A FINITE REPRESENTATION FOR e*4.
by Walter Thomas Kyner

Let A be an n x n matrix with scalar entries. The Cayley-Hamilton

theorem states that A satisfies its characteristic equation, i.e., if
p(N) = det(M — A) = A" +p X" -+ pu A+ P

then

p(A) = A" +p1An71 + - +pn71A +p’n] = 07

where I denotes the identity matrix. It follows that the matrix

(e.0)
tA __ thm
e = Z ]
m—0 m.

has a finite representation,
e = () AYT Fug(H) AT 4 by (D) A+ un ()]

The purpose of this note is to show that the {u;} are analytic functions of
t and to present an elementary procedure for constructing them. In addition,
we shall exhibit a second finite representation of e* that is based on Laplace
transform theory..

We first note that e = ®(¢), the unique solution to the matrix differen-

tial equation,

Do(t) = A®(t) such that ®(0) = 1.



In this differential equation, D denotes the derivative with respect to t. It

follows that, for any integer k,
DED(t) = AFD(t).

And since ®(0) = 1,
DF®(0) = AF.
These relations play a key role in the development of a procedure for con-
structing the coefficient functions, {u;}.
POSTPONE
Remark: Let T(s) = L(®(t)) denote the Laplace transform of the solution

to the initial value problem,
D® =Ad 9(0)=1.

then is is easy to show that T'(s) = (sI — A)~!. Furthermore, the entries of
T(s) are linear combinations of

Sk

Z@Zﬁ(D w(t)) k=0,1,2,...n— 1.

This observation led to this study of a finite representation of ®(¢) = e!“.

START AGAIN

The matrix function ®(¢) also is a solution to a differential equation as-
sociated with p(A), the characteristic polynomial of the constant matrix A,

namely, if L = p(D), then
LO(t) = p(D)®(t) = [D" +pi D" ' + -+ + pp 1D + p, I)®(t) = 0.
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The proof is transparent:

since p(A) = 0.
Therefore, we require that the coefficient functions, {u;(t)}, also be so-
lutions of this differential equation, i.e., Lu; =0, j =1,2,...n. This also

ensures that they are analytic functions of ¢. Furthermore, if
O(t) = ur (A" +ug (DA™ 4+ 1 () A + up ()]

is a solution to the matrix differential equation, D®(t) = Ad(¢), then we

must have

D(t) — A|Phi(t) = Dui(t)A"™" + Dup(t) A" + - + Duy1(t)A + Du,(t)]

—ug (A" + ug (A" + -+ 4 w1 () A™ + uy(t) Aa = 0.
By virtue of the Cayley-Hamilton theorem, we can set
A" =p A e py At pad
and get the following constraint on the coefficient functions,

0 = [Dur(t) + prur(t) — up(t)] A" + [Duy(t) + porr (£) — s ()] A2

+ o+ [Dup—1(t) + pp1ui(t) — un (t)]A + [Dun(t) + prua ()]
Clearly, this can be satisfied by setting

up11(t) = Dug(t) + prua(t), k=1,2,...n—1
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and requiring that

Dun(t) + paus (£) = 0.

Fortunately, these conditions are the formulas obtained by writing the scalar
differential equation, p(D)u;(t) = 0, in nested form (Horner’s algorithm. For

example, if n = 4,

p(D)ui(t) = paur(t) + psDui(t) + p2D?uy(t) + prD>uy (t) + Dy ()

= paui(t) + D[psui(t) + Dlpoui(t) + Dlprui(t) + Duq(t)]]).

We have shown that if u is any solution to the scalar differential equation,

p(D)u = 0, then the other coefficient functions {u;} can be defined so that
O(t) = u (A" Fug()A™ 2+ uy (DA Fu, ()T

is a solution to the matrix differential equation, D® = A®. We have left the
problem of picking the initial values D*u(0), 0<j <n — 1.
It is a straightforward task to derive the initial conditions for the full set

of coeflicient functions. From
O(t) = ur (DA™ +ug (DA 4+ w1 () A+ un ()]
and D¥®(t) = A*®(t), we have
AR®(t) = DFuy () A"+ DFug (#) A" 24+« -+ DFu,_y (8) A+ DFu,, (1)1, k=0,1,2,...n—1.
We next set t = 0 to get

A¥ = DFyp (0) A" 4 DFuy (0) A" 24 - - D¥up, 1 (0) A+ D¥u, (), k=0,1,2,...n—1.
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After matching powers of A, we obtain

DFu;(0) =0, ,k#j—1, and D' 'u;(0) =1, k=0,1,2,...n—1. j=1,2,...n.

Remark: The proof implies that if £ = 0, then the Wronskian matrix
W(ul,...,un) =1

At this point some care is needed. We have defined the coefficient function
uj, 2 < j < nin terms of u;, but we also have required that they be solutions
to the scalar differential equation p(D)u = 0 with the above initial conditions.
Hence, we must establish that they are not overdetermined.

