466 ’07 (E.A. Coutsias)-Midterm 2

due: Tuesday, December 4, 2007

November 29, 2007

1. Consider the ODE

$$
\frac{d^{2} u}{d z^{2}}+\left(2-\frac{2}{z^{2}}\right) u=0 .
$$

Find the first two (nonzero) terms in the series for each of two linearly independent solutions near $z=0$.
2. Consider the ODE

$$
x \frac{d^{2} u}{d x^{2}}+(2-x) \frac{d u}{d x}+\lambda u=0 .
$$

Find a series expansion for the solution which is regular in the neighborhood of $x=0$ (find the general recurrence relation). What is the radius of convergence of the series? For certain values of λ (called eigenvalues) your series should reduce to polynomials (called eigenfunctions). What are the eigenvalues λ_{n} ? The corresponding eigenfunctions (call them $\left.L_{n}(x)\right)$ are orthogonal on $0 \leq x<\infty$ with respect to an appropriate weight function. Derive this orthogonality relation. Find $L_{0}(x), L_{1}(x)$ and $L_{2}(x)$.
3. The inner boundary of a circular annulus of radii 1 and $R>1$ is maintained at temperature zero while the outer boundary is maintained at temerature $4+\cos 6 \theta+\sin \theta$. Find the steady state temperature in the annulus. Thus you must solve

$$
\begin{aligned}
u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta} & =0 \quad, \quad 1<r<R \\
u(1, \theta) & =0 \quad, \quad u(R, \theta)=4+\cos 6 \theta+\sin \theta
\end{aligned}
$$

(you must evaluate all expansion coefficients).
4. Consider an infinitely long channel of unit width with acoustically hard walls. We wish to propagate time-harmonic waves of fixed (angular) frequency ω from left to right along the channel. The waves are governed by the wave equation

$$
\Delta u=\frac{1}{c^{2}} u_{t t}
$$

where c is the (fixed) speed of wave propagation in the channel. Thus you are being asked to find all possible time-harmonic wave functions $u(x, y, t)$ which satisfy

$$
u_{x x}+u_{y y}=\frac{1}{c^{2}} u_{t t}, u(x, 0, t)=u(x, 1, t)=0 .
$$

If we now keep c fixed but vary ω, can we propagate waves of arbitrary ω along this channel from left to right?
5. Find the first 3 terms in each of two independent series solutions for the following equations about the point indicated

$$
\begin{array}{r}
z \frac{d^{2} w}{d z^{2}}+\frac{d w}{d z}-4 z w=0 \quad, \quad z=0 \\
z^{3} \frac{d^{2} w}{d z^{2}}+\left(z^{2}-1\right) \frac{d w}{d z}+z w=0 \quad, \quad z=\infty .
\end{array}
$$

