose width is
O(ε−1/2). We see below that for ε small, and even a large number of modes, there
is a very strong Gibbs-like behavior. We consider the rational map

x =
2

A+ 1
y
A+ y2

1 + y2
,(61)

which is derived from the general expression above, making use of the symmetry.
In particular, the derivative is minimized at y = 0 where its value is 2A/(A + 1).
Under the change of variables, ψ(y) = φ(x(y)), the equation becomes

ε
d2ψ

dy2
+

(
x(
dx

dy
)− ε(d

2x

dy2
)/(

dx

dy
)

)
dψ

dy
= 0, ψ(±1) = ±1.(62)

We studied this equation for various parameter values. We found that with
ε = 10−12, a value of the parameter A of the map of the order of 10−6 yielded
the best results. This is reasonable, as one might expect A = O(

√
ε) to match the

scaling in the layer. We did not systematically search for the optimal value. In
Figure 2 we present the solutions obtained for various numbers of modes, N , and
mapping parameters, A. Note that A = 1 yields the identity map, i.e., the case of
standard Chebyshev approximation. With A = 1 and N = 256 we see oscillations
near the layer with an overshoot of about 18%. Increasing N to 32768, which was
the largest value considered, had no effect on the amplitude of the overshoot, but
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Figure 2. Solutions for ε = 10−12

did contract the region of oscillation. With A 6= 1, on the other hand, we obtain
reasonable results with many fewer nodes. For example, with A = 10−6 and N = 64
the overshoot is less than 1%. Increasing N to 1024 and spending a bit more effort
optimizing the parameter reduces this to 3× 10−4.

It is clear that there is no change ]in the essential (O(N)) amount of work needed
to solve the problem, although the bandwidth does increase by approximately a fac-
tor of 5. If an iteration were used for the minimization of some error functional, by
shifting the position of the shock and changing the magnification factors, each step
would require the recomputation of the operator coefficients and the solution of the
problem. These procedures are of comparable numerical cost, so that the desirable
features of the method are essentially preserved under the change of variables.

It is worth noting that there are limits to the capability of this method to concen-
trate a large fraction of the mesh in a small region. A simple calculation indicates
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that g′(y) = O(ε) in a y-interval of width
√
ε. To achieve a greater magnification,

one must use rational maps of higher degree, which results in larger bandwidths.
A more detailed study of the properties of rational coordinate mappings is planned
for the future.
Note added in proof. The three-term recurrence relation for the derivatives of
the Jacobi polynomials appears also in the recent review by Fornberg [10]. We
would like to thank one of the referees for pointing out the paper by Bernardi and
Maday [4], which allowed us to improve our convergence estimate for Gegenbauer
polynomials.
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