466 '07 (E.A. Coutsias)-HOMEWORK 7

due: Friday, November 2, 2007

October 24, 2007

1. Consider the Legendre equation

$$(1-x^2)y'' - 2xy' + \alpha(\alpha+1)y = 0.$$

Find the power series about the origin for each of the two linearly independent solutions of the equation. Show that if α is zero or a positive ieven integer, $\alpha = 2n$, the series expansion for one of these solutions reduces to a polynomial of degree 2n containing only even powers of x and show that corresponding to a = 0, 2, 4 these polynomials are 1, $1 - 3x^2$, $1 - 10x^2 + (35/3)x^4$. Show that if α is a positive, odd integer, $\alpha = 2n + 1$, the series for the other solution reduces to a polynomial of degree 2n + 1, containing only odd powers of x and that corresponding to a = 1, 3, 5 these polynomials are $x, x - (5/3)x^3$, $x - (14/3)x^3 + (21/5)x^5$. The Legendre polynomial P_n is defined as the polynomial solution of the Legendre equation with $\alpha = n$ which satisfies $P_n(1) = 1$ Find $P_0(x)$, $P_1(x)$, $P_2(x)$ and $P_3(x)$.

2. Find the first three terms in linearly independent solutions of

$$y'' - xy = 0 ,$$

in powers of (x-1).

3. Determine the singular points of the equations

(a)
$$zu'' + u' - u = 0$$

(b) $zu'' - (1+z)u' + 2(1-z)u = 0$
(c) $(2z + z^3)u'' - u' - 6zu = 0$

In each case determine the exponents of the regular singular points (the point $z = \infty$ should also be considered).

- 4. (*Optional*) For equations 3a, 3b, find two independent series solutions valid near z = 0.
- 5. Determine a <u>particular</u> solution of the following equations in the form of a series valid near x = 0. In each case obtain the first three nonvanishing terms

(a)
$$y'' + y = e^x$$

(b) $y'' + xy = 1$
(c) $xy'' - y = x$
(d) $x^2y'' + y = \frac{e^x}{\sqrt{x}}$