Solutions, 316-VI

February 5, 2003

1 Problem 4.6.7

Find the general solution of

$$4y'' - 4y' + 26y = 0.$$

Solution:

Then, we factor

$$4r^2 - 4r + 26 \Rightarrow r_{\pm} = \mu \pm \nu i = 2 \pm 10i$$

so that the general solution is

$$y(t) = Ae^{\mu t}\cos(\nu t) + Be^{\mu t}\sin(\nu t)$$

= $Ae^{2t}\cos(10t) + Be^{2t}\sin(10t)$

2 Problem 4.6.21

Solve the IVP

$$y'' - 2y' - 2y = 0$$
, $y(0) = 2$, $y'(0) = 1$.

Solution:

Then, we factor

$$r^2 + 2r + 2 \Rightarrow r_{\pm} = -1 \pm i$$

so that the general solution is

$$y(t) = Ae^{-t}\cos t + Be^{-t}\sin t$$

 $y'(t) = Ae^{-t}(-\cos t - \sin t) + Be^{-t}(-\sin t + \cos t)$

Then

$$y(0) = 2 = A$$
, $y'(0) = 1 = -A + B \Rightarrow B = 3$

giving for the solution:

$$y(t) = 2e^{-t}\cos t + 3e^{-t}\sin t$$

3 Problem 4.6.28

To see the effect of changing the parameter b in the problem

$$y'' + by' + 4y = 0$$
; $y(0) = 1$, $y'(0) = 0$

solve the problem for b = 5, 4, 2 and sketch the solutions. Solution:

and factoring:

$$r_{\pm} = \frac{-b \pm \sqrt{b^2 - 16}}{2} = \frac{-b \pm \sqrt{(b-4)(b+4)}}{2}$$

so that the equation has two real, distinct roots for b < -4 or b > 4, two real equal roots (double root) for $b = \pm 4$ and two complex conjugate roots for -4 < b < 4. Therefore the solutions for the 3 cases given (b = 5, 4, 2) are:

$$b = 5 \Rightarrow r_{+} = -1 , r_{-} = -4$$

$$y(t) = Ae^{-t} + Be^{-4t} ; y(0) = 1$$

$$y'(t) = -Ae^{-t} - 4Be^{-4t} ; y'(0) = 0$$

$$A + B = 1 , -A - 4B = 0 \Rightarrow A = \frac{4}{3} , B = \frac{-1}{3}$$

$$y(t) = \frac{4}{3}e^{-t} - \frac{1}{3}e^{-4t} .$$

$$b = 4 \Rightarrow r_{\pm} = -2 \text{(double root)}$$

$$y(t) = Ae^{-2t} + Bte^{-2t} \quad ; \quad y(0) = 1$$

$$y'(t) = -2Ae^{-2t} + Be^{-2t}(1 - 2t) \quad ; \quad y'(0) = 0$$

$$A = 1 , \quad -2A + B = 0 \quad \Rightarrow \quad A = 1 , \quad B = 2$$

$$y(t) = e^{-2t} + 2te^{-2t} \qquad .$$

$$b = 2 \Rightarrow r_{\pm} = -1 \pm i\sqrt{3}$$

$$y(t) = Ae^{-t}\cos(\sqrt{3}t) + Be^{-t}\sin(\sqrt{3}t); \ y(0) = 1, \ y'(0) = 0$$

$$y'(t) = Ae^{-t} \left(-\cos\left(\sqrt{3}t\right) - \sqrt{3}\sin\left(\sqrt{3}t\right) \right) + Be^{-t} \left(-\sin\left(\sqrt{3}t\right) + \sqrt{3}\cos\left(\sqrt{3}t\right) \right)$$
$$A = 1 , -A + \sqrt{3}B = 0 \Rightarrow A = 1 , B = \frac{\sqrt{3}}{3}$$
$$y(t) = e^{-t}\cos\left(\sqrt{3}t\right) + \frac{\sqrt{3}}{3}e^{-t}\sin\left(\sqrt{3}t\right)$$

We now use Maple to plot all three functions for $0 \le t \le 2\pi$.

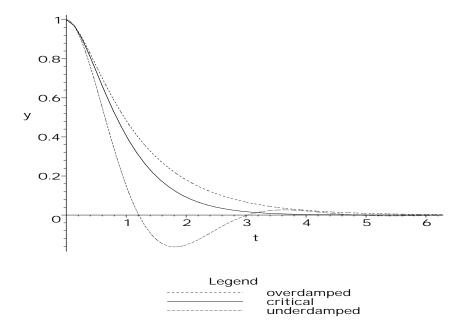
> restart:

$$m := 1$$

$$Om\theta := 5.$$
> Y1 := t -> (4/3)*exp(-t) - (1/3)*exp(-4*t);
$$Y1 := t \to \frac{4}{3} e^{(-t)} - \frac{1}{3} e^{(-4t)}$$
> Y2 := t -> exp(-2*t)*(1 + 2*t); Y3 := t -> exp(-t)*(cos(sqrt(3)*t)) + (1/sqrt(3))*sin(sqrt(3)*t));
$$Y2 := t \to e^{(-2t)} (1 + 2t)$$

$$Y3 := t \to e^{(-t)} (\cos(\sqrt{3}t) + \frac{\sin(\sqrt{3}t)}{\sqrt{3}})$$

- > plot([Y1(t),Y2(t),Y3(t)], t =
- > 0..2*Pi,color=[blue,black,red],labels=[t,y],legend=[overdamped,critica
- > 1,underdamped],linestyle=[DASHDOT,SOLID,DASH]);



4 Problem 4.6.39

Swinging Door: The motion of a swinging door with an adjustment screw that controls the amount of friction on the hinges is governed by the initial value problem

$$I\theta'' + b\theta' + k\theta = 0 \; ; \; \theta(0) = \theta_0 \; , \; \theta'(0) = u_0 \; ,$$

where θ is the angle that the door is open, I is the moment of inertia of the door about its hinges, b > 0 is a damping constant that varies with the amount of friction on the door, k > 0 is the spring constant associated with the swinging door, θ_0 is the initial angle that the door is opened, and u_0 is the initial angular velocity imparted to the door. If I and k are fixed, determine for which values of b the door will not continually swing back and forth when closing.

Solution: Substituting $y(t) = e^{rt}$ as usual we arrive at the characteristic equation for r:

$$Ir^{2} + br + k = 0 \Rightarrow r_{\pm} = \frac{-b \pm \sqrt{b^{2} - 4Ik}}{2I}$$

It is clear that to avoid oscillations, we must avoid complex roots. The limiting value of b for which oscillations will not happen is the critical value (boundary between overdamped and underdamped cases), i.e. when the discriminant of the quadratic vanishes:

$$b^2 - 4Ik = 0 \Rightarrow b_{critical} = 2\sqrt{Ik}$$

when r = -b/2I and all values of $b \ge b_{critical}$ give non-oscillatory motion.