A FINITE REPRESENTATION FOR $e^{t A}$.

by Walter Thomas Kyner

Let A be an $n \times n$ matrix with scalar entries. The Cayley-Hamilton theorem states that A satisfies its characteristic equation, i.e., if

$$
p(\lambda)=\operatorname{det}(\lambda I-A)=\lambda^{n}+p_{1} \lambda^{n-1}+\cdots+p_{n-1} \lambda+p_{n}
$$

then

$$
p(A)=A^{n}+p_{1} A^{n-1}+\cdots+p_{n-1} A+p_{n} I=0
$$

where I denotes the identity matrix. It follows that the matrix

$$
e^{t A}=\sum_{m=0}^{\infty} \frac{t^{m} A^{m}}{m!}
$$

has a finite representation,

$$
e^{t A}=u_{1}(t) A^{n-1}+u_{2}(t) A^{n-2}+\cdots+u_{n-1}(t) A+u_{n}(t) I .
$$

The purpose of this note is to show that the $\left\{u_{j}\right\}$ are analytic functions of t and to present an elementary procedure for constructing them. In addition, we shall exhibit a second finite representation of $e^{t A}$ that is based on Laplace transform theory..

We first note that $e^{t A}=\Phi(t)$, the unique solution to the matrix differential equation,

$$
D \Phi(t)=A \Phi(t) \quad \text { such that } \Phi(0)=I
$$

In this differential equation, D denotes the derivative with respect to t. It follows that, for any integer k,

$$
D^{k} \Phi(t)=A^{k} \Phi(t)
$$

And since $\Phi(0)=I$,

$$
D^{k} \Phi(0)=A^{k}
$$

These relations play a key role in the development of a procedure for constructing the coefficient functions, $\left\{u_{j}\right\}$.

POSTPONE
Remark: Let $T(s)=\mathcal{L}(\Phi(t))$ denote the Laplace transform of the solution to the initial value problem,

$$
D \Phi=A \Phi, \Phi(0)=I
$$

then is is easy to show that $T(s)=(s I-A)^{-1}$. Furthermore, the entries of $T(s)$ are linear combinations of

$$
\frac{s^{k}}{p(s)}=\mathcal{L}\left(D^{k} w(t)\right) \quad k=0,1,2, \ldots n-1
$$

This observation led to this study of a finite representation of $\Phi(t)=e^{t A}$. START AGAIN

The matrix function $\Phi(t)$ also is a solution to a differential equation associated with $p(\lambda)$, the characteristic polynomial of the constant matrix A, namely, if $L \doteq p(D)$, then

$$
L \Phi(t)=p(D) \Phi(t)=\left[D^{n}+p_{1} D^{n-1}+\cdots+p_{n-1} D+p_{n} I\right] \Phi(t)=0 .
$$

The proof is transparent:

$$
L \Phi(t)=p(D) \Phi(t)=p(A) \Phi(t)=0
$$

since $p(A)=0$.
Therefore, we require that the coefficient functions, $\left\{u_{j}(t)\right\}$, also be solutions of this differential equation, i.e., $L u_{j}=0, \quad j=1,2, \ldots n$. This also ensures that they are analytic functions of t. Furthermore, if

$$
\Phi(t)=u_{1}(t) A^{n-1}+u_{2}(t) A^{n-2}+\cdots+u_{n-1}(t) A+u_{n}(t) I
$$

is a solution to the matrix differential equation, $D \Phi(t)=A \Phi(t)$, then we must have

$$
\begin{aligned}
D \Phi(t)-A \mid P h i(t)= & D u_{1}(t) A^{n-1}+D u_{2}(t) A^{n-2}+\cdots+D u_{n-1}(t) A+D u_{n}(t) I \\
& -u_{1}(t) A^{n}+u_{2}(t) A^{n-1}+\cdots+u_{n-1}(t) A^{n}+u_{n}(t) A a=0
\end{aligned}
$$

