466 '07 (E.A. Coutsias)-HOMEWORK 3

due: Thursday, September 13, 2007

September 11, 2007

1. Consider the power series

$$P(z) = \frac{1}{1!} + \frac{1}{2!}z + \frac{1}{3!}z^2 + \dots = \frac{e^z - 1}{z}$$

The reciprocal series

$$P^{-1}(z) = \frac{z}{e^z - 1} =: \sum_{n=0}^{\infty} \frac{B_n}{n!} z^n$$

defines the Bernoulli numbers, B_n . Using the Wronski fromulas show that

$$B_0 = 1$$
, $B_1 = -\frac{1}{2}$, $B_2 = \frac{1}{6}$, $B_3 = 0$, $B_4 = -\frac{1}{30}$

.

2. Consider the series $A(z) = \sum_{0}^{\infty} a_n z^n$ where a_n satisfy the recurrence relation $a_{n+2} = a_{n+1} + 2a_n$, with $a_0 = a_1 = 1$ (i.e. $a_2 = 3$, $a_3 = 5$, $a_4 = 11, \dots$ etc).

(i) By using the substitution $a_n = r^n$, show that

$$a_n = c_1(-1)^n + c_2 2^n$$

where c - 1, c_2 are constants. Find c_1 and c_2 . (ii) Use the Wronski formulas to show that

$$A^{-1}(z) = 1 - z - 2z^2$$
.

(iii) What is the radius of convergence of A? (*Hint: relate* A^{-1} to A. Where does A^{-1} vanish?) 3. Use the binomial series

$$Q_{\alpha}(z) = 1 + \begin{pmatrix} \alpha \\ 1 \end{pmatrix} z + \begin{pmatrix} \alpha \\ 2 \end{pmatrix} z^{2} + \begin{pmatrix} \alpha \\ 3 \end{pmatrix} z^{3} + \dots = (1+z)^{\alpha}$$

and the property $Q_{\alpha}(z)Q_{\beta}(z) = Q_{\alpha+\beta}(z)$ to derive the identity (Vandermonde formula)

$$\sum_{k=0}^{n} \left(\begin{array}{c} \alpha \\ k \end{array} \right) \left(\begin{array}{c} \beta \\ n-k \end{array} \right) = \left(\begin{array}{c} \alpha+\beta \\ n \end{array} \right)$$

Hint: use the Cauchy product formula for series:

$$\left(\sum_{0}^{\infty} a_{n} z^{n}\right) \left(\sum_{0}^{\infty} b_{n} z^{n}\right) = \sum_{0}^{\infty} c_{n} z^{n}$$
$$\Rightarrow c_{n} = \sum_{k=0}^{n} a_{k} b_{n-k}$$

4. Show that the two Laurent expansions

$$L_1(z) = -\left(\frac{1}{z} + 1 + z + z^2 + \cdots\right) , \ 0 < |z| < 1$$

and

$$L_2(z) = \frac{1}{z^2} + \frac{1}{z^3} + \frac{1}{z^4} + \cdots , \ |z| > 1$$

are analytic continuations of each other.

(*Hint: show that, although they are valid in nonoverlapping domains, they both sum to the "same" function - which can thus be extended to a single function, valid in both domains. What is that function?*).

5. Given that

$$\tan^{-1} x = \int_0^x \frac{dt}{1+t^2}$$
; x real.

Show that the analytic continuation of $\tan^{-1} x$ to complex values $(x \rightarrow z)$ is

$$\tan^{-1} z = \int_0^z \frac{dt}{1+t^2} = \frac{1}{2i} \int_0^z \left(\frac{1}{t-i} - \frac{1}{t+i}\right) dt$$
$$= \frac{1}{2i} \log\left(\frac{i-z}{i+z}\right) = \frac{1}{2i} \log\left(\frac{1+iz}{1-iz}\right)$$

(*Hint: show that* $\tan^{-1} z$ reduces to $\tan^{-1} x$ for z real.)

- 6. How is the half-plane Re(z) > 1 mapped by $w = z^2$? Discuss also the image of Re(z) > -1.
- 7. Determine a branch of $(1 z^2)^{1/2}$ which takes on the value +1 at z = 0. Find the values on this branch at z = +2, z = -2, as each point is approached along a path in the upper and lower half-planes (i.e. four values are requested). (*Hint: put the cuts* |x| > 1, y = 0.)
- 8. What part of the z-plane corresponds to the interior of the unit circle in the w-plane if

$$w = \frac{z-i}{z+i} ?$$

Note: The Wronski formulas for series inversion

Given the (formal) power series $A(z) = \sum_{0}^{\infty} a_n z^n$ with $a_0 \neq 0$, the series for the reciprocal, A^{-1} is given by $A^{-1} =: B =: \sum_{0}^{\infty} b_n z^n$ where the reciprocal coefficients b_k are found by requiring AB = 1. Applying the Cauchy product formula and solving for the b_k successively, it can be shown that

$$b_0 = \frac{1}{a_0} , \ b_1 = -\frac{a_1}{a_0^2} , \ \cdots , \ b_k = \frac{(-1)^k}{a_0^{k+1}} \begin{vmatrix} a_1 & a_2 & \cdots & a_{k-1} & a_k \\ a_0 & a_1 & \cdots & a_{k-2} & a_{k-1} \\ 0 & a_0 & \cdots & a_{k-3} & a_{k-2} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & a_0 & a_1 \end{vmatrix} .$$