466 '07 (E.A. Coutsias)-Final

due: Thursday, December 13, 2007

December 9, 2007

1. Find the normal modes of a membrane having the shape of a circular ring if its outer boundary is rigidly fixed and its inner boundary is elastically fixed. Thus you must find the eigenfunctions of

$$
\left\{\begin{array}{c}
\Delta u+k^{2} u=0, \quad a<r<b \\
u(b, \theta)=0 \\
u_{r}(a, \theta)-h u(a, \theta)=0
\end{array}\right.
$$

Here h is a positive constant; k must be found.
(Hint: Write

$$
u(r, \theta)=\frac{a_{0}(r)}{2}+\sum_{1}^{\infty}\left(a_{n}(r) \cos n \theta+b_{n}(r) \sin n \theta\right) .
$$

Derive and solve equations for the $a_{k}(r), b_{k}(r)$. Also k is not given; rather, $k=\omega / c$ is the unknown vibration "frequency", the eigenvalue).
2. Find the disturbance due to a harmonic point source in an infinitely long acoustic waveguide with hard walls. Thus, solve

$$
\begin{array}{rll}
\Delta u+k^{2} u=\delta(x-\xi) \delta(y-\eta) & , 0<x<\infty, 0<y<b \\
u \text { outgoing at } x= \pm \infty & , \quad u=0 \text { on } y=0 \text { and } y=b .
\end{array}
$$

Here we are solving

$$
v_{x x}+v_{y y}-\frac{1}{c^{2}} v_{t t}=\delta(x-\xi) \delta(y-\eta) e^{i \omega t}
$$

with

$$
v(x, y, t)=u(x, y) e^{i \omega t}, k=\frac{\omega}{c} .
$$

(Hint: let

$$
u(x, y)=\sum_{1}^{\infty} u_{n}(x) \sin \frac{n \pi y}{b}
$$

multiply d.e. by $\sin (n \pi y / b)$ and integrate over y from 0 to b. Then solve the resulting problem for the $u_{n}(x)$ either by Fourier transform or by constructing Green's function directly.)
3. Consider

$$
\begin{array}{rll}
u_{x x}+u_{y y}=0 & , 0<x<\infty, 0<y<1 \\
u(x, y) \rightarrow 0 \text { as } x \rightarrow \infty & , & u(0, y)=0, \\
u(x, 1)=0<y<1 \\
u(x, 0)=f(x), \text { given. } & , 0<x<\infty &
\end{array}
$$

Find two different representations of the solution
(a) By expanding in y-eigenfunctions.
(b) By using an appropriate transform in x.
4. The equation describing the electric potential in a cable is

$$
\begin{equation*}
V_{x x}=L C V_{t t}+(R C+L G) V_{t}+R G V \tag{1}
\end{equation*}
$$

where $L=$ inductance per unit length
$C=$ capacitance to ground per unit length
$R=$ resistance per unit length
and $\quad G=$ leakage to ground per unit length.
Find the solution of the initial value problem

$$
V(x, 0)=f(x), V_{t}(x, 0)=0,-\infty<x<\infty .
$$

The form of the equation suggests trying as a solution

$$
V(x, t)=e^{-\gamma t} F(\alpha x+\beta t),
$$

where α, β, γ are constants and F is an arbitrary function. Show that such a solution is possible if and only if $R C=L G$.

In fact, if $R C=L G$, the general solution to eq.(1) is

$$
V(x, t)=e^{-k t}\left[F\left(x-\frac{t}{\sqrt{L C}}\right)+H\left(x+\frac{t}{\sqrt{L C}}\right)\right]
$$

where $k=R / L=G / C$, and F, H are arbitrary functions. s represents a combination of waves moving with speed $1 / \sqrt{L C}$ and preserving their shape but becoming attenuated (damped) in time. The (telegraph) cable is seen to transmit in this way only if $R C=L G$ and it is then said to be distortionless. If $R C \neq L G$ the signal suffers both attenuation and distortion.
5. The (wavefunction) $\psi(x)$ for the Quantum Simple Harmonic Oscillator satisfies the dimensionless, stationary Schrödinger equation

$$
\frac{d^{2} \psi}{d x^{2}}+\left(2 \lambda+1-x^{2}\right) \psi=0 .
$$

Use the transformation

$$
\psi(x)=\exp \left(-\frac{x^{2}}{2}\right) f(x)
$$

to prove that

$$
\frac{d^{2} f}{d x^{2}}-2 x \frac{d f}{d x}+2 \lambda f=0 .
$$

Construct two linearly independent solutions of this (Hermite's) equation in the neighborhood of $x=0$. Give the radius of convergence of the series obtained and show that for special values of λ one of the solutions is a polynomial. Find these special values (eigenvalues) of λ and calculate the corresponding eigenfunctions.

