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A b s t r a c t  

When the results of certain computer  calculations are shown to be not simply incorrect 
but  dramatically incorrect, we have a powerful reason to be cautious about all computer-based 
calculations. In this paper we present a "Rogue's Gallery" of simple calculations whose correct 
solutions are obvious to humans but  whose numerical solutions are incorrect in pathological 
ways. We call these calculations, which can be guaranteed to wreak numerical mayhem across 
both  software packages and hardware platforms, "Numerical Monsters". Our monsters can be 
used to provide deep insights into how computer calculations fail, and we use them to engender 
appreciation for the subject of numerical analysis in our students. Although these monsters 
are based on well-understood numerical pathologies, even experienced numerical analysts will 
find surprises in their behaviour and ,can use the lessons they bring to become even bet ter  
masters of their tools. 

1 I n t r o d u c t i o n  

In a 1950's science fiction short story, "The Feeling of Power", Isaac Asimov [1] introduced a 
world where people had become so totally dependent on computers and calculators that  they 
were completely amazed by a person who had rediscovered how to do ari thmetic without  one. 
In fact, as the story unfolded, this forgotten human capability became a deep military secret, 
because there were advantages for humans to think after all. 

In the 1980s, a crafty experiment [2] was performed on school children and adults which 
demonstra ted that  many people have developed a blind dependence on comput ing devices. 
The unwitt ing subjects were provided with rigged calculators that  were prepared to give sys- 
tematically wrong answers. Incorrect results from these rigged calculators were contrasted 
with those from correct hand calculations also done by the same subjects. Only a minority 
chose to believe their own correct hand calculations over the wrong ones produced with the 
calculators. 

Of course, as any numerical analyst knows, one doesn't  need to rig a calculator to get 
wrong answers. Wrong answers are just  part  of the nature of finite computers running afoul 
of the infinities of mathematics.  Even the inhabitants of Asimov's fictional world were spared 
this fundamental  reality of computing devices. 

A blind acceptance of what computers provide, is no surprise to anyone who teaches an 
introductory course on numerical analysis. Initially, it is often a near thing just  to convince 
beginning students,  steeped in the myt:h of perfect computation,  that  there is any value to the 
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subject at all. Advanced students can backslide into fancying that  perfect computat ion can be 
found in computer  algebra environments. Those who teach computat ion must take students 
from these science fiction mindsets into the realm of reality. Computers  are so mysterious, 
fast, and consistent, it is very hard to imagine the truth: mathematics is too big to fit into 
computers. 

This paper introduces a proactive strategy for introducing important  numerical analysis 
issues. Rather than discussing how to do things to avoid numerical problems, it seeks numerical 
trouble. This has something of the character of work by Kahan, e.g. [3], in the conscious search 
for numerical difficulties. The goals are however somewhat different. There is no aim to seek 
things that  need fixing, but  instead it is to help people understand that  computers are not 
absolute, and that  they cannot be by their nature. 

This approach exploits the modern graphical environments, even in those originating in 
computer  algebra packages, put t ing different platforms and packages into a common context. 
In a computer  algebra environment, it means exploring pathologies at a given precision. Ob- 
serving that  precision can be set to a higher level misses the point that  finite computers cannot 
be set to calculate with infinite infinite precision. Moreover the graphical environment is sim- 
ply fun for experienced and inexperienced people to begin with the computat ional  analog to a 
demolition derby. It leads into spectacular computational monsters, which despite their brazen 
nature raise subtle issues that  may even prove challenging to research numerical analysts. 

We make no claim to a comprehensive treatment of these "numerical monsters", either 
in terms of what monsters are possible or in terms of all aspects of their nature, which turn  
out to be wonderfully complex and subtle. The goal here is merely to encourage the search 
for different and interesting types of these creatures. In doing so we suggest some features 
that  ought to be looked out for when encountering them, and how they might be usefully 
incorporated into curricula. 

