Solutions, 316-VI

February 5, 2003

1 Problem 4.6.7

Find the general solution of

dy" — 4y + 26y =0 .

Solution:
26y = 26e"
+ o+
—4y = —4re™
+ +
4’}/” — 47,261"?5

0 = (4r* —4r 4 26)e™
Then, we factor
4r° —4r +26=> 1y = p+vi =24 10
so that the general solution is

y(t) = Ae' cos (vt) + Be' sin (vt)
Ae* cos (10t) + Be® sin (10t)



2 Problem 4.6.21

Solve the IVP

y' =2y —2y=0, y(0)=2, y(0)=1.

Solution:
2y = 2"
+ +
2y = 2re
+ +
noo_ TQert

Then, we factor
P+ 2r+2=ry =141

so that the general solution is

y(t) = Ae'cost+ Be 'sint
y'(t) = Ae*(—cost—sint)+ Be '(—sint + cost)

Then
y(0)=2=A4,4y(0)=1=-A+B = B=3

giving for the solution:

y(t) = 2e “cost + 3e 'sint

3 Problem 4.6.28

To see the effect of changing the parameter b in the problem

y'+by' +4y=0; y(0)=1, y'(0)=0



solve the problem for b = 5, 4,2 and sketch the solutions. Solution:

4y = 4e"
+ 4
by = bre”
+ 4
o= e
0 = (r*+br+4)"

and factoring:

bV 16 b/ (b—4)(b+4)
B 2 B 2

T+

so that the equation has two real, distinct roots for b < —4 or b > 4, two real
equal roots (double root) for b = +4 and two complex conjugate roots for
—4 < b < 4. Therefore the solutions for the 3 cases given (b = 5,4, 2) are:

b=5=r,=-1,r_ =—4
y(t) = Ae”'+Be ™ ; y(0)=1
y'(t) — _Aeft _ 4Bef4t : yl(o) =0
4 -1
A+B=1, -A-4B=0 = A=, B=—
4 1
y(t) = ge_t— 36_4t
b= 4= ry = —2(double root)
y(t) = Ae™® 4+ Bte™® ;  y(0)=1
y'(t) = —24e " + Be (1 —-2t) ; ¢'(0)=0
A=1, 24+B=0 = A=1, B=2

y(t) = e + 2te™

b=2=7r,=-1+i/3
y(t) = Ae™ " cos (\/gt) + Be'sin (\/gt) cy(0)=1, 4 (0)=0

3



y'(t) = Ae”? (— cos (\/gt) —/3sin (\/gt)) + Be™ (— sin (\/gt) +v/3cos (\/gt))

A=1, -A+V3B=0 = A:l,B:lg

y(t) = e *cos (\/gt) + ?et sin (\/gt)

We now use Maple to plot all three functions for 0 < ¢ < 27.
> restart:

m:=1
Om0 := 5.
> Y1 :=t -> (4/3)*exp(-t) - (1/3)*exp(-4*t);
V1=t o e = Let-an
3 3
> Y2 1=t -> exp(-2%t)*(1 + 2xt); Y3 :=t -> exp(-t)*(cos(sqrt(3)*t)
+

>  (1/sqrt(3))*sin(sqrt(3)*t));

Y2 :=t— 720 (1 +2¢)

sin(v/31)

Y3 :=1t— e (cos(v/3t) + Ve )

> plot ([Y1(t),Y2(¢),Y3(t)], t =
> 0..2%Pi,color=[blue,black,red],labels=[t,y],legend=[overdamped,critica
> 1,underdamped],linestyle=[DASHDOT,SOLID,DASH]);



fffffffffffffffffff overdamped
_— critical
fffffffffffffffffff underdamped

4 Problem 4.6.39

Swinging Door: The motion of a swinging door with an adjustment screw
that controls the amount of friction on the hinges is governed by the initial
value problem

10" +00 + k0 =0; 0(0) =6y, 6'(0) =ug ,

where fis the angle that the door is open, [ is the moment of inertia of the
door about its hinges, b > 0 is a damping constant that varies with the
amount of friction on the door, £ > 0 is the spring constant associated with
the swinging door, 6, is the initial angle that the door is opened, and uy is the
initial angular velocity imparted to the door. If I and k are fixed, determine
for which values of b the door will not continually swing back and forth when
closing.



t

Solution: Substituting y(¢) = €™ as usual we arrive at the characteristic

equation for r:

—b+ b2 —Alk

I +bor+k=0=>r, =
rT+or + T+ %

It is clear that to avoid oscillations, we must avoid complex roots. The
limiting value of b for which oscillations will not happen is the critical value
(boundary between overdamped and underdamped cases), i.e. when the
discriminant of the quadratic vanishes:

b2 — ATk = 0 = boriticar = 2V 1k

when r = —b/2I and all values of b > bepisicar give non-oscillatory motion.