By virtue of the Cayley-Hamilton theorem, we can set

$$
-A^{n}=p_{1} A^{n-1}+\cdots+p_{n-1} A+p_{n} I
$$

and get the following constraint on the coefficient functions,

$$
\begin{aligned}
0= & {\left[D u_{1}(t)+p_{1} u_{1}(t)-u_{2}(t)\right] A^{n-1}+\left[D u_{2}(t)+p_{2} u_{1}(t)-u_{3}(t)\right] A^{n-2} } \\
& +\cdots+\left[D u_{n-1}(t)+p_{n-1} u_{1}(t)-u_{n}(t)\right] A+\left[D u_{n}(t)+p_{n} u_{1}(t)\right] I .
\end{aligned}
$$

Clearly, this can be satisfied by setting

$$
u_{k+1}(t)=D u_{k}(t)+p_{k} u_{1}(t), \quad k=1,2, \ldots n-1
$$

and requiring that

$$
D u_{n}(t)+p_{n} u_{1}(t)=0 .
$$

Fortunately, these conditions are the formulas obtained by writing the scalar differential equation, $p(D) u_{1}(t)=0$, in nested form (Horner's algorithm. For example, if $n=4$,

$$
\begin{aligned}
p(D) u_{1}(t) & =p_{4} u_{1}(t)+p_{3} D u_{1}(t)+p_{2} D^{2} u_{1}(t)+p_{1} D^{3} u_{1}(t)+D^{4} u_{1}(t) \\
& =p_{4} u_{1}(t)+D\left[p_{3} u_{1}(t)+D\left[p_{2} u_{1}(t)+D\left[p_{1} u_{1}(t)+D u_{1}(t)\right]\right]\right] .
\end{aligned}
$$

We have shown that if u_{1} is any solution to the scalar differential equation, $p(D) u=0$, then the other coefficient functions $\left\{u_{j}\right\}$ can be defined so that

$$
\Phi(t)=u_{1}(t) A^{n-1}+u_{2}(t) A^{n-2}+\cdots+u_{n-1}(t) A+u_{n}(t) I
$$

is a solution to the matrix differential equation, $D \Phi=A \Phi$. We have left the problem of picking the initial values $D^{k} u_{1}(0), \quad 0 \leq j \leq n-1$.

It is a straightforward task to derive the initial conditions for the full set of coefficient functions. From

$$
\Phi(t)=u_{1}(t) A^{n-1}+u_{2}(t) A^{n-2}+\cdots+u_{n-1}(t) A+u_{n}(t) I,
$$

and $D^{k} \Phi(t)=A^{k} \Phi(t)$, we have

$$
A^{k} \Phi(t)=D^{k} u_{1}(t) A^{n-1}+D^{k} u_{2}(t) A^{n-2}+\cdots+D^{k} u_{n-1}(t) A+D^{k} u_{n}(t) I, \quad k=0,1,2, \ldots n-1 .
$$

We next set $t=0$ to get
$A^{k}=D^{k} u_{1}(0) A^{n-1}+D^{k} u_{2}(0) A^{n-2}+\cdots+D^{k} u_{n-1}(0) A+D^{k} u_{n}(0) I, \quad k=0,1,2, \ldots n-1$.

After matching powers of A, we obtain
$D^{k} u_{j}(0)=0, \quad, k \neq j-1$, and $D^{j-1} u_{j}(0)=1, \quad k=0,1,2, \ldots n-1 . j=1,2, \ldots n$.
Remark: The proof implies that if $t=0$, then the Wronskian matrix

$$
W\left(u_{1}, \ldots, u_{n}\right)=I .
$$

At this point some care is needed. We have defined the coefficient function $u_{j}, 2 \leq j \leq n$ in terms of u_{1}, but we also have required that they be solutions to the scalar differential equation $p(D) u=0$ with the above initial conditions. Hence, we must establish that they are not overdetermined.