We begin with a treatment of simple round-off beasts which lead to spurious stripes and 
false zeros. The pivot monster shows how these can be connected to basic numerical analysis 
issues such as why one needs to pivot. This is taken to a higher level in the wide class of bow-tie 
monsters, which open up many subtle forms, revealing not only uniformity across platforms, 
but  also fascinating differences, reflecting underlying differences in how numerics are treated. 
This opens the door for more advanced discussion of programing and numerical issues. 

2 Tiger Stripes and Machine Epsilon 
The function 

T(x) = eX ln(1 + e-X), (1) 

is mathematically very well behaved. It is positive, with a strictly positive but  decreasing 
slope. It is easy to show that  T(x) = e x (e -x - O(e-2X)) for large x, clearly going to 1 in the 
limit x --+ c~. This means that  the function rises steadily to 1 for all x. 

However, numerically, this function is very badly behaved, in that  the function that  is 
actually plotted by the computer, To, is dramatically different than T(x). Tc does not rise 
steadily for increasing x for all x, as can be seen in figure 1, which arises from the IEEE 
arithmetic of MAPLE 6. There, for x .~ 30, the upward trend falters and Tc drops spuriously 
to zero in a flurry of apparent noise, departing from its proper value of nearly 1. However in 
figure 2, which is a close up of this spurious behaviour, it is apparent that  it is not noise at all 
but  a systematic structure in the form of regular "tiger" stripes, immediately proceeding the 
spurious collapse to zero of the computed function. 
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This simple function gives us not only an error of order 1, but  in addit ion the stripes are 
explicable, and the point where the function drops to zero is a direct consequence of machine 
epsilon, and completely predictable. Machine epsilon is the smallest value e for which 1-t-e ~ 1. 
It gauges how small a number will not quite disappear due to round off. In this sense e/2, one 
shift operation smaller, will be the largest number that  behaves as zero when added to 1. We 
conclude that  e -x = e/2 where the function drops spuriously to zero, or x = - ln(e/2). 

This value is easily confirmed by taking the first zero position straight off the plot and 
comparing it to the value x = - l n ( e /2 ) ,  where e = 2.2204 x 10 -16 is the machine epsilon 
provided in MATLAB 5. 

This is a powerful exercise for students to see that  the seeming chaos of the tiger stripes 
comes to a conclusion at an entirely predictable point. The stripes themselves are closely 
related. They also arise from round off in that  rounding causes 1 + e -x to behave as a constant 
over progressively longer intervals as x approaches - ln(e/2). That  is, the changes in e -x are 
too small to show up in comparison to 1, until certain critical values of x are reached. Each of 
these values leads to downward jumps in the sum, inducing a stepping behaviour. These steps 
when multiplied by e x lead to a sequence of exponentials, which appear as stripes. Note that  
these stripes can even exceed 1, contrary to the nature of the function T ( x )  that  the computer  
was supposed to plot. 

This is an example of pathological behaviour that  is far from noise, and which has a form 
that  we can unders tand and predict. This particular numerical monster  is quite robust,  and 
will show up in very similar form in vJirtually any numerical environment. Note at this point  
that  figure 1 shows the tiger stripes in :MAPLE 6 and the closeup in figure 2 was produced with 
MATLAB 5, but  these plots would be 'virtually identical on comparable ranges. Tha t  is Tc is 
nearly identical for both  MATLAB 5 and MAPLE 6, even  though these functions both  differ 
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Figure  1: The  plot  of the  func t ion  T ( x )  = e x ln(1 + e  -=) wi th  the  c o m p u t e r  a lgebra  
package MAPLE 6. For x > 30 a d r a m a t i c  devia t ion  f rom the  theore t ica l  value 1 
is found.  For x > 36.7 the  p lo t t ed  value drops  spur iously  to  zero. 
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Figure 2: A close up of the apparent noise in figure 1. Although the plot deviates 
from the theoretical result T(x) ~ 1 in this regime, it shows a regular behaviour 
which we name tiger stripes. The spurious collapse to zero is denoted by the 
arrow. The function ln(1 + e -x) is also plotted (dots), exhibiting false plateaus 
of increasing length. This explains the tiger stripes, which are therefore just 
exponential functions. Note that  this plot was created with MATLAB 5. 
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from T(x). In subsequent examples we will see that  monster invariance will not hold across 
software packages, even if broad structures will be common. 

