466 '06 (E.A. Coutsias)-HOMEWORK 6

due: Friday, October 26, 2007
October 24, 2007

1. (a) Given

$$
\Gamma(\alpha)=\int_{0}^{\infty} x^{\alpha-1} e^{-x} d x, \Gamma(\beta)=\int_{0}^{\infty} y^{\beta-1} e^{-y} d y
$$

show that

$$
\begin{aligned}
\Gamma(\alpha) \Gamma(\beta) & =2 \Gamma(\alpha+\beta) \int_{0}^{\pi / 2} \cos ^{2 \alpha-1} \theta \sin ^{2 \beta-1} \theta d \theta \\
& =\Gamma(\alpha+\beta) \int_{0}^{1} t^{\alpha-1}(1-t)^{\beta-1} d t
\end{aligned}
$$

(b) Use the result from problem 4.3c, namely that

$$
\int_{-\infty}^{\infty} \frac{e^{\alpha t}}{1+e^{t}} d t=\frac{\pi}{\sin \pi \alpha}
$$

to show that

$$
\Gamma(\alpha) \Gamma(1-\alpha)=\frac{\pi}{\sin \pi \alpha}
$$

(Hint: Use polar coordinates.)
2. The Laplace transform of $f(t)$ is

$$
F(s)=\frac{1}{(s-a)^{\nu+1}}, \operatorname{Re}(\nu)>-1
$$

Find $f(t)$ by contour integration. Here, we want a real answer for $f(t)$ when ν is real so the branch should be chosen so that $F(s)$ is real when s is real, $s>a . a$ is a real constant.
(Hint: See the posted notes; the inversion using the contour integral formula is straightforward for $-1<\operatorname{Re}(\nu)<0$, while the extension to positive real parts can be done by using integration by parts to reduce the exponent to the case $-1<\operatorname{Re}(\nu)<0$.)
3. Use Laplace transforms to solve the following problem for $u(t)$:

$$
\frac{d u}{d t}+\int_{0}^{t} u(x) d x=H(t)=\left\{\begin{array}{ll}
1, & t \geq 0 \\
0 & , \quad t<0
\end{array}, u(0)=2 .\right.
$$

4. $f(t)$ is periodic with period T, i.e. $f(t+n T)=f(t)$, for n integer,

$$
g(t)=\left\{\begin{array}{cc}
f(t) & 0<t<T \\
0, & t>T
\end{array} .\right.
$$

Show that

$$
F(s)=\frac{G(s)}{1-e^{-s T}}, s>0
$$

Use this result to show that if $f(t)=|\sin \omega t|$, then

$$
F(s)=\frac{\omega}{s^{2}+\omega^{2}} \operatorname{coth}\left(\frac{\pi s}{2 \omega}\right) .
$$

5. Abel's integral equation for the function $\phi(t), t>0$ is

$$
\int_{0}^{t} \phi(\tau)(t-\tau)^{-\alpha} d \tau=f(t), t>0
$$

where α is a real constant, $0<\alpha<1$, and $f(t)$ is given. Solve for $\phi(t)$ using Laplace transforms.
6. Given that

$$
J_{0}(a t)=\frac{1}{\pi} \int_{0}^{\pi} \cos (a t \sin \theta) d \theta
$$

show that the Laplace transform of $J_{0}(a t)$ is $\left(s^{2}+a^{2}\right)^{-1 / 2}$. Hence prove that

$$
\int_{0}^{t} J_{0}(\tau) J_{0}(t-\tau) d \tau=\sin t
$$

7. The equation

$$
\frac{\partial^{2} u}{\partial x^{2}}-k^{2} u=\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}},
$$

where k and c are (positive) physical constants, governs the motion of a string on an elastic foundation. Consider the case of a semi-infinite string, initially at rest with zero displacement and subject to the boundary condition $u=\sin \omega t, x=0, t>0$. Using a Laplace transform method, find the solution in the transformed domain. Outline the main steps involved in the inversion for $\omega>k c$.