We first note that since $u_{2}(t)=D u_{1}(t)+p_{1} u_{1}(t)$, it follows that $D^{k} u_{2}(t)=$ $D^{k+1} u_{1}(t)+p_{1} D^{k} u_{1}(t), \quad 1 \leq k \leq n-1$. Invoking the initial values of $u_{1}(t)$, we obtain $u_{2}(0)=0, \quad D^{k} u_{2}(0)=0, \quad 1 \leq k \leq n-3, \quad D^{n-2} u_{2}(0)=1$, and $D^{n-1} u_{2}(0)=D^{n} u_{1}(0)+p_{1} u_{1}(0)=0$. Therefore $u_{2}(t)$ is well defined. A similar argument can be used to justify the definitions of the other coefficient functions.

Our method for constructing the coefficient functions, $\left\{u_{j}(t)\right\}$, can be motivated by writing $p(D)$ in nested form (Horner's Algorithm). Set

$$
h_{1}(D)=1, \quad h_{k+1}(D)=D h_{k}(D)+p_{k}, \quad k=1,2, \ldots n .
$$

It is easy to check that $h_{n+1}(D)=p(D)$.
Let $\mathrm{w}(\mathrm{t})$ be the solution to the nth order ordinary differential equation, ${ }^{1}$

$$
L w \doteq p(D) w=0, \quad \text { with } D \doteq d / d t
$$

[^0]such that
$$
D^{k} w(0)=0, \quad k=0,1,2, \ldots n-2 \quad \text { and } \quad D^{n-1} w(0)=1,
$$
then the analytic coefficient functions of the finite representation can be defined by
$$
u_{1}(t)=w(t), \quad u_{k+1}(t)=D u_{k}(t)+p_{k} u_{1}(t), \quad k=1,2, \ldots n-1 .
$$

Let

$$
\Phi(t)=u_{1}(t) A^{n-1}+u_{2}(t) A^{n-2}+\cdots+u_{n-1}(t) A+u_{n}(t) I .
$$

It will be shown that

$$
D \Phi=A \Phi, \Phi(0)=I .
$$

Therefore, by the uniqueness theorem of ordinary differential equations, $\Phi(t)=$ $e^{t A}$.

From the definition of the functions $\left\{u^{k}(t)\right\}$, it follows that

$$
D u_{k}(t)-u_{k+1}(t)=-p_{k} u_{1}(t), \quad k=1,2, \ldots n-2 .
$$

In addition,
$D u_{n}(t)=D\left\{D^{n-1} w(t)+p_{1} D^{n-2} w(t)+\cdots+p_{n-1} w(t)\right\}=L w(t)-p_{n} w(t)=-p_{n} w(t)$.

After substituting the above relations into
$D \Phi(t)-A \Phi(t)=-u_{1}(t) A^{n}+\left[D u_{2}(t)-u_{1}(t)\right] A^{n-1}+\cdots+\left[D u_{n-1}-u_{n}(t)\right] A+D u_{n} I$,
we obtain
$D \Phi(t)-A \Phi(t)=-w(t) A^{n}-p_{1} w(t) A^{n-1}-\cdots-p_{n-1} w(t) A-p_{n} w(t) I=-w(t) p(A)=0$.

The last equality is due to the Cayley-Hamilton theorem.
To show that $\Phi(0)=I$, substitute $t=0$ into $u_{1}(t)=w(t)$ and

$$
u_{k+1}(t)=D^{k} w(t)+p_{1} D^{k-1} w(t)+\cdots+p_{k} w(t), \quad k=1,2, \ldots, n-1
$$

The last step is to invoke the initial data,

$$
D^{k} w(0)=0, \quad k=0,1,2, \ldots n-2 \quad \text { and } \quad D^{n-1} w(0)=1
$$

to obtain

$$
u_{k}(0)=0, \quad k=0,1,2, \ldots n-1 \quad \text { and } \quad u_{n}(0)=1
$$

Remark: The proof implies that if $t=0$, then the Wronskian matrix

$$
W\left(u_{1}, \ldots, u_{n}\right)=I
$$

Remark: If the eigenvalues of A and their multiplicities are known, then it is a straightforward task to compute explicitly the functions $\left\{u_{k}(t)\right\}$.

