
A FINITE REPRESENTATION FOR etA:

by Walter Thomas Kyner

Let A be an n � n matrix with scalar entries. The Cayley-Hamilton

theorem states that A satis�es its characteristic equation, i.e., if

p(�) = det(�I � A) = �n + p1�
n�1 + � � �+ pn�1�+ pn;

then

p(A) = An + p1A
n�1 + � � �+ pn�1A+ pnI = 0;

where I denotes the identity matrix. It follows that the matrix

etA =
1X

m=0

tmAm

m!

has a �nite representation,

etA = u1(t)A
n�1 + u2(t)A

n�2 + � � �+ un�1(t)A+ un(t)I:

The purpose of this note is to show that the fujg are analytic functions of

t and to present an elementary procedure for constructing them. In addition,

we shall exhibit a second �nite representation of etA that is based on Laplace

transform theory..

We �rst note that etA = �(t); the unique solution to the matrix di�eren-

tial equation,

D�(t) = A�(t) such that �(0) = I:
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In this di�erential equation, D denotes the derivative with respect to t: It

follows that, for any integer k,

Dk�(t) = Ak�(t):

And since �(0) = I;

Dk�(0) = Ak:

These relations play a key role in the development of a procedure for con-

structing the coe�cient functions, fujg:

POSTPONE

Remark: Let T (s) = L(�(t)) denote the Laplace transform of the solution

to the initial value problem,

D� = A� ;�(0) = I:

then is is easy to show that T (s) = (sI � A)�1: Furthermore, the entries of

T (s) are linear combinations of

sk

p(s)
= L(Dkw(t)) k = 0; 1; 2; : : : n� 1:

This observation led to this study of a �nite representation of �(t) = etA:

START AGAIN

The matrix function �(t) also is a solution to a di�erential equation as-

sociated with p(�); the characteristic polynomial of the constant matrix A;

namely, if L
:
= p(D); then

L�(t) = p(D)�(t) = [Dn + p1D
n�1 + � � �+ pn�1D + pnI]�(t) = 0:
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The proof is transparent:

L�(t) = p(D)�(t) = p(A)�(t) = 0

since p(A) = 0:

Therefore, we require that the coe�cient functions, fuj(t)g; also be so-

lutions of this di�erential equation, i.e., Luj = 0; j = 1; 2; : : : n: This also

ensures that they are analytic functions of t: Furthermore, if

�(t) = u1(t)A
n�1 + u2(t)A

n�2 + � � �+ un�1(t)A+ un(t)I

is a solution to the matrix di�erential equation, D�(t) = A�(t); then we

must have

D�(t)� AjPhi(t) = Du1(t)A
n�1 +Du2(t)A

n�2 + � � �+Dun�1(t)A+Dun(t)I

�u1(t)A
n + u2(t)A

n�1 + � � �+ un�1(t)A
n + un(t)Aa = 0:

By virtue of the Cayley-Hamilton theorem, we can set

�An = p1A
n�1 + � � �+ pn�1A+ pnI

and get the following constraint on the coe�cient functions,

0 = [Du1(t) + p1u1(t)� u2(t)]A
n�1 + [Du2(t) + p2u1(t)� u3(t)]A

n�2

+ � � �+ [Dun�1(t) + pn�1u1(t)� un(t)]A+ [Dun(t) + pnu1(t)]I:

Clearly, this can be satis�ed by setting

uk+1(t) = Duk(t) + pku1(t); k = 1; 2; : : : n� 1
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and requiring that

Dun(t) + pnu1(t) = 0:

Fortunately, these conditions are the formulas obtained by writing the scalar

di�erential equation, p(D)u1(t) = 0; in nested form (Horner's algorithm. For

example, if n = 4;

p(D)u1(t) = p4u1(t) + p3Du1(t) + p2D
2u1(t) + p1D

3u1(t) +D4u1(t)

= p4u1(t) +D[p3u1(t) +D[p2u1(t) +D[p1u1(t) +Du1(t)]]]:

We have shown that if u1 is any solution to the scalar di�erential equation,

p(D)u = 0; then the other coe�cient functions fujg can be de�ned so that

�(t) = u1(t)A
n�1 + u2(t)A

n�2 + � � �+ un�1(t)A+ un(t)I

is a solution to the matrix di�erential equation, D� = A�: We have left the

problem of picking the initial values Dku1(0); 0 � j � n� 1:

It is a straightforward task to derive the initial conditions for the full set

of coe�cient functions. From

�(t) = u1(t)A
n�1 + u2(t)A

n�2 + � � �+ un�1(t)A+ un(t)I;

and Dk�(t) = Ak�(t); we have

Ak�(t) = Dku1(t)A
n�1+Dku2(t)A

n�2+� � �+Dkun�1(t)A+D
kun(t)I; k = 0; 1; 2; : : : n�1:

We next set t = 0 to get

Ak = Dku1(0)A
n�1+Dku2(0)A

n�2+� � �+Dkun�1(0)A+D
kun(0)I; k = 0; 1; 2; : : : n�1:
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After matching powers of A, we obtain

Dkuj(0) = 0; ; k 6= j�1; and Dj�1uj(0) = 1; k = 0; 1; 2; : : : n�1: j = 1; 2; : : : n:

Remark: The proof implies that if t = 0; then the Wronskian matrix

W (u1; : : : ; un) = I:

At this point some care is needed. We have de�ned the coe�cient function

uj; 2 � j � n in terms of u1; but we also have required that they be solutions

to the scalar di�erential equation p(D)u = 0 with the above initial conditions.

Hence, we must establish that they are not overdetermined.