A simple refinement of this monster becomes a useful and quick way to read off effective 
precision. That  is if instead of (1) we ]plot 

T(x) = 2 x ln(1 + 2-z).  (2) 

In the case of MATHEMATICA 4.0 figure 3 shows a drop to zero at x = 53, implying 52 bits of 
precision. Points were intentionally connected to emphasize the drop to zero. The resulting 
value is confirmed by computing 2 -52 and comparing to Mathematica 's  value e. 

In addit ion to expression (2) we plot 

T(x) = 2 = ln(1 - 2-=). (3) 

The graph of equation (3) appears as a negative version of (2), except that  (3) collapses to 
zero one shift operation later than (2). That  means that  in some sense an approach to zero 
by subtraction is more precise than the approach through addition. 

This is remarkable in that  a common presumption is that  subtraction is numerically more 
problematic through the traditional worry about the difference of large numbers. The present 
case seems mysteriously contrary to that.  However the explanation is rather disappointingly 
obvious in that  1-4- e will involve only t:he lowest order digits of 1. To tell the difference from 1 
then depends on the highest precision, while in contrast 1 - e will involve all digits in 1 because 
of carrying operations. Subtraction in this case clearly manifests itself across all digits, so while 
adding expands the demand for precision subtraction, contrary to the cliche, reduces it. In 
particular it provides one more shift operation of precision. 

This simple example provides a strong introduction to many details of round off error. It 
also shows that  numerical noise isn't really noise, but  is instead a well defined, reproducible, 
and generic property of floating point computat ion across many platforms. 
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F igure  3: The  funct ions  2 ~ ln(1 ~: 2 -=) are shown. Th e  d rop  to zero for x -- 53 
implies  52 bits  of precision. The  collapse to  zero at  x - - .54  indicates  a h igher  
effective precision for subt rac t ion .  
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3 T h e  P i v o t  M o n s t e r  

Pivoting during LU decomposition is accepted as a crucial practice, but  it is not often demon- 
strated why it is essential to extract a correct answer from a computer.  A simple explanation 
is rarely forthcoming in many presentations, which typically offer instead examples of how, 
rather than why, to do it. We provide here a numerical monster that  comes directly from an 
LU decomposition that  has not been pivoted. Based on the results of the previous section, all 
of the properties of this monster can be easily understood. In many respects it is a simpler 
monster than the tiger, but  it is essentially the same. 

We begin with the following matrix system 

(, 1)(xl)1 1 .. (4) 

LU decomposition of the coefficient matrix without pivoting is possible, leading to 

(, 1 ) ( 1 0 ) ( , 1 )  
1 1 = ~ i 0 i-} " (5) 

This form leads to the new system 

(, 1 
0 1 - ]  x2 1 - ~  

(6) 

This equation provides the solution 

x 2 = l  (7) 
X l  ~ 5 

The expression for xl  is clearly equal to 1, independent of the value of 6. However a 
floating point process will compute the expression as presented, as it represents here a sequence 
of numerical operations on specific numbers instead of a general algebraic expression to be 
transparently simplified. The algebraic form here simply makes clear what would not otherwise 
be clear in a floating point LU decomposition in the absence of pivoting. Pivoting makes 
an almost trivial change on the corresponding expressions, which are of course algebraically 
equivalent. However they are numerically very different. 

