466 '07-HOMEWORK 2

due: Thursday, September 6, 2007

September 5, 2007

1. Evaluate each of the following contour integrals:
(a) $\quad I_{1}=\int_{\mathcal{C}}(z-1) d z$ where \mathcal{C} is the straight line from $z=1$ to $z=i$.
(b) $\quad I_{2}=\int_{-i}^{i}\left(z^{2}+i y^{2}\right) d z$ on the right half of the unit circle $|z|=1$, traversed in an anticlockwise direction .
(c) $I_{3}=\int_{\mathcal{C}} \frac{(z+2)}{z} d z$ on $z=2 e^{i \theta}, 0 \leq \theta \leq 2 \pi$,
where \mathcal{C} is a simple closed (counterclockwise) contour, enclosing the origin.
2. The Bessel function $I_{0}(t)$ can be defined by

$$
I_{0}(t)=\sum_{n=0}^{\infty} \frac{(t / 2)^{2 n}}{(n!)^{2}}
$$

Show that

$$
\frac{(t / 2)^{2 n}}{(n!)^{2}}=\frac{(t / 2)^{n}}{(n!)} \frac{1}{2 \pi i} \int_{\mathcal{C}} \frac{e^{z t / 2}}{z^{n+1}} d z
$$

where \mathcal{C} is a simple closed contour including the origin. Using this result show that

$$
I_{0}(t)=\frac{1}{2 \pi i} \int_{\mathcal{C}} \frac{e^{\frac{t}{2}\left(z+\frac{1}{z}\right)}}{z} d z=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{t \cos \theta} d \theta
$$

3. In solving the problem of torsional oscillations in a jet engine, the following contour integral arises for the angular velocity ω of the compressor

$$
\omega=\frac{K}{2 \pi i} \int_{\mathcal{C}} \frac{e^{z t}}{z^{2}\left(z^{2}+a^{2}\right)} d z
$$

where

$$
K=\frac{T t}{I_{1}+I_{2}}, a^{2}=\tau\left(\frac{I_{1}+I_{2}}{I_{1} I_{2}}\right)
$$

T the turbine torque
$\tau \quad$ the torque to twist the coupling shaft through 1 rad
with: $\quad I_{1}$ the moment of inertia of the turbine
I_{2} the moment of inertia of the compressor
\mathcal{C} arbitrary simple closed curve enclosing points $z=0, \pm i a$.
Show that the angular velocity ω can be considered to have two parts, one which increases linearly with time, and one which represents an oscillation of angular frequency a.
4. If $f(z)$ is an entire analytic function such that $\mathcal{R} e[f(z)] \leq M$ for all z (with M a constant), show that $f(z)$ is constant.
(Hint: apply Liouville's thm. to the entire function $e^{f(z)}$).
5. Let $f(z)$ be an entire function which is real on the real axis and imaginary on the imaginary axis. Prove that f is an odd function.
Hint: apply the Schwarz reflection principle to the function if $i z)$.
6. Let

$$
f(z)=\sum_{k=0}^{\infty} \frac{k^{3}}{3^{k}} z^{k} .
$$

Compute each of the following and give reasons for your steps
(a) $\quad f^{(6)}(0)$
(b) $\int_{|z|=1} \frac{f(z)}{z^{5}} d z$
(c) $\int_{|z|=1} e^{z} f(z) d z$
(d) $\int_{|z|=1} \frac{f(z) \sin z}{z^{2}} d z$
7. Find the radius of convergence of the series
(a) $z+\frac{(a-b) z^{2}}{2!}+\frac{(a-b)(a-2 b) z^{3}}{3!}+\ldots$
(b) $\quad \sum_{n=1}^{\infty} \frac{n}{2^{n}}(z-i)^{n}$
(c) $\quad \sum_{n=2}^{\infty}\left(\frac{n+1}{2+n}\right)(z-2 i)^{n}$
8. The fundamental theorem of algebra implies that any polynomial can be factorized

$$
P(z)=C\left(z-z_{1}\right) \ldots\left(z-z_{n}\right)
$$

where z_{1}, \ldots, z_{n} are the roots of $P(z)$. Use the result

$$
\frac{(f g \ldots j k)^{\prime}}{f g \ldots j k)}=\frac{f^{\prime}}{f}+\frac{g^{\prime}}{g} \ldots+\frac{k^{\prime}}{k}
$$

to show that the number of roots of $P(z)$ inside any contour \mathcal{C} is given by

$$
N=\frac{1}{2 \pi i} \oint_{\mathcal{C}} \frac{P^{\prime}(z)}{P(z)} d z
$$

(Note: the factors above are not necessarily distinct; N counts the roots interior to the contour \mathcal{C} with their multiplicities. It is assumed here that no roots are actually situated on \mathcal{C}.)