We �rst note that since u2(t) = Du1(t)+p1u1(t); it follows thatD
ku2(t) =

Dk+1u1(t) + p1D
ku1(t); 1 � k � n � 1: Invoking the initial values of u1(t);

we obtain u2(0) = 0; Dku2(0) = 0; 1 � k � n � 3; Dn�2u2(0) = 1;

and Dn�1u2(0) = Dnu1(0) + p1u1(0) = 0: Therefore u2(t) is well de�ned. A

similar argument can be used to justify the de�nitions of the other coe�cient

functions.

Our method for constructing the coe�cient functions, fuj(t)g; can be

motivated by writing p(D) in nested form (Horner's Algorithm). Set

h1(D) = 1; hk+1(D) = Dhk(D) + pk; k = 1; 2; : : : n:

It is easy to check that hn+1(D) = p(D):

Let w(t) be the solution to the nth order ordinary di�erential equation,1

Lw
:
= p(D)w = 0; with D

:
= d =dt

1The solution w(t) is an analytic function of t: It is called the weighting function of the

di�erential equation.
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such that

Dkw(0) = 0; k = 0; 1; 2; : : : n� 2 and Dn�1w(0) = 1;

then the analytic coe�cient functions of the �nite representation can be

de�ned by

u1(t) = w(t); uk+1(t) = Duk(t) + pku1(t); k = 1; 2; : : : n� 1:

Let

�(t) = u1(t)A
n�1 + u2(t)A

n�2 + � � �+ un�1(t)A+ un(t)I:

It will be shown that

D� = A� ;�(0) = I:

Therefore, by the uniqueness theorem of ordinary di�erential equations, �(t) =

etA:

From the de�nition of the functions fuk(t)g, it follows that

Duk(t)� uk+1(t) = �pku1(t); k = 1; 2; : : : n� 2:

In addition,

Dun(t) = DfDn�1w(t)+p1D
n�2w(t)+� � �+pn�1w(t)g = Lw(t)�pnw(t) = �pnw(t):

After substituting the above relations into

D�(t)�A�(t) = �u1(t)A
n+[Du2(t)�u1(t)]A

n�1+� � �+[Dun�1�un(t)]A+DunI;
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we obtain

D�(t)�A�(t) = �w(t)An�p1w(t)A
n�1�� � ��pn�1w(t)A�pnw(t)I = �w(t)p(A) = 0:

The last equality is due to the Cayley-Hamilton theorem.

To show that �(0) = I; substitute t = 0 into u1(t) = w(t) and

uk+1(t) = Dkw(t) + p1D
k�1w(t) + � � �+ pkw(t); k = 1; 2; : : : ; n� 1:

The last step is to invoke the initial data,

Dkw(0) = 0; k = 0; 1; 2; : : : n� 2 and Dn�1w(0) = 1;

to obtain

uk(0) = 0; k = 0; 1; 2; : : : n� 1 and un(0) = 1;

Remark: The proof implies that if t = 0; then the Wronskian matrix

W (u1; : : : ; un) = I:

Remark: If the eigenvalues of A and their multiplicities are known, then

it is a straightforward task to compute explicitly the functions fuk(t)g:

Example 1. Set A = [0; 1; 0; 0; 0; 1;�2; 1; 2]; then p(�) = �3�2�2��+2;

and

L[w] = D3w � 2D2w �Dw + 2w: The eigenvalues are � = 1;�1; 2;

u1(t) = w(t) =
1

3
(� cosh(t)� 2 sinh(t) + e2t);

u2(t) = Dw(t)� 2w(t) = sinh(t);
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u3(t) = D2w(t)� 2Dw(t)� w(t) =
1

3
(4 cosh(t) + 2 sinh(t)� e2t);

and

etA = u1(t)A
2 + u2(t)A+ u3(t)I:

Example 2. SetA = [2; 2; 1; 1; 3; 1; 1; 2; 2]; then p(�) = �3�7�2+11��5; and

L[w] = D3w � 7D2w + 11Dw � 5w: The eigenvalues are � = 1; 1; 5;

u1(t) = w(t) =
1

16
(e5t � (1 + 4t)et);

u2(t) = Dw(t)� 7w(t) =
1

16
(�2e5t + (2 + 24t)et);

u3(t) = D2w(t)� 7Dw(t) + 11w(t) =
1

16
(e5t + (15� 20t)et);

and

etA = u1(t)A
2 + u2(t)A+ u3(t)I:

Example 3. Set A = [1;�1;�1; 1; 1; 0; 3; 0; 1]; then p(�) = �3�3�2+7��5;

and

L[w] = D3w � 3D2w + 7Dw � 5w: The eigenvalues are � = 1; 1� 2i:

u1(t) = w(t) =
1

4
et(1� cos(2t);

u2(t) = Dw(t)� 3w(t) =
1

4
et(�2 + 2 cos(2t) + 2 sin(2t));

u3(t) = D2w(t)� 3Dw(t) + 7w(t) =
1

4
et(5� cos(2t)� 2 sin(2t));

and

etA = u1(t)A
2 + u2(t)A+ u3(t)I:
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Example 4. Set A = [1; 1; 1; 2; 1;�1;�3; 2; 4]; then p(�) = �3�6�2+12��8;

and

L[w] = D3w � 6D2w + 12Dw � 8w: The eigenvalues are � = 2; 2; 2:

u1(t) = w(t) =
1

2
t2e2t;

u2(t) = Dw(t)� 6w(t) =
1

2
e2t(t� 2t2);

u3(t) = D2w(t)� 6Dw(t) + 12w(t) =
1

2
e2t(1� 2t+ 2t2);

and

etA = u1(t)A
2 + u2(t)A+ u3(t)I:
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