One simple pivot leads to the trivially equivalent matrix system 

(11) ( .1 )__( , )  
1 x2 1 + 5 ' (8) 

which produces the algebraically equivalent solutions 

x2 = 1-~ 1-~ (9) 
x l = 2 - i V  ~ .  

However these are very different in that  they can be plotted without difficulty, while xl  
in expression (7) is a simple but  close relative to the numerical tiger. A simple plot (figure 
4) near 5 -- 0 shows that  it has stripes of its own. Equation (9) will not have these, as the 
5-terms have the value of 1, even for floating point calculations, xl for (7) however is not 1 in 
floating point arithmetic as can be seen from figure 4. 
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F igure  4: The  expression for Xl !in equa t ion  (7) is p lo t t ed  for 6 near  0. Ins tead  
of  having  the  cons tan t  value 1 the  funct ion  shows a t iger-s t r ipe  like s t ruc ture .  I t  
drops  spur ious ly  to  zero for 6 ~ 0. Note  t h a t  the  d is tance  be tween the  ticks on 
the  6-axis is e/4,  wi th  e = 2.2204 × 10 -16 for MATLAB 5. 

The stripes here differ from that  of the tiger stripes in that  they are not exponentials but  
hyperbolas instead. That  is because the numerator in (7) takes on constant values while 6 
changes in digits that  are lost in the sum 1 + 6. As before when the change in 6 grows large 
enough, the result will finally show up in 1 + 6 and restart a new hyperbola. 

We see the same asymmetry from figure 3 appearing here: the spurious collapse of the 
expression to zero occurs exactly one shift operation later for negative than  for positive values. 
This is another occurrence of a case where subtraction introduces less error than  addition. 

All of the properties of the original tiger are here, and they are clearly the source of error 
introduced in the absence of proper pivoting. With this example it is t ransparent  why pivoting 
is crucial to accurate computation.  

Closely related to the tiger and the pivot is another monster  where an algebraic simplifi- 
cation is not that  obvious. Consider the function 

v f ~ + 9 -  3 
f ( x )  = 

X 

A Taylor expansion about x = 0 results in 

1 x 
f(x) - 6 20---8 + " "  ' 

(10) 

(11) 

which yields the constant value 1/6 near x = 0. Figure 5 shows a plot of this function, which 
we call the mustache, between - 2  x 10 -14 and 2 x 10 -14. Again we find a variation of the 
tiger strips discussed in the previous section instead of the constant value 1/6. 
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These simple round off monsters might seem inconsequential, outside of introductory exam- 
ples, because of the small scale of the errors arising. While in subsequent classes of monsters, 
this need not be so, it is worth pointing out that even in the last of the discussed cases, com- 
puter division by f(0), for example, can lead to division by zero, instead of a multiplication 
by 6 - -  a nontrivial error! 

4 B o w  Tie  Mons ter s  

In the previous section we demonstrated that the order in which calculations are performed 
can become very important numerically. The bow tie numerical monsters depend on this. 
Consider the trivial binomial formula, 

( x -  1) 2 = x 2 - 2 x  + 1 . (12) 

What happens if we investigate the difference between these two expressions on a computer. 
Figure 6, which reminds us of a bow tie, shows the difference 

(x 2 - 2 x  + 1) - ( x -  1) 2 

plotted in terms of x - 1. Though the value is indeed zero most of the time, we also encounter 
substantial deviations from zero in a very systematic manner. These can be made arbitrarily 
large depending only on the distance from x = 1. In certain intervals of x - 1 the function 
alternates between zero and two values of the same magnitude but different signs. 
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Figure 5: The  function f(x) = (x/~ + 9 - 3 ) /x  is plot ted for x near  0. Ins tead 
of the ma themat i ca l  function which is close to 1/6 given by the Taylor expansion 
(11), we get one tha t  has the character  of a mustache of tiger stripes. Here the 

distance between the ticks on the x-axis is 4e. 
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These values change by a factor of two in going from one interval to the next. This leads 
to a ladder like structure. Amazingly' the steps of the ladder axe bounded by the functions 
: : t = e ( x  - 1) 2 and ~ ( x  - 1) 2, which give the bow-tie-like appearance. Note that  the actual 
deviations can be expressed in multiples of machine epsilon e. As e drops to zero clearly all of 
these features will vanish. 

