Solutions, 316-XXIV

April 28, 2003

 $24(\ 4/17)$ Real equal eigenvalues; mass-spring systems and forcing

 $9.5[35*,36],\ 9.6[19*,20],\ 9.7[7*,9,11,13*,16]$

CAUTION: there may be errors!!!

1 Problem 9.5.35

1. Show that the matrix

$$\mathbf{A} = \left(\begin{array}{cc} 1 & -1 \\ 4 & -3 \end{array}\right)$$

has the repeated eigenvalue r = -1 and that all the eigenvectors are of the form $\mathbf{u} = a \operatorname{col}(1, 2)$.

- 2. Use the result of part (1) to obtain a nontrivial solution $\mathbf{x}_1(t)$ to the system $\mathbf{x}' = \mathbf{A}\mathbf{x}$.
- 3. To obtain a second linearly independent solution to $\mathbf{x}' = \mathbf{A}\mathbf{x}$, try $\mathbf{x}_2(t) = te^{-t}\mathbf{u}_1 + e^{-t}\mathbf{u}_2$. [Hint: Substitute \mathbf{x}_2 into the system $\mathbf{x}' = \mathbf{A}\mathbf{x}$ and derive the relations

$$(\mathbf{A} + \mathbf{I}) \mathbf{u}_1 = 0$$
, $(\mathbf{A} + \mathbf{I}) \mathbf{u}_2 = \mathbf{u}_1$.

Since \mathbf{u}_1 must be an eigenvector, set $\mathbf{u}_1 = \operatorname{col}(1,2)$ and solve for \mathbf{u}_2 .

4. What is $(\mathbf{A} + \mathbf{I})^2 \mathbf{u}_2$?

Solution:

1. Eigenvalues:

$$\begin{vmatrix} 1-r & -1 \\ 4 & -3-r \end{vmatrix} = (r+3)(r-1) + 4 = r^2 + 2r + 1 = (r+1)^2 = 0 ,$$

so that r = -1 is a double eigenvalue. The only eigenvector associated with this eigenvalue is

$$\mathbf{u}_1 = \left(\begin{array}{c} 1\\1-r \end{array}\right) = \left(\begin{array}{c} 1\\2 \end{array}\right) .$$

2. A solution to the system $\mathbf{x}' = \mathbf{A}\mathbf{x}$ is found as

$$\mathbf{x}_1(t) = e^{-t}\mathbf{u}_1 = e^{-t} \begin{pmatrix} 1\\2 \end{pmatrix} .$$

3. Try now a second solution in the form

$$\mathbf{x}_2(t) = te^{-t}\mathbf{u}_1 + e^{-t}\mathbf{u}_2 = te^{-t}\begin{pmatrix} 1\\2 \end{pmatrix} + e^{-t}\begin{pmatrix} a\\b \end{pmatrix}.$$

Substituting into the system we find

$$\frac{d\mathbf{x}_2}{dt} = (1-t)e^{-t}\mathbf{u}_1 - e^{-t}\mathbf{u}_2$$

$$\mathbf{A}\mathbf{x} = -te^{-t}\mathbf{u}_1 + e^{-t}A\mathbf{u}_2$$

and setting these equal we find that \mathbf{u}_2 satisfies:

$$A\mathbf{u}_2 = (-1)\mathbf{u}_2 + \mathbf{u}_1$$

or

$$(A - (-1)I)\mathbf{u}_2 = \mathbf{u}_1$$

i.e.

$$\left(\begin{array}{cc} 2 & -1 \\ 4 & -2 \end{array}\right) \left(\begin{array}{c} a \\ b \end{array}\right) = \left(\begin{array}{c} 1 \\ 2 \end{array}\right) .$$

which is an Underdetermined system (two equations are the same), with a solution

$$\mathbf{u}_2 = \left(\begin{array}{c} 0\\ -1 \end{array}\right) ,$$

while any multiple of \mathbf{u}_1 can be added to it to give another solution. The general solution is then

$$\mathbf{x}_{gen}(t) = C_1 e^{-t} \mathbf{u}_1 + C_2 e^{-t} \left(\mathbf{u}_2 + t \mathbf{u}_1 \right) .$$

4. Here we have

$$(A - (-1)I)^2 \mathbf{u}_2 = (A - (-1)I)\mathbf{u}_1 = 0$$
.

