466 '07 (E.A. Coutsias)-HOMEWORK 3

due: Thursday, September 13, 2007

September 11, 2007

1. Consider the power series

$$
P(z)=\frac{1}{1!}+\frac{1}{2!} z+\frac{1}{3!} z^{2}+\cdots=\frac{e^{z}-1}{z} .
$$

The reciprocal series

$$
P^{-1}(z)=\frac{z}{e^{z}-1}=: \sum_{n=0}^{\infty} \frac{B_{n}}{n!} z^{n}
$$

defines the Bernoulli numbers, B_{n}. Using the Wronski fromulas show that

$$
B_{0}=1, B_{1}=-\frac{1}{2}, B_{2}=\frac{1}{6}, B_{3}=0, B_{4}=-\frac{1}{30}
$$

2. Consider the series $A(z)=\sum_{0}^{\infty} a_{n} z^{n}$ where a_{n} satisfy the recurrence relation $a_{n+2}=a_{n+1}+2 a_{n}$, with $a_{0}=a_{1}=1$ (i.e. $a_{2}=3, a_{3}=5$, $a_{4}=11, \ldots$ etc).
(i) By using the substitution $a_{n}=r^{n}$, show that

$$
a_{n}=c_{1}(-1)^{n}+c_{2} 2^{n}
$$

where $c-1, c_{2}$ are constants. Find c_{1} and c_{2}.
(ii) Use the Wronski formulas to show that

$$
A^{-1}(z)=1-z-2 z^{2}
$$

(iii) What is the radius of convergence of A ?
(Hint: relate A^{-1} to A. Where does A^{-1} vanish?)
3. Use the binomial series

$$
Q_{\alpha}(z)=1+\binom{\alpha}{1} z+\binom{\alpha}{2} z^{2}+\binom{\alpha}{3} z^{3}+\cdots=(1+z)^{\alpha}
$$

and the property $Q_{\alpha}(z) Q_{\beta}(z)=Q_{\alpha+\beta}(z)$ to derive the identity (Vandermonde formula)

$$
\sum_{k=0}^{n}\binom{\alpha}{k}\binom{\beta}{n-k}=\binom{\alpha+\beta}{n}
$$

Hint: use the Cauchy product formula for series:

$$
\begin{aligned}
\left(\sum_{0}^{\infty} a_{n} z^{n}\right)\left(\sum_{0}^{\infty} b_{n} z^{n}\right) & =\sum_{0}^{\infty} c_{n} z^{n} \\
& \Rightarrow c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}
\end{aligned}
$$

4. Show that the two Laurent expansions

$$
L_{1}(z)=-\left(\frac{1}{z}+1+z+z^{2}+\cdots\right), 0<|z|<1
$$

and

$$
L_{2}(z)=\frac{1}{z^{2}}+\frac{1}{z^{3}}+\frac{1}{z^{4}}+\cdots,|z|>1
$$

are analytic continuations of each other.
(Hint: show that, although they are valid in nonoverlapping domains, they both sum to the "same" function - which can thus be extended to a single function, valid in both domains. What is that function?).
5. Given that

$$
\tan ^{-1} x=\int_{0}^{x} \frac{d t}{1+t^{2}} ; x \text { real. }
$$

Show that the analytic continuation of $\tan ^{-1} x$ to complex values $(x \rightarrow$ z) is

$$
\begin{aligned}
\tan ^{-1} z=\int_{0}^{z} \frac{d t}{1+t^{2}} & =\frac{1}{2 i} \int_{0}^{z}\left(\frac{1}{t-i}-\frac{1}{t+i}\right) d t \\
& =\frac{1}{2 i} \log \left(\frac{i-z}{i+z}\right)=\frac{1}{2 i} \log \left(\frac{1+i z}{1-i z}\right) .
\end{aligned}
$$

(Hint: show that $\tan ^{-1} z$ reduces to $\tan ^{-1} x$ for z real.)
6. How is the half-plane $\operatorname{Re}(z)>1$ mapped by $w=z^{2}$? Discuss also the image of $\operatorname{Re}(z)>-1$.
7. Determine a branch of $\left(1-z^{2}\right)^{1 / 2}$ which takes on the value +1 at $z=0$. Find the values on this branch at $z=+2, z=-2$, as each point is approached along a path in the upper and lower half-planes (i.e. four values are requested).
(Hint: put the cuts $|x|>1, y=0$.)
8. What part of the z-plane corresponds to the interior of the unit circle in the w-plane if

$$
w=\frac{z-i}{z+i} ?
$$

Note: The Wronski formulas for series inversion

Given the (formal) power series $A(z)=\sum_{0}^{\infty} a_{n} z^{n}$ with $a_{0} \neq 0$, the series for the reciprocal, A^{-1} is given by $A^{-1}=: B=: \sum_{0}^{\infty} b_{n} z^{n}$ where the reciprocal coefficients b_{k} are found by requiring $A B=1$. Applying the Cauchy product formula and solving for the b_{k} successively, it can be shown that

$$
b_{0}=\frac{1}{a_{0}}, b_{1}=-\frac{a_{1}}{a_{0}^{2}}, \cdots, b_{k}=\frac{(-1)^{k}}{a_{0}^{k+1}}\left|\begin{array}{rrrrr}
a_{1} & a_{2} & \cdots & a_{k-1} & a_{k} \\
a_{0} & a_{1} & \cdots & a_{k-2} & a_{k-1} \\
0 & a_{0} & \cdots & a_{k-3} & a_{k-2} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & a_{0} & a_{1}
\end{array}\right| .
$$