To investigate the ladder in more detail, note that  the length of successive intervals increases 
by 21/2. This suggests a log-log plot of the bow tie monster. For the sake of simplicity we 
consider a blow up of the first quadrant (see figure 7). 

For larger x we find the perfect linear ladder structure we expected. But for decreasing 
x-values, more and more deviations, like the escape points mentioned in figure 6, can be seen. 
This leads to a bifurcation-like behaviour that  ends up in a noisy and chaotic s tructure for 
x - 1 < 2 -3. Thus a transition between two different regimes showing this monster  to be more 
monstrously subtle than a first glance might suggest. 

Now let us zoom into the chaotic regime and have a closer look at the vicinity of x = 1. 
Figure 8 reveals lots of structure even in this noisy, but  structured, domain. 

Besides the obvious asymmetry between the left and right sides of the plot, which can be 
traced back to the shift operations discussed in connection with the tiger stripes in section 2, 
the plot has an amazingly self-similax .character. An explanation for this and a connection to 
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Figure  6: The  difference (x 2 - 2x -F 1) - (x - 1) 2 p lo t t ed  using MATLAB 5. Ins t ead  
of zero, a ladder-l ike s t ruc tu re  is found in the  bow tie shape.  For the  w id th  of 
a rung,  the  values of  the  p lo t t ed  difference func t ion  j u m p  between three  values 
- -  two wi th  the  same magn i tude ,  bu t  wi th  oppos i te  signs, and  zero. Note  t h a t  
there  are also a few "escape" poin ts  which pathological ly  escape the  s imple  bu t  
o therwise  r igorous envelopes. Note  also the  ex t raord ina ry  pervasiveness of  e in all 
features  of the  graph.  
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chaos is beyond the scope of this article, and will be left to future work. Instead we focus on 
the parabola near x = 1. 

In figure 9 the two different parts of equation 12 are plotted separately. The expanded 
form shows steps, as in the case of the logarithm discussed in figure 2. Thus  for intervals with 
a length of order e the function x 2 - 2x + 1 is constant whereas the par t  that  is wri t ten  as a 
perfect square does not show such step behaviour. Therefore the sum of bo th  parts  leads to a 
tiger-stripe-like structure.  

Instead of deepening the discussion of these curious properties in such a simple plot, we note 
that  the bow tie monster  can also be observed using other software packages. But interestingly, 
in contrast  to the tiger class of monsters, fascinating differences emerge. 

For example, investigating the same difference, (x 2 - 2x + 1) - (x - 1) 2, with MAPLE 6 
leads to a very similar result to that  above using MATLAB 5 (see left hand side of figure 10). 
However changing the evaluation order of the two terms, i.e. (x - 1) 2 - (x 2 - 2x -t- 1), leads 
to a qualitatively different appearance of the monster. This degree of non-associativity (this 
reversal is not commutat ion  although one may be tempted  to use that  term) was not observed 
with MATLAB 5 for this monster.  Note that  even with the different appearance,  the envelope 

and ladder s t ructure is preserved. 

5 Trig Tie Terror 
The techniques found in the last section carry over to other functions too. This leads to a 
wide class of new and different monsters. Take, for example, the Taylor expansion of the sine 

1 3 sin(x) = x - ~x + O(xS) . (13) 

210e 

212e 

28e 

% 
268 

I 

24 e 

¢~ 22e 

2°e 

2-2e 

2-4e 
2 -5 2 -4 2 -3 2 -2 2 -1 1 2 22 23 24 25 26 

X- I  

Figure  7: A close up  of  t he  first q u a d r a n t  of  figure 6 in a log-log plot.  Th i s  shows 
exis tence  of  two different  regimes:  a l adder  like, and  a fa ir ly  chaot ic  one. 

