466 '07 (E.A. Coutsias)-HOMEWORK 3

due: Thursday, September 13, 2007
September 11, 2007

1. Consider the power series
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defines the Bernoulli numbers, B,,. Using the Wronski fromulas show
that ) )
By=1, Bi=—=, By =~ .
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2. Consider the series A(z) = Y% a,2™ where a, satisfy the recurrence
relation a,42 = api1 + 2a,, with ag = a1 = 1 (i.e. ay = 3, a3 = 5,
ag = 11,... etc).
(i) By using the substitution a,, = ", show that

an, = c1(—1)" + 2"

where ¢ — 1, ¢y are constants. Find ¢; and cs.
(ii) Use the Wronski formulas to show that

AN ) =1—2-227.

(iii) What is the radius of convergence of A?
(Hint: relate A~' to A. Where does A™' vanish? )



3. Use the binomial series

Qa<z>=1+<‘}‘)z+(‘;>22+<§>z3+...:(1+z)a

and the property Q,(2)Qs(2) = Qa+s(2) to derive the identity (Van-
dermonde formula)
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Hint: use the Cauchy product formula for series:
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4. Show that the two Laurent expansions
1
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and 111

LQ(Z):;+;+;+'“ , |zl >1
are analytic continuations of each other.
(Hint: show that, although they are valid in nonoverlapping domains,
they both sum to the “same” function - which can thus be extended to
a single function, valid in both domains. What is that function?).

5. Given that
1 z dt
tan” x = —— ; x real.
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Show that the analytic continuation of tan™! z to complex values (z —
z) is
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(Hint: show that tan™! z reduces to tan~' z for z real.)
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6. How is the half-plane Re(z) > 1 mapped by w = 22? Discuss also the
image of Re(z) > —1.

7. Determine a branch of (1 — z2)1/2 which takes on the value +1 at z = 0.
Find the values on this branch at z = +2, z = —2, as each point is
approached along a path in the upper and lower half-planes (i.e. four
values are requested).

(Hint: put the cuts |x| > 1, y=0.)

8. What part of the z—plane corresponds to the interior of the unit circle
in the w—plane if
z—1

z+1

?

w =

Note: The Wronski formulas for series inver-
sion

Given the (formal) power series A(z) = >0° a,2™ with ag # 0, the series for
the reciprocal, A~! is given by A™! =: B =: 30°b,,2" where the reciprocal
coefficients by, are found by requiring AB = 1. Applying the Cauchy product
formula and solving for the by successively, it can be shown that
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