Solutions, 316-XXIII

April 19, 2003

23(4/15) Complex eigenvalues
$9.6\left[1,2^{*}, 5^{*}, 6,13\left(\mathrm{a}^{*}, \mathrm{~b}, \mathrm{c}, \mathrm{d}\right)\right]$
CAUTION: there may be errors!!!

1 Problem 9.6.1

Find a general solution of the system $\mathbf{x}^{\prime}=\mathbf{A x}$ for the matrix

$$
\mathbf{A}=\left(\begin{array}{ll}
2 & -4 \\
2 & -2
\end{array}\right)
$$

Solution:

Form the characteristic polynomial:

$$
\begin{aligned}
P(r) & :=\operatorname{det}(\mathbf{A}-r \mathbf{I})=\operatorname{det}\left(\begin{array}{rr}
2-r & -4 \\
2 & -2-r
\end{array}\right) \\
& =(r+2)(r-2)+8=r^{2}+4=(r+2 i)(r-2 i)=0
\end{aligned}
$$

so the problem has complex eigenvalues/vectors. We work with the eigenvalue $r_{1}=+2 i$; the results for $r_{2}=-2 i$ are found by complex conjugation of the answer (i.e. change the sign of i everywhere). We have

$$
\begin{aligned}
\left(\begin{array}{rr}
-2-2 i & -4 \\
2 & -2-2 i
\end{array}\right)\binom{x}{y} & =\binom{0}{0} \\
\binom{x}{y} & =\binom{2}{-1-i}=\binom{2}{-1}+i\binom{0}{-1}
\end{aligned}
$$

We know from the theory that when the matrix has a complex eigenvalue $r=\alpha \pm i \beta$ with eigenvector $\mathbf{u}=\mathbf{a} \pm i \mathbf{b}$ then the two linearly independent solutions to $\mathbf{x}^{\prime}=\mathbf{A x}$ are $\mathbf{x}_{1}=e^{\alpha t} \cos \beta t \mathbf{a}-e^{\alpha t} \sin \beta t \mathbf{b}$, and $\mathbf{x}_{2}=e^{\alpha t} \sin \beta t \mathbf{a}+$ $e^{\alpha t} \cos \beta t \mathbf{b}$. Here this gives, with $r=0+2 i$:

$$
\mathbf{x}_{1}=\cos 2 t\binom{2}{-1}-\sin 2 t\binom{0}{-1}
$$

and

$$
\mathbf{x}_{2}=\sin 2 t\binom{2}{-1}+\cos 2 t\binom{0}{-1}
$$

so that the general solution is given by

$$
\mathbf{x}_{g e n}(t)=C_{1}\binom{2 \cos 2 t}{-\cos 2 t+\sin 2 t}+C_{2}\binom{2 \sin 2 t}{-\sin 2 t-\cos 2 t} .
$$

2 Problem 9.6.2

Find a general solution of the system $\mathbf{x}^{\prime}=\mathbf{A x}$ for the matrix

$$
\mathbf{A}=\left(\begin{array}{rr}
-2 & -2 \\
4 & 2
\end{array}\right)
$$

Solution:

Form the characteristic polynomial:

$$
\begin{aligned}
P(r) & :=\operatorname{det}(\mathbf{A}-r \mathbf{I})=\operatorname{det}\left(\begin{array}{rr}
-2-r & -2 \\
4 & 2-r
\end{array}\right) \\
& =(r+2)(r-2)+8=r^{2}+4=(r+2 i)(r-2 i)=0
\end{aligned}
$$

so the problem has complex eigenvalues/vectors. We work with the eigenvalue $r_{1}=+2 i$; the results for $r_{2}=-2 i$ are found by complex conjugation of the answer (i.e. change the sign of i everywhere). We have

$$
\begin{aligned}
\left(\begin{array}{rr}
-2-2 i & -2 \\
4 & 2-2 i
\end{array}\right)\binom{x}{y} & =\binom{0}{0} \\
\binom{x}{y} & =\binom{1}{-1-i}=\binom{1}{-1}+i\binom{0}{-1}
\end{aligned}
$$

We know from the theory that when the matrix has a complex eigenvalue $r=\alpha \pm i \beta$ with eigenvector $\mathbf{u}=\mathbf{a} \pm i \mathbf{b}$ then the two linearly independent solutions to $\mathbf{x}^{\prime}=\mathbf{A x}$ are $\mathbf{x}_{1}=e^{\alpha t} \cos \beta t \mathbf{a}-e^{\alpha t} \sin \beta t \mathbf{b}$, and $\mathbf{x}_{2}=e^{\alpha t} \sin \beta t \mathbf{a}+$ $e^{\alpha t} \cos \beta t \mathbf{b}$. Here this gives, with $r=0+2 i$:

$$
\mathbf{x}_{1}=\cos 2 t\binom{1}{-1}-\sin 2 t\binom{0}{-1}
$$

and

$$
\mathbf{x}_{2}=\sin 2 t\binom{1}{-1}+\cos 2 t\binom{0}{-1}
$$

so that the general solution is given by

$$
\mathbf{x}_{g e n}(t)=C_{1}\binom{\cos 2 t}{-\cos 2 t+\sin 2 t}+C_{2}\binom{\sin 2 t}{-\sin 2 t-\cos 2 t} .
$$

3 Problem 9.6.5

Find a fundamental matrix for the system $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ for the matrix

$$
\mathbf{A}=\left(\begin{array}{rr}
-1 & -2 \\
8 & -1
\end{array}\right)
$$

Solution:

Form the characteristic polynomial:

$$
\begin{aligned}
P(r) & :=\operatorname{det}(\mathbf{A}-r \mathbf{I})=\operatorname{det}\left(\begin{array}{rr}
-1-r & -2 \\
8 & -1-r
\end{array}\right) \\
& =(r+1)^{2}+16=(r-1-4 i)(r-1+4 i)=0
\end{aligned}
$$

so the problem has complex eigenvalues/vectors. We work with the eigenvalue $r_{1}=-1+4 i$; the results for $r_{2}=-1-4 i$ are found by complex conjugation of the answer (i.e. change the sign of i everywhere). We have

$$
\begin{aligned}
\left(\begin{array}{rr}
-4 i & -2 \\
8 & -4 i
\end{array}\right)\binom{x}{y} & =\binom{0}{0} \\
\binom{x}{y} & =\binom{1}{-2 i}=\binom{1}{0}+i\binom{0}{-2}
\end{aligned}
$$

We know from the theory that when the matrix has a complex eigenvalue $r=\alpha \pm i \beta$ with eigenvector $\mathbf{u}=\mathbf{a} \pm i \mathbf{b}$ then the two linearly independent solutions to $\mathbf{x}^{\prime}=\mathbf{A x}$ are $\mathbf{x}_{1}=e^{\alpha t} \cos \beta t \mathbf{a}-e^{\alpha t} \sin \beta t \mathbf{b}$, and $\mathbf{x}_{2}=e^{\alpha t} \sin \beta t \mathbf{a}+$ $e^{\alpha t} \cos \beta t \mathbf{b}$. Here this gives, with $r=-1+4 i$:

$$
\mathbf{x}_{1}=\cos 2 t\binom{1}{0}-\sin 2 t\binom{0}{-2}
$$

and

$$
\mathrm{x}_{2}=\sin 2 t\binom{1}{0}+\cos 2 t\binom{0}{-2}
$$

so that the Fundamental