25 



e5 

% 

I 

-e/4 

- e / 2  

-3 -2 -1 0 1 2 3 x lO  -7 
X-1 

Figure  8: A closer look into the  noisy regime of  the  bow tie. Note  the  a s y m m e t r y  
ab ou t  x - 1 = 0. 

Plot  the difference between sin(x) and the first two terms of the expansion. Figure 11 shows a 
plot of sin(x) - ( x -  x3/6) about x = 0 created with MAPLE 6. The graph, al though distinctive 
in its own right, clearly has much in common with the quadratic bow tie. The partially filled 
in domains within the bounding envelope have some particular similarity to the right hand 
side of figure 10, which was also plotted with MAPLE 6. However, the detailed structure has 
a very different character, appearing more stochastic, than  the right side of figure 10. 

In any case in figure 11 we see aga:in the error regions building up a step structure, where 
the steps are bounded by the envelopes with the form of the originating function multiplied by 
e and a power of 2: ±~ sin(x) and ::t=~ sin(x). The same difference plotted in MATHEMATICA 4.0 
gives just  the steps, but without the filled regions, and the bounding functions are =i=2e sin(x) 
and =t:e/2 sin(x) instead. This suggests different internal routines, even though these routines 
are clearly all subject to the same fundamental  constraints. A curious observation is that  for 
both  of the software packages, the monster vanishes if (x - x3/6) - sin(x) is plot ted instead! 
Tha t  is the resulting plot shows simply the zero-line. Moreover in MATLAB 5 this monster  
does not appear at all, independent of the order of the terms! 

We see that  these distinct bow tie versions of sin(x) with different software packages appear 
to have a common standard form, even if they differ in details. The s tandard form is instructive 
for beginners, while the differences should be a mat ter  of interest for more advanced investiga- 
tions as well. In the latter case not only' can one use these differences to explore the distinctions 
between packages and platforms, we can create many different bow-tie-like structures for many 
different functions, each with their own particular features. 

One might think, that  just  considering the first two terms in the Taylor expansion is not 
sufficient. With  computer  algebra packages, shouldn' t  we always be going to precise high 
order representations, free from round[ off? This sounds fine until one tries to plot it, then 
the numbers have to be rounded off anyway to jam them into the few pixels that  one has 
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Figure 9: The bow tie monster around x = 1. A discussion of the separate parts 
of the difference reveals similar tiger stripes to those of figure 2. Note that  the 
previously discussed asymmetry is observed here again. 

to represent data. Figure 12 therefore is an effective way to show a beginner that computer 
algebra does not end the subject of numerical analysis. It is a plot of the sin(x) expansion 
up to order 100. Even in this case, where the algebraic potential of MAPLE 6 is exploited, we 
cannot use the increased accuracy of the expansion in plotting. This particular monster we 
call the tornado. 

6 T h e  W a l l  

Another area where predictable questions from students about numerical analysis arise is in 
connection with numerical derivatives: Can't we just take a smaller step size? Can't we just 
take more terms? These questions are easily addressed with the monster we call the Wall. 

We consider the derivative of a function f (x) numerically by setting up its Taylor expansion: 

(kh)V~(v)'x ~ (14) f (xo  + kh) = ~ v! j ~ o) ,  
v--~O 

with the nonzero integer k. Consider n of these expansions, each with different values of k. 
Together they yield an n + 1-point formula for the first derivative. For example in the trivial 
case of n = 1 and k = 1 we find the well known prelimit form for the first derivative: 

/(x0 + h) - / (x0)  
f ' (xo) ,~ dl(X0, h) = h (15) 