Example 1. Set $A=[0,1,0 ; 0,0,1 ;-2,1,2]$, then $p(\lambda)=\lambda^{3}-2 \lambda^{2}-\lambda+2$, and
$L[w]=D^{3} w-2 D^{2} w-D w+2 w$. The eigenvalues are $\lambda=1,-1,2$,

$$
\begin{gathered}
u_{1}(t)=w(t)=\frac{1}{3}\left(-\cosh (t)-2 \sinh (t)+e^{2 t}\right) \\
u_{2}(t)=D w(t)-2 w(t)=\sinh (t)
\end{gathered}
$$

$$
u_{3}(t)=D^{2} w(t)-2 D w(t)-w(t)=\frac{1}{3}\left(4 \cosh (t)+2 \sinh (t)-e^{2 t}\right)
$$

and

$$
e^{t A}=u_{1}(t) A^{2}+u_{2}(t) A+u_{3}(t) I .
$$

Example 2. Set $A=[2,2,1 ; 1,3,1 ; 1,2,2]$, then $p(\lambda)=\lambda^{3}-7 \lambda^{2}+11 \lambda-5$, and $L[w]=D^{3} w-7 D^{2} w+11 D w-5 w$. The eigenvalues are $\lambda=1,1,5$,

$$
\begin{gathered}
u_{1}(t)=w(t)=\frac{1}{16}\left(e^{5 t}-(1+4 t) e^{t}\right), \\
u_{2}(t)=D w(t)-7 w(t)=\frac{1}{16}\left(-2 e^{5 t}+(2+24 t) e^{t}\right), \\
u_{3}(t)=D^{2} w(t)-7 D w(t)+11 w(t)=\frac{1}{16}\left(e^{5 t}+(15-20 t) e^{t}\right),
\end{gathered}
$$

and

$$
e^{t A}=u_{1}(t) A^{2}+u_{2}(t) A+u_{3}(t) I .
$$

Example 3. Set $A=[1,-1,-1 ; 1,1,0 ; 3,0,1]$, then $p(\lambda)=\lambda^{3}-3 \lambda^{2}+7 \lambda-5$, and
$L[w]=D^{3} w-3 D^{2} w+7 D w-5 w$. The eigenvalues are $\lambda=1,1 \pm 2 i$.

$$
\begin{gathered}
u_{1}(t)=w(t)=\frac{1}{4} e^{t}(1-\cos (2 t), \\
u_{2}(t)=D w(t)-3 w(t)=\frac{1}{4} e^{t}(-2+2 \cos (2 t)+2 \sin (2 t)), \\
u_{3}(t)=D^{2} w(t)-3 D w(t)+7 w(t)=\frac{1}{4} e^{t}(5-\cos (2 t)-2 \sin (2 t)),
\end{gathered}
$$

and

$$
e^{t A}=u_{1}(t) A^{2}+u_{2}(t) A+u_{3}(t) I .
$$

Example 4. Set $A=[1,1,1 ; 2,1,-1 ;-3,2,4]$, then $p(\lambda)=\lambda^{3}-6 \lambda^{2}+12 \lambda-8$, and
$L[w]=D^{3} w-6 D^{2} w+12 D w-8 w$. The eigenvalues are $\lambda=2,2,2$.

$$
\begin{gathered}
u_{1}(t)=w(t)=\frac{1}{2} t^{2} e^{2 t}, \\
u_{2}(t)=D w(t)-6 w(t)=\frac{1}{2} e^{2 t}\left(t-2 t^{2}\right), \\
u_{3}(t)=D^{2} w(t)-6 D w(t)+12 w(t)=\frac{1}{2} e^{2 t}\left(1-2 t+2 t^{2}\right),
\end{gathered}
$$

and

$$
e^{t A}=u_{1}(t) A^{2}+u_{2}(t) A+u_{3}(t) I .
$$

[^0]: ${ }^{1}$ The solution $w(t)$ is an analytic function of t. It is called the weighting function of the differential equation.