We first note that since us(t) = Duy(t)+piuy(t), it follows that D¥uy(t) =
D*yy () + p1DFuy(t), 1 <k <n — 1. Invoking the initial values of u;(#),
we obtain us(0) = 0, DFuy(0) =0, 1 <k <n-—3 D" ?uy(0) =1,
and D" 'uy(0) = D"uy(0) + prui(0) = 0. Therefore us(t) is well defined. A
similar argument can be used to justify the definitions of the other coefficient
functions.

Our method for constructing the coefficient functions, {u;(¢)}, can be

motivated by writing p(D) in nested form (Horner’s Algorithm). Set
hl(‘D):17 hk+1(D):th(D)+pk7 k:1727n

It is easy to check that h, (D) = p(D).

Let w(t) be the solution to the nth order ordinary differential equation,*

Lw=p(D)w=0, withD=d /dt

!The solution w(t) is an analytic function of ¢. It is called the weighting function of the

differential equation.



such that
DFw(0) =0, k=0,1,2,...n—2 and D" 'w(0) =1,

then the analytic coefficient functions of the finite representation can be

defined by
u(t) = w(t), ugs1(t) = Dug(t) + prua(t), k=1,2,...n— 1
Let
D) = u (A" +up() A" 2 4+ Fup 1 (DA Fu, ()]

It will be shown that

Dd = Ad | $(0) = 1.

Therefore, by the uniqueness theorem of ordinary differential equations, ®(¢) =

etA.

From the definition of the functions {u*(t)}, it follows that
Dug(t) — w1 (t) = —prus(t), k=1,2,...n—2.
In addition,
Du,(t) = D{D"  w(t)+p, D" 2w(t)+- - +p, 1w(t)} = Lw(t)—pyw(t) = —paw(t).
After substituting the above relations into

DO(t)—AD(t) = —uy (1) A"+ [Dug(t) —uy ()] A" - - -+ [Duy 1 —up ()] A+Duy, T,



we obtain
DO(t)—Ad(t) = —w(t) A"—prw(t) A" — - —p, w(t) A—pow(t)] = —w(t)p(A) = 0.

The last equality is due to the Cayley-Hamilton theorem.

To show that ®(0) = I, substitute ¢t = 0 into u,(¢) = w(t) and
U1 (t) = DPw(t) + p D tw(t) + -+ ppw(t), k=1,2,...,n— 1.
The last step is to invoke the initial data,

DFw(0) =0, k=0,1,2,...n—2 and D" 'w(0) =1,

to obtain
up(0) =0, k=0,1,2,...n—1 and u,(0) =1,
Remark: The proof implies that if ¢ = 0, then the Wronskian matrix
Wiug, ... u,) = 1.

Remark: If the eigenvalues of A and their multiplicities are known, then
it is a straightforward task to compute explicitly the functions {uy(t)}.

Example 1. Set A =[0,1,0;0,0,1;—2,1,2], then p(\) = A3 —2)2 = \+2,
and

Liw] = D*w — 2D*w — Dw + 2w. The eigenvalues are A = 1, —1, 2,
1 : 2t
u(t) = w(t) = 5(— cosh(t) — 2sinh(¢) + ),

us(t) = Dw(t) — 2w(t) = sinh(?),
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us(t) = D2w(t) — 2Dw(t) — w(t) = ;(4cosh(t) + 2sinh(t) — ),

and
e = u () A? + uy () A + us(H)1.
Example 2. Set A =[2,2,1;1,3,1; 1,2, 2], then p(\) = M*~7)\2+11\—5, and

L{w] = D*w — TD*w + 11Dw — 5w. The eigenvalues are A = 1,1, 5,

n(t) = wlt) = (¢ — (L+ 40)e),

() = Duw(t) — Tw(t) = 116(—2e5t + (24 248)e),
us(£) = D2w(#) — TDw(t) + 1w(t) = 116(e5t + (15 — 20t)e),

and

e = u (1) A? + uy(t) A + us()]1.

Example 3. Set A =[1,—1,—1;1,1,0;3,0,1], then p(\) = A>—3\2+7\—5,
and

Liw] = D3w — 3D*w + TDw — 5w. The eigenvalues are A = 1,1 4 2.
1 t
uy (t) = w(t) = 1€ (1 — cos(2t),
1
ug(t) = Dw(t) — 3w(t) = Zet(—Q + 2 cos(2t) + 2sin(2t)),

us(t) = D2w(t) — 3Dw(t) + Tw(t) = leet(5 ~ cos(21) — 2sin(21)),

and

e = u () A? + uy () A+ us(H)1.



Example 4. Set A = [1,1,1;2,1, —1; 3,2, 4], then p(A\) = > —6\2+12\—8,
and

Llw] = D*w — 6D?*w + 12Dw — 8w. The eigenvalues are A = 2,2, 2.

1
u(t) = w(t) = §t262t,

us(t) = Duw(t) — Gw(t) = ;e%(t o),
us(t) = DPu(t) — 6Dw(t) +12w(t) = Se*(1 — 2+ 2¢%),

and

e = uy (1) A? + up (1) A + uz(t) 1.