2 Problem 9.6.19

For the coupled mass-spring system governed by the system

$$m_1 x_1'' = -k_1 x_1 + k_2 (x_2 - x_1)$$

$$m_2 x_2'' = -k_2 (x_2 - x_1) - k_3 x_2$$

assume $m_1 = m_2 = 1kg$, $k_1 = k_2 = 2N/m$ and $k_3 = 3N/m$. Determine the normal frequencies for this coupled mass-spring system.

(Hint: substitute $x_1 = ae^{i\omega t}$, $x_2 = be^{i\omega t}$ to arrive at a system of two equations in the unknown coefficients a, b; the system involves ω^2 in its coefficients. This system has the trivial solution a = b = 0; to find a nontrivial solution the determinant of the coefficients of this system must vanish. Find the value(s) of ω^2 that make the determinant vanish. Their square roots should be real and they give the normal frequencies of the system.)

Solution:

Substituting $x_1=ae^{i\omega t}$ and $x_2=be^{i\omega t}$ (and dividing both sides by $e^{i\omega t}$) we find the system

$$-m_1 a \omega^2 = -k_1 a + k_2 (b - a)$$

-m_2 b \omega^2 = -k_2 (b - a) - k_3 b

or

$$\begin{pmatrix} m_1 \omega^2 - (k_1 + k_2) & k_2 \\ k_2 & m_2 \omega^2 - (k_2 + k_3) \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} \omega^2 - 4 & 2 \\ 2 & \omega^2 - 5 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = 0$$

which has a nontrivial solution provided the determinant of the coefficient matrix vanishes:

$$(\omega^2 - 4)(\omega^2 - 5) - 4 = 0 \Rightarrow \omega^4 - 9\omega^2 + 16 = 0 \Rightarrow \omega^2 = \frac{9 \pm \sqrt{17}}{2}$$

so that the characteristic frequencies of the system are (multiply by 2π to get angular frequencies):

$$\omega_1 = \sqrt{\frac{9 + \sqrt{17}}{2}} , \ \omega_2 = \sqrt{\frac{9 - \sqrt{17}}{2}} .$$

3 Problem 9.7.7

Determine the form of the particular solution for the system $\mathbf{x}'(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{f}(t)$ by the method of undetermined coefficients if \mathbf{A} and $\mathbf{f}(t)$ are given by

$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 2 & 0 \end{bmatrix} , \mathbf{f}(t) = \begin{bmatrix} \sin 3t \\ t \end{bmatrix} .$$

Solution:

We need the homogeneous solution first:

$$r^2 - 2 = 0 \Rightarrow r_1 = \sqrt{2}$$
, $r_2 = -\sqrt{2}$

with eigenvectors:

$$\mathbf{u}_1 = \begin{pmatrix} 1 \\ \sqrt{2} \end{pmatrix}$$
 , $\mathbf{u}_2 = \begin{pmatrix} 1 \\ -\sqrt{2} \end{pmatrix}$.

Then

$$\mathbf{x}_{hom}(t) = C_1 e^{\sqrt{2}t} \mathbf{u}_1 + C_2 e^{-\sqrt{2}t} \mathbf{u}_2 .$$

Since none of the forcing terms are resonant, the particular solution will have the form

$$\mathbf{x}_{part}(t) = \begin{pmatrix} A_1 \cos t + B_1 \sin t + C_1 + D_1 t \\ A_2 \cos t + B_2 \sin t + C_2 + D_2 t \end{pmatrix}$$

and substituting into the system will give equations for determining the unknown coefficients A_1, \ldots, D_2 .

4 Problem 9.7.13

Determine the general solution for the system $\mathbf{x}'(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{f}(t)$ by the method of variation of parameters if \mathbf{A} and $\mathbf{f}(t)$ are given by

$$\mathbf{A} = \begin{bmatrix} 2 & 1 \\ -3 & -2 \end{bmatrix} , \mathbf{f}(t) = \begin{bmatrix} 2e^t \\ 4e^t \end{bmatrix} .$$

(Instructions:

Use the formula:

$$\mathbf{x}_g en(t) = \mathbf{X}(t)\mathbf{c} + \mathbf{X}(t)\int_{t_0}^t \mathbf{X}^{-1}(s)\mathbf{f}(s)ds$$
.

where $\mathbf{X}(t)$ is a fundamental matrix for the homogeneous system and \mathbf{c} a constant vector.

