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ABSTRACT 

We study single species growth models incorporating hereditary effects. Detailed 
calculations are carried out for a specific model with one delay parameter T as T varies in 
the entire range T > 0. Using perturbation and bifurcation techniques, we show that the 
effect of the hereditary term is that the equilibrium state, which is stable for small values 
of T (say T< T,), is unstable for T, <T< T2, and regains its stability for large delays 
T > T2. We show that for T, <T < T2 a stable oscillatory state, exists which bifurcates 
from the equilibrium state through an exchange of stability at T= T, and T= T2. 

Numerical computations and graphs of the solutions are given for the solutions in all 
ranges of T. 

1. INTRODUCTION. 

Many variations and modifications of Volterra’s population equations 
have been proposed to explain the observed stable steady and oscillatory 
patterns in population dynamics. These models, incorporating realistic 
effects, tend to be highly nonlinear, and it is only very recently that 
sophisticated techniques in bifurcation and perturbation theory and to a 
lesser extent global analysis have been created which allow a somewhat 
comprehensive attack on the models. Analytically our approach is a formal 
multitime scale perturbation method. Not only does the method produce 
formulas which are immediately interpretable physically, but also the stabil- 
ity of the solutions (and correspondingly the decision of super or subcritical- 
ity of bifurcation) is immediately resolved without recourse to further 
techniques. 
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We study general models incorporating hereditary effects. To further 
illustrate the method, we carry out calculations for a specific model with 
one delay parameter T. For the specific model chosen we find that the 
effect of the hereditary (or catabolic) term is that the equilibrium state, 
which is stable for small values of the delay T, (say T< T,), is unstable for 
T, < T< T2, and regains its stability for large delays T > T2. We shall show 
that for T, <T< T2, a stable oscillatory state exists which bifurcates from 
the equilibrium state through an exchange of stability at T= T, and T= T2. 

The models and equations to be analyzed are derived in Sec. 2. In Sec. 3 
we present our results for a specific model with one delay parameter. 
Finally, in Sec. 4 we present the multiscale analysis which leads to our 
results. Among other things, this analysis demonstrates that for our specific 
model, bifurcation at T, is supercritical and bifurcation at T2 is subcritical. 

2. THE MODEL 

We consider a general single species model in which the instantaneous 
per unit growth rate is given by 

g =+q’ 
-03 

K(t-s)g(N(.F))d.+ 

Here N(t) is the population at time t, f is an arbitrary function, and the 
integral term represents a delay (or hereditary) term. The integral term, for 
example, could model the delayed effect of environmental intoxication due 
to catabolic effects, or in an entirely different context the replenishment or 
regeneration time for vegetation for grazing herbivores. The notes [1] by J. 
M. Cushing consitute an excellent and useful survey of results and problems 
for integrodifferential equations arising from such effects as heredity. 

We shall assume that the kernel K(w) is non-negative and smooth for all 
w > 0, and furthermore that K(w) decays exponentially as w+co. With 
suitable a priori bounds on the solution of (1) or with suitable conditions on 
the function g(N), it follows from fundamental polynomial approximation 
theorems (for example, the completeness of the Laguerre polynomials) that 
given any E > 0 there exists a function 

i?(w)= 5 anwneP”, 
n=O 

(2) 

where m may depend upon E, such that 

IJ ’ K(t-s)g(N(s))d.-(’ Iqt-s)g(N(s))ds <E. (3) 
-m PC-2 
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We now replace the original kernel K(w) by its approximation Z?(U), so that 
we can transform (1) into a system of nonlinear differential equations as 
follows: Let 

z(t)=J’ fq-t)g(N(s))ds 
-cc 

and let 

Then 

and 

= ngounJt (t-s)“ec(‘-“)g(N(s))& 
-cc 

&(t)=(’ (t-S)ne-(‘-S)g(N(s))ds. 
--m 

dzn - 
dt 

-z,+nz,-,, n> 1. 

Thus, 

dZ 
- =a,g(N)-a,Z,+ 2 a,(-z,+nZ,_,). 
dt 

??=I 

(4) 

(5) 

(6) 

(7) 

(8) 

Therefore, the original equation (l), written as N’ =f(N,Z)N, together with 
equations (6), (7) and (8) constitutes a set of m + 3 differential equations in 
the m+3 unknowns N,Z,Z, ,..., Z,,,. We assume that the solution of the 
approximate equation [i.e., the equation (1) with kernel I?] approximates the 
solution of the original equation. Obvious extensions can clearly handle any 
number of equations with any number of kernels. 

