# 466 '07-HOMEWORK 1 

due: Thursday, August 30, 2007
August 21, 2007

1. Is $u(x, y)=x \cos y \cosh x+y \sin y \sinh x$ the real part of an analytic function? Answer the same question for $u(x, y)=x \cos y \cosh x-$ $y \sin y \sinh x$.
2. Derive the Cauchy-Riemann equations in polar coordinates and determine if $r e^{\cos \theta}$ is a harmonic function.
3. If $f(z)=u(x, y)+i v(x, y)$, show that the curves $u(x, y)=$ const and $v(x, y)=$ const are orthogonal at every point where $f^{\prime}(z)$ exists and is not zero. Sketch the families of curves for the case where $f(z)=$ $u+i v=z^{2}$ and comment on the structure near the origin of the $z$ plane.
4. Establish the formula

$$
1+z+z^{2}+\cdots+z^{n}=\frac{1-z^{n+1}}{1-z}
$$

for the sum of a finite geometric series. Then, derive the formulas

$$
\begin{aligned}
& 1+\cos \theta+\cos 2 \theta+\cdots+\cos n \theta=\frac{1}{2}+\frac{\sin \left[\left(n+\frac{1}{2}\right) \theta\right]}{2 \sin \frac{\theta}{2}} \\
& \sin \theta+\sin 2 \theta+\cdots+\sin n \theta=\frac{1}{2} \cot \frac{\theta}{2}-\frac{\cos \left[\left(n+\frac{1}{2}\right) \theta\right]}{2 \sin \frac{\theta}{2}}
\end{aligned}
$$

5. Write the following complex numbers in the form $a+i b$ :
(a) $(1+2 i)^{2}$
(b) $(1+2 i)^{9}$
6. Find each of the roots and locate them geometrically
(a) $(-2 \sqrt{3}-2 i)^{1 / 4}$
(b) $(-1+i)^{1 / 3}$
7. Find all the values of $z$ such that $z^{5}=32$.
8. Find all the values of $i^{i}$.
9. $\left(\tan ^{-1}:=\arctan \right)$
(a) Show that

$$
\tan ^{-1} z=k \pi+\frac{1}{2 i} \log \left(\frac{1+i z}{1-i z}\right)
$$

where $k=0, \pm 1, \pm 2, \ldots$
(b) Find the values of $\tan ^{-1}(1-2 i)$.