NOTE: To find $X^{-1}(s)$ you can use the formula given in class, but there is a **catch**: as mentioned in class,

$$\mathbf{X}(t-s) = \mathbf{X}(t)\mathbf{X}(-s) .$$

However, this means

$$\mathbf{X}(t-t) = \mathbf{X}(0) = \mathbf{X}(t)\mathbf{X}(-t)$$

so that

$$\mathbf{X}(-t) = \mathbf{X}^{-1}(t)\mathbf{X}(0)$$

i.e.

$$\mathbf{X}^{-1}(t) = \mathbf{X}(-t)\mathbf{X}^{-1}(0)$$
.

In class I was assuming (but did not mention it!) that

$$\mathbf{X}(0) = I$$

which is not true in general. Also, it turns out that these matrices commute, i.e.

$$\mathbf{X}(t)\mathbf{X}(-t) = \mathbf{X}(-t)\mathbf{X}(t) = \mathbf{X}(0)$$

and

$$\mathbf{X}^{-1}(t) = \mathbf{X}(-t)\mathbf{X}^{-1}(0) = \mathbf{X}^{-1}(0)\mathbf{X}(-t)$$

so you can multiply them in any order you prefer!)

Solution:

1. Eigenvalues:

$$\begin{vmatrix} 2-r & 1 \\ -3 & -2-r \end{vmatrix} = 0 \implies r^2 - 1 = 0$$

so that

$$r_1 = 1$$
 , $r_2 = -1$.

2. Eigenvectors:

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ r_1 - 2 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
, $\mathbf{v}_2 = \begin{pmatrix} 1 \\ r_2 - 2 \end{pmatrix} = \begin{pmatrix} 1 \\ -3 \end{pmatrix}$.

3. Homogeneous solution:

$$\mathbf{x}_{hom} = C_1 e^t \begin{pmatrix} 1 \\ -1 \end{pmatrix} + C_2 e^{-t} \begin{pmatrix} 1 \\ -3 \end{pmatrix} .$$

4. Fundamental matrix:

$$bfX(t) = \begin{pmatrix} e^t & e^{-t} \\ -e^t & -3e^{-t} \end{pmatrix} .$$

5. Determinant of fundamental matrix (Wronskian):

$$\begin{vmatrix} e^t & e^{-t} \\ -e^t & -3e^{-t} \end{vmatrix} = -3 + 1 = -2.$$

6. Inverse of fundamental matrix:

$$\mathbf{X}^{-1}(t) = \frac{-1}{2} \begin{pmatrix} -3e^{-t} & -e^{-t} \\ e^t & e^t \end{pmatrix} .$$

7. Integral:

$$\int_{t_0}^{t} \mathbf{X}^{-1}(s) \mathbf{f}(s) ds = \frac{-1}{2} \int_{0}^{t} \begin{pmatrix} -3e^{-s} & -e^{-s} \\ e^{s} & e^{s} \end{pmatrix} \begin{pmatrix} 2e^{s} \\ 4e^{s} \end{pmatrix} ds$$

$$= \int_{0}^{t} \begin{pmatrix} 5 \\ -3e^{2s} \end{pmatrix} ds$$

$$= \begin{pmatrix} 5t \\ -\frac{3}{2}e^{2t} + \frac{3}{2} \end{pmatrix}$$

8. Particular solution:

$$\mathbf{X}(t) \int_{t_0}^{t} \mathbf{X}^{-1}(s) \mathbf{f}(s) ds = \begin{pmatrix} e^{t} & e^{-t} \\ -e^{t} & -3e^{-t} \end{pmatrix} \begin{pmatrix} 5t \\ -\frac{3}{2}e^{2t} + \frac{3}{2} \end{pmatrix}$$
$$= \begin{pmatrix} 5te^{t} - \frac{3}{2}e^{t} + \frac{3}{2}e^{-t} \\ -5te^{t} + \frac{9}{2}e^{t} - \frac{9}{2}e^{-t} \end{pmatrix}$$

9. General solution:

$$\mathbf{x}_{gen} = C_1 e^t \begin{pmatrix} 1 \\ -1 \end{pmatrix} + C_2 e^{-t} \begin{pmatrix} 1 \\ -3 \end{pmatrix} + \begin{pmatrix} 5te^t - \frac{3}{2}e^t + \frac{3}{2}e^{-t} \\ -5te^t + \frac{9}{2}e^t - \frac{9}{2}e^{-t} \end{pmatrix}$$

Note: this answer is equivalent to the answer in the book. They differ by a homogeneous solution (I did not simplify here to make it obvious how I got everything!).