For the study of exchanges of stability via various types of bifurcations 
the differential system (I), (6), (7), (8) is in some ways more tractable than 
the original integrodifferential equation. For example, if there is a change of 
stability via a Hopf bifurcation, then a formal multiscale perturbation 
method can be employed to analyze the solutions together with resolving 
stability (i.e., direction of bifurcation). This procedure has been carried out 
by D. S. Cohen [2] for general systems of equations of the form Y’= 
F( Y,A), where Y = (JJ,, . _ _ ,y,J and h is some parameter. 
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For ease of presentation here and in order not to obscure the basic 
method with lengthy algebraic calculations, we shall now carry out an 
analysis for the special case 

dN 
- = 
dt 

b-aN-d,,p, (,’ K(t-s)N(r)L)‘]N, 
-cc 

where we take the kernel K(w) to be 

K(w)= +-m/T. (‘0) 

Here a, b, 4, and p. are prescribed positive constants. Equations (9) and 
(10) constitute Cushing’s modification [l] of a model of A. Borsellino and 
V. Torre [3]. Borsellino and Torre modeled and numerically studied a 
situation in which delayed growth rate responses are related to accumulat- 
ing environmental intoxicants due to catabolic waste residuals where the 
pollutants in turn are related to past population sizes. The modification (9), 
(10) constitutes a convenient mathematical simplification which retains all 
qualitative features but which is analytically simpler to manipulate. Derived 
directly but in a more artificial situation, consider 

/ 
’ K(t-s)N(s)ds N, 

-cc 1 (1’) 

which in the absence of the integral term is the well-known logistic equa- 
tion. Suppose that the coefficient d, which measures the magnitude of the 
response of the growth rate to past population sizes, is proportional to past 
population sizes; that is, assume that 

d=po 
/ 

* K(t-s)N(s)ds. 
--oo 

(‘2) 

When (12) is substituted into (1 l), we obtain (9). The kernel (10) is positive 
and attains its maximum at w= T. Thus, its major influence on the growth 
rate response at any time t is due to population density at the previous time 
t - T. For this reason we call T the delay. 

By using the reduction introduced in the beginning of this section we 
find that the problem (9), (10) is equivalent to the system 

(‘3) 
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where 

259 

z(t) = I t zqt-s)N(s)ds. 
-cc 

In Sec. 4 we shall apply our bifurcation and perturbation theory to the 
system (13). First, however, we present the results of this analysis in Sec. 3. 

3. RESULTS 

Note that the kernel K(w) has been normalized so that its integral is one. 
Then, it is easy to show that the model (9), (10) has a unique equilibrium 
e > 0 given by the positive root of the quadratic equation dopoe + ae - b = 

0; that is, 

e= 
-a+ (a2+4dop,b)“2 >. 

2dopo 
(‘4) 

J. M. Cushing [l] has analyzed the (linearized) stability of e. We briefly 
present his results, since we need them to derive our own. By linearizing (9) 
about e in the usual way, Cushing shows that e is stable if and only if 
H -a2e2T+ (2ae - d,,p,,e’) T+ 1 > 0, and unstable if and only if H < 0. Now, 
H >0 for all T if dope <4a, but if dope > 4a, then H<O if and only if 
T, < T< T,, where T (i = 1,2) are the two positive real roots of the 
quadratic equation H=O. Therefore, if the pollution coefficient p,, is large, 
the equilibrium e is stable for small delays T < T,, unstable for T, < T < T,, 

and stable again for large delays T > T2. Furthermore, e decreases as p,, 
increases, and T, is a monotonically decreasing (to zero) function of po, so 

that the equilibrium state e loses its stability for shorter delays as p. 

increases. 
We show in Sec. 4 that T= T, and T= T, are bifurcation points at which 

there is an exchange of stability between the equilibrium value e and an 
oscillatory state. More precisely, as T is increased from zero, the 
equilibrium state N(t)-e is stable until T= T,. At T, the equilibrium e loses 
its stability, and a stable small amplitude oscillation (about e) is set up. As 
T is increased further, the oscillation amplitude grows for a while and then 
decreases again until the oscillation disappears at T= T,, at which value e 
becomes the unique stable state again. Thus, in T, < T < T2 the population 
N(t) evolves to a stable oscillation, as illustrated in the bifurcation diagram 
sketches in Fig. 1. 

The analysis to support our general results is given in Sec. 4. For the 
specific parameter values b=5, a= 1, d,p,=5, we have computed some 
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I 
- stable steady state 

w unstable steady state 

amplitude 
of N(t) 

UJJAJ stable perlodlc solution 

FIG. I. 

typical profiles for N(t) from the system of equations (13). Each run has the 
initial conditions N(0) =y(O) = z(0) = 0.01, which is very close to the unsta- 
ble steady state at (N,y,z) = (O,O, 0). Given the value of T, which measures 
the delay time of the kernel K(w), we observe the subsequent evolution of 
N(t) to the steady state with N = e or a limit cycle. For 6=5, a= 1, d0p0=5, 
the steady state with N = e is stable if T< T, = 0.54350 or T > T2 = 2.24653, 
and unstable if T, = 0.54350 < T < 2.24653 = Tz. Figures 2 and 3 show N(t) 

for T=0.5 and T=2.5. In both cases, we observe decay to the steady state 
N = e=0.90499. Figures 4-9 show N(t) for T with various values between 
T, and T2. In each case, N(t) evolves to a periodic solution. Table 1 records 
the observed amplitudes of the oscillations vs. T. It is of interest to note that 
these results are consistent with the bifurcation diagram in Fig. 1. 
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FIG. 9. 

