466 '07 (E.A. Coutsias)-HOMEWORK 8

due: Tuesday, November 13, 2007

November 13, 2007

1. Show that the differential equation

$$
z^{2} w^{\prime \prime}+(1-2 \alpha) z w^{\prime}+\left(\beta^{2} \gamma^{2} z^{2 \gamma}+\alpha^{2}-\nu^{2} \gamma^{2}\right) w=0
$$

has Bessel function solutions

$$
w=A z^{\alpha} J_{\nu}\left(\beta z^{\gamma}\right)+B z^{\alpha} Y_{\nu}\left(\beta z^{\gamma}\right)
$$

if ν is an integer or zero. Hence solve

$$
\begin{array}{r}
w^{\prime \prime}-z w=0 \\
z w^{\prime \prime}-w^{\prime}+4 z^{3} w=0 \tag{2}
\end{array}
$$

(Note: The solutions to the first equation are called Airy functions and are of importance in the theory of diffraction and wave propagation).
2. Show that the Wronskian of $J_{\nu}(z)$ and $J_{-\nu}(z)$ is $-2 \sin (\pi \nu) /(\pi z)$. What is the Wronskian of $J_{\nu}(z)$ and $Y_{\nu}(z)$? (Recall $\Gamma(1-\nu) \Gamma(\nu)=\pi \csc \pi \nu)$.
3. Deduce from the recursion relations developed in class that

$$
\begin{aligned}
\frac{d}{d z}\left[z^{n} J_{n}(z)\right] & =z^{n} J_{n-1}(z) \\
\frac{d}{d z}\left[z^{-n} J_{n}(z)\right] & =-z^{-n} J_{n+1}(z)
\end{aligned}
$$

Use Rolle's theorem to prove that one zero of $J_{n+1}(x)$ lies between successive zeros of $J_{n}(x)$ (x is real).
4. Use the relationship

$$
Y_{\nu}(z)=\frac{1}{\sin \nu \pi}\left[\cos \nu \pi J_{\nu}(z)-J_{-\nu}(z)\right]
$$

to prove that $Y_{\nu}(z)$ satisfies the recursion relations

$$
\begin{aligned}
2 Y_{\nu}^{\prime} & =Y_{\nu-1}-Y_{\nu+1} \\
Y_{\nu+1} & =\frac{\nu}{z} Y_{\nu}-Y_{\nu}^{\prime} .
\end{aligned}
$$

5. According to the elementary theory of nuclear reactors, the steady state neutron density u in a reactor is given by

$$
\nabla^{2} u+B^{2} u=0
$$

where $B>0$ is a physical constant. For a spherical reactor of radius R determine solutions independent of θ and ϕ. Determine the smallest value of $B R$ for which $u=0$ when $r=R$.
(Hint: Use the results of problem (1) to relate the solution to $J_{ \pm 1 / 2}$; then use the series expression for Bessel functions to establish the formulas for $J_{ \pm 1 / 2}$ given in the notes, p.16.3)
6. (a) Show that for Legendre polynomials $P_{n}(x)$:

$$
\begin{aligned}
P_{2 n+1}(0) & =0 \\
P_{2 n}(0) & =\frac{(-1)^{n}(2 n)!}{2^{2 n}(n!)^{2}} .
\end{aligned}
$$

(b) Use the recurrence relations on p. 17.7 of the notes to deduce that

$$
(2 n+1) P_{n}(x)=P_{n+1}^{\prime}(x)-P_{n-1}^{\prime}(x) .
$$

(c) Use part (b) to show that

$$
\int_{0}^{1} P_{n}(x) d x=\left\{\begin{array}{cl}
1 & \text { if } n=0 \\
0 & \text { if } n=2 m, m>0 \\
\frac{(-1)^{m}(2 m)!}{2^{2 m+1} m!(m+1)!} & \text { if } n=2 m+1
\end{array}\right.
$$

