466 '07-HOMEWORK 1

due: Thursday, August 30, 2007

August 21, 2007

- 1. Is $u(x,y) = x \cos y \cosh x + y \sin y \sinh x$ the real part of an analytic function? Answer the same question for $u(x,y) = x \cos y \cosh x y \sin y \sinh x$.
- 2. Derive the Cauchy-Riemann equations in polar coordinates and determine if $re^{\cos\theta}$ is a harmonic function.
- 3. If f(z) = u(x, y) + iv(x, y), show that the curves u(x, y) = const and v(x, y) = const are orthogonal at every point where f'(z) exists and is not zero. Sketch the families of curves for the case where $f(z) = u + iv = z^2$ and comment on the structure near the origin of the z-plane.
- 4. Establish the formula

$$1 + z + z^2 + \dots + z^n = \frac{1 - z^{n+1}}{1 - z}$$
,

for the sum of a finite geometric series. Then, derive the formulas

$$1 + \cos\theta + \cos 2\theta + \dots + \cos n\theta = \frac{1}{2} + \frac{\sin\left[\left(n + \frac{1}{2}\right)\theta\right]}{2\sin\frac{\theta}{2}}$$
$$\sin\theta + \sin 2\theta + \dots + \sin n\theta = \frac{1}{2}\cot\frac{\theta}{2} - \frac{\cos\left[\left(n + \frac{1}{2}\right)\theta\right]}{2\sin\frac{\theta}{2}}$$

- 5. Write the following complex numbers in the form a + ib:
 - (a) $(1+2i)^2$
 - (b) $(1+2i)^9$
- 6. Find each of the roots and locate them geometrically
 - (a) $(-2\sqrt{3} 2i)^{1/4}$ (b) $(-1+i)^{1/3}$
- 7. Find all the values of z such that $z^5 = 32$.
- 8. Find all the values of i^i .
- 9. $(\tan^{-1} := \arctan)$
 - (a) Show that

$$\tan^{-1} z = k\pi + \frac{1}{2i} \operatorname{Log}\left(\frac{1+iz}{1-iz}\right)$$

where $k = 0, \pm 1, \pm 2, ...$

(b) Find the values of $\tan^{-1}(1-2i)$.