For n = 2, where we select the two values for k of - 1  and 1 we find the nearly as well known 
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Figure 10: The  bow tie monster  plotted with MAPLE 6. Changing  the order of  
calculat ion of the two terms leads to a surprisingly different appearance for the 
monster.  For the sake of clarity the axes labels are omitted.  All  magn i tudes  
correspond to those given in figure 6. 
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Figure 11: The  difference between the sine and its Taylor expansion.  Note  the 
s imilarity to the right hand side of figure 10 and the steps are bounded by the 
same type of  envelope as the polynomial  bow tie. 

formula for the midpoint rule: 

f ' ( x o )  ~ d2(x0, h) = f ( X o  + h) - f ( x o  - h) 
2h (16) 

In figure 13 the error Ida(x0, h) - f'(x0)[ for three cases is plotted (log-log) with respect 
to the step size h for f ( x )  = sin(x) and the expansion point x0 = 1. For large h (i.e. > 1) 
we see oscillating behaviour. Decreasing the step size reduces the error for the first derivative 
as expected. As more points n are employed in the numerical approximation this rate of 
decrease is more rapid. In the upper rig!ht region of figure 13 the four curves depicted therefore 
correspond to higher order estimates from left to right. 
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Figure 12: The  Taylor expansion of the s in(x)  up to order 100. In the depicted 
range the round off errors sum up to order one inducing the tornado-like structure. 
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Figure 13: Numerical  derivative error using different order formulas us ing MATH- 
EMATICA 4.0. The error is plotted (log-log) for the case f(x) = s in(x)  at the 
expansion point  x0 -- 1. The four curves are, from left to right, the cases where 
n = 1 (k = 1, eq.(15)) ,  n = 2 (k = - 1 , 1 , e q . ( 1 6 ) ) ,  n = 3 (k = - 1 , 1 , 2 ) ,  and 
n : 4 (k : - 2 ,  - 1 , 1 ,  2). 

The complication is, as is well known to numerical analysts, that the error goes back up 
again with decreasing step size. It makes a nice exercise for students to estimate the minimum 
error on the graph. But it is not so well known is that the noisy left side of the graph, which 
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has the appearance of melting wax, is nearly the same line for all order schemes. While the 
higher order methods do have smaller minimum errors, they reach them for larger h, and they 
proceed upward along the same path. 

In fact it seems  that  the error for t:he described method of numerical derivation can not be 
arbitrarily decreased, but has a lower limit independent of the order of the method.  Figure 13 
shows that  all of the methods considered run into the same round off wall. Tha t  wall makes 
the lower left of the domain inaccessible, and it makes for interesting discussion in a classroom. 

7 City Streets  

As a last example of a monster for this introductory presentation, we consider the computa t ion  
of the residual, R ( A ) ,  for a randomly generated 2x2 matrix for the problem A x  = b with 
b = (1, 0) T. Using MATLAB 5 the residual can be calculated in two different ways: 

R i ( A )  = A • (inv(A) • b) - b and R2(A) = A • ( A \ b )  - b ,  (17) 

where the second method uses the left division operation implemented in MATLAB 5. We use 
this alternative method  because it produces an interesting result. In figure 14 the residuals 
R i ( A )  is denoted by "x" and R2(A) by "o". Instead of having the theoretical value of (0, 0) T, 
these residuals take on values other than zero, as is to be expected in the presence of round 
off error. 

If one examines the resulting plot on large enough scales, the points appear like a disorga- 
nized cloud, as one might expect with numerical noise. However we did not use such a scale 
for the figure. Instead the figure depicts these residual vectors on a small scale. On that  scale 
these seemingly random deviations are all seen to fall on a rigorous rectangular grid, which 
leaves the impression of city streets seen from the air. The two types of residuals, even though 
they are numerically different, all fall .on the exactly the same streets. These streets have a 
distance which is a multiple of 2-he ,  where n increases if one goes towards (0, 0) T. These 
errors vanish with e. They are not random but  axe instead highly structured. 

