Hints for problem 2.9.6

Let $A(t)$ be a continuous real valued square matrix.

1. Show that every solution of the nonautonomous linear system

$$
\mathbf{x}^{\prime}=A(t) \mathbf{x}
$$

satisfies

$$
|\mathbf{x}(t)| \leq|\mathbf{x}(0)| \exp \int_{0}^{t}\|A(s)\| d s
$$

Hint: use the integral equation form:

$$
\mathbf{x}(t)=\mathbf{x}(0)+\int_{0}^{t} A(s) \mathbf{x}(s) d s
$$

to arrive at the inequality

$$
|\mathbf{x}(t)| \leq|\mathbf{x}(0)|+\int_{0}^{t}| | A(s)|\| \mathbf{x}(s)| d s
$$

From this it is straightforward to arrive at the desired inequality, using an extension of the Gronwall lemma proved in class:
Lemma: let $f(t), g(t)$ be continuous, nonnegative for $t \geq 0$ and $c>0$ and assume

$$
f(t) \leq U(t):=c+\int_{0}^{t} f(s) g(s) d s
$$

Then

$$
f(t) \leq c e^{\int_{0}^{t} g(s) d s}
$$

Proof: By continuity of f, g, it follows that U is differentiable:

$$
U^{\prime}(t)=f(t) g(t) \leq U(t) g(t) \Rightarrow U^{\prime}-U g \leq 0 \Rightarrow \frac{d}{d t}\left(U e^{-\int_{0}^{t} g(s) d s}\right) \leq 0
$$

so that

$$
f(t) \leq U(t) \leq U(0) e^{\int_{0}^{t} g(s) d s}=c e^{\int_{0}^{t} g(s) d s}
$$

2. Show that if $\int_{0}^{\infty}\|A(s)\| d s<\infty$ then every solution of the system in part (1) has a finite limit as t approaches infinity.
Hint: Show that part (1) implies that $|\mathbf{x}(t)|<M$ where M is some positive constant. Then show that

$$
\left|\mathbf{x}\left(t_{n}\right)-\mathbf{x}\left(\hat{t}_{n}\right)\right| \leq\left|\int_{\hat{t}_{n}}^{t_{n}} \| A(s)\right|| | \mathbf{x}(s)|d s| \leq M\left|\int_{\hat{t}_{n}}^{t_{n}}\right||A(s)||d s|
$$

so that, if t_{n} and \hat{t}_{n} are two sequences approaching infinity, and $T_{n}=$ $\min \left(t_{n}, \hat{t}_{n}\right)$ then

$$
\left|\mathbf{x}\left(t_{n}\right)-\mathbf{x}\left(\hat{t}_{n}\right)\right| \leq M \int_{T_{n}}^{\infty}\|A(s)\| d s \rightarrow 0
$$

as $n \rightarrow \infty$ (why?). Use this to conclude that $\mathbf{x}(t)$ must have a unique limit point as $t \rightarrow \infty$ over any sequence.

