466 '07 (E.A. Coutsias)-HOMEWORK 7

due: Friday, November 2, 2007

October 24, 2007

1. Consider the Legendre equation

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\alpha(\alpha+1) y=0
$$

Find the power series about the origin for each of the two linearly independent solutions of the equation. Show that if α is zero or a positive ieven integer, $\alpha=2 n$, the series expansion for one of these solutions reduces to a polynomial of degree $2 n$ containing only even powers of x and show that corresponding to $a=0,2,4$ these polynomials are $1,1-3 x^{2}, 1-10 x^{2}+(35 / 3) x^{4}$. Show that if α is a positive, odd integer, $\alpha=2 n+1$, the series for the other solution reduces to a polynomial of degree $2 n+1$, containing only odd powers of x and that corresponding to $a=1,3,5$ these polynomials are $x, x-(5 / 3) x^{3}$, $x-(14 / 3) x^{3}+(21 / 5) x^{5}$. The Legendre polynomial P_{n} is defined as the polynomial solution of the Legendre equation with $\alpha=n$ which satisfies $P_{n}(1)=1$ Find $P_{0}(x), P_{1}(x), P_{2}(x)$ and $P_{3}(x)$.
2. Find the first three terms in linearly independent solutions of

$$
y^{\prime \prime}-x y=0,
$$

in powers of $(x-1)$.
3. Determine the singular points of the equations

$$
\begin{array}{ll}
(a) & z u^{\prime \prime}+u^{\prime}-u=0 \\
(b) & z u^{\prime \prime}-(1+z) u^{\prime}+2(1-z) u=0 \\
(c) & \left(2 z+z^{3}\right) u^{\prime \prime}-u^{\prime}-6 z u=0
\end{array}
$$

In each case determine the exponents of the regular singular points (the point $z=\infty$ should also be considered).
4. (Optional) For equations $3 a, 3 b$, find two independent series solutions valid near $z=0$.
5. Determine a particular solution of the following equations in the form of a series valid near $x=0$. In each case obtain the first three nonvanishing terms
(a) $y^{\prime \prime}+y=e^{x}$
(b) $\quad y^{\prime \prime}+x y=1$
(c) $x y^{\prime \prime}-y=x$
(d) $\quad x^{2} y^{\prime \prime}+y=\frac{e^{x}}{\sqrt{x}}$