8 Conclus ion  
Round off error is often described as noise. Indeed it is typically called numerical noise. How- 
ever it is difficult to justify this usage on a computer system which is ostensibly deterministic. 
Nonetheless, as we have seen, calling it noise is not so unreasonable either. There is so much, 
systematic though it may be, that  is quite mysterious without very determined efforts to root 
out its mechanisms, often some arcane combination of machine and software arithmetics. 

This character makes it particularly problematic in explaining numerical error and there by 
motivating numerical analysis to beginners: yes, there is error in a computat ion on a computer;  
yes, it is deterministic in a human designed machine prepared to be that  way; no, we don' t  
know what the precise error is, so we only estimate the error or find bounds at best. We are 
forced to tell them that  we must approximate something that  they would rather not believe 
exists at all. And if it is finally accepted that  computers have error, it is only because of a 
belief in an explicit cause. That  is the :moment when we usually announce that  the error can 
now be treated as stochastic. The result is that  beginners can be simultaneously mystified by 
and dismissive of this important  subject. 

This is further complicated by the designer's desire to create code for different arithmetics, 
or more adaptive levels of precision, each to more closely represent t rue mathematical  be- 
haviour. This leads to many often non-standard layers of complication between the hardware 
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F i g u r e  14: T h e  res iduals  (17) of  t he  m a t r i x  e q u a t i o n  A x  = b c a l c u l a t e d  w i t h  
MATLAB 5. T h e  two c o m p o n e n t s  of  t he  res iduals ,  R i ( A )  ( d e n o t e d  by "x") a n d  
R 2 ( A )  ( d e n o t e d  by "o"),  are used  as the  axes. No te  t h a t  all r es idua l s  lie on  
"s t ree ts"  wh ich  are p o s i t i o n e d  as powers  of  2 t imes  e. 

and  the  user, leading to inscrutable behaviours exhibi ted above. The  m o d e r n  user necessarily 
mus t  work in many  different computa t iona l  environments .  It  is s imply unrealist ic to expect  
tha t  the peculiarit ies of each will be more t han  superficially unders tood.  Indeed many  of these 
peculiarit ies must  necessarily fall into the domain  of current  research. 

The  objective of this paper  was to in t roduce a collection of simple calculations which are 
certain to create numerical  mayhem in nearly any contemporary  sys tem in its p lo t t ing  envi- 
ronment .  The  p lo t t ing  environment  was chosen for several reasons. The  visual envi ronment  
is becoming more and more impor tan t  in practical applications for computa t iona l  programs.  
I t  is also the  great leveler between computer  algebra environments  and floating point  ones, 
as all numbers ,  no mat te r  how precise, must  still be j a m m e d  into a not  so large number  of 
pixels. How these pixels are filled leads to the most  idiosyncratic software ar i thmetics ,  as 
they  are designed to meet  the  harsh demands  of authent ic  mathemat ics  in artificial graphical  
environments .  Finally, a picture  leads to instant  unders tand ing  of these issues, for s tudents  
and more  experienced users alike. 

The  goal was two fold: first, to visually elucidate t radi t ional  numerical  analysis issues such 
as machine epsilon, and  the need for pivoting in matr ix  computa t ion;  second, to provide s imple 
means  to quickly assess idiosyncracies of any part icular  piece of computa t iona l  software. T h e  
reader is caut ioned in this lat ter  regard not  to seek "fixes" f rom fancy set t ings for a par t icular  
piece of software. The  goal is to unders tand  and recognize the  numerical  idiosyncracies. They  
will not be so easily recognized in real applications as they are in these test  cases, even in a 
case where they  may be jus t  as significant. Moreover they can never be fully e l iminated from 
finite computers .  
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For students and even more experienced users these numerical monsters may demonstrate 
in a knowable and simple manner just how wrong computations can be. There is much more 
to say about these monsters in future publications. It is hoped that more monsters will be 
collected, not only because of their practical value but also because they are fun. 
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