TABLE 1 

T Amplitude 

0.54350 0 
0.57 1.0 
0.60 1.3 
0.65 1.6 
1.0 2.6 
1.5 2.8 
2.0 2.3 
2.24653 0 

4. THE BIFURCATION THEORY 

Write the system (13) as 

$=F(Y,T). (‘5) 

where 

(b - aN - dop,z2) N 
-1 1 

-z+-y 
T T= (16) 
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The system (15) has an equilibrium value at the point Y,,(T) =(N,z,y)= 
(e,e, Te); that is, F( Y,( T), T) = 0. To determine the (linearized) stability of 
the steady state Y,(T), we linearize (15) around this steady state. In the 
standard manner we obtain a system of linear ordinary differential equa- 
tions with constant coefficients, the solutions of which are linear combina- 
tions of exponentials of the form e&l, i= 1,2,3, where the (1, are the 
eigenvalues of the matrix Fy( Y,( T), T). It is easy to show that there is one 
real negative eigenvalue and a complex conjugate pair n(T) k ip( T), where 
a(T)<0 for T<T, and for T>T,, a(T,)=O=a(T& and a(T)>0 for 
T, < T< T,. Thus, the system (15) undergoes a simple Hopf bifurcation at 
T= T, and at T= T2. 

We now employ a multiscale perturbation procedure to carry out a 
nonlinear stability analysis to support the claims of Sec. 3. Our analysis 
follows that of D. S. Cohen and J. P. Keener [2, 41. Since all the detailed 
manipulations are carried out in [2] and [4], we shall simply set up and 
outline the approach for the present problem and refer the reader to those 
papers for the details. 

Let Z(t, T) = Y( t, T) - Y,(T) and expand the right hand side of (15) 
around the equilibrium solution Y,( T) to write (15) as 

G = Fy( I’,( 7’1, T)Z+ H(Z), (‘7) 

where H(Z) denotes the remainder after the linear terms and hence con- 
tains no linear terms near Ye(T). Now, let Z= BX, where the (constant) 
matrix B is yet to be specified. Then (17) becomes 

$=B-‘Fy(Yo(T),T)BX+Bp’H(BX). (‘8) 

At T= T, (a similar analysis holds at T= TJ we can choose B such that 

: 

0 

B-‘F,(Y,(T),T)B= -p(T,) 0 (19) 
0 

where p3 denotes the real negative eigenvalue at T= T,. Define a small 
parameter E 2= T- T, so that we are slightly into the region where the 
steady state Y,(T) is unstable. We shall show that there exist stable 
oscillatory solutions of amplitude O(E) for T > T,. (At T = T2 we would 
define our small parameter as e* = T2 - T, so that the multiscale procedure 
would establish evolution onto a bifurcating subcritical branch for the 
present problem.) Now since 

Fy( Yo( T), T) = Fy( Yt,( T,), Td + O(l T- Z-1 I>? 
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B ~ ‘Fy( Y,( T), T) B = P + e*.4, (20) 

where the matrix A can be singular or even identically zero. Therefore, we 
choose B such that (19) is satisfied, when P is given in (19). Then the system 
( 15) becomes 

dX 
- = Px+&*Ax+ G(X), 
dt (21) 

where G(X) = B -‘Iif and where 

ij= 1,2,3. (22) 

By using multiscale perturbation methods, Cohen and Keener [4, 51 have 
shown that to leading order in E the solution X(t)=(x,(t),x,(t),x,(t)) of (21) 
possesses the expansion 

x,(t)-&R(r) sin[ P(Tt)t* ++(r>], 

x,(t)-eT(r)cos[ P(Tt)t* ++(T)l> 
x,(t)--ED(7)ep+‘, 

(23) 

where R and + are the sloWly varying amplitude and phase on the “slow 
time” scale ~=e’t, and t* =[l + O(e*)]t represents the “fast time.” Further- 
more, it is shown in [4], [5] that R satisfies the equation 

dR 
- =aR- yR3, 
dr 

the solution of which is 

R*(T)= T 1 +je_aT, (c=constant). 

(24) 

Here a! and y are constants depending on parameters and derivatives of 
nonlinearities in the original problem. The formulas for (Y and y are very 
lengthy, but they have been worked out and are easy to use. They are given 
in [4], and we find for the present example that cu > 0 and y > 0. 

Equations (23) and (25) show that X(t) approaches a limit cycle in the 
(x,,x,)-plane of amplitude (a/y) ‘I*&. Upon going back through our trans- 
formations from (2 1) to our original problem (15), we obtain the bifurcation 
result stated in Sec. 3. The analysis of this section establishes the bifurcation 
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results at T= T, and at T= T2. Note that the multiscale procedure estab- 
lishes the direction of bifurcation, since on either side of the bifurcation it 
shows the evolution of an arbitrary (small) perturbation. In the present 
problem the scaling e2= T- T, >0 establishes supercritical bifurcation at 
T,. In other problems it could be necessary to scale with e2 = T, - T > 0 to 
establish subcritical bifurcation. This is determined by successful deriva- 
tions of meaningful slow time modulation amplitudes R(T). The global 
behavior for the present example is deduced by combining the numerical 
computations with the perturbation expansion; this rules out possible turn- 
ing of the branches far away from the stability boundaries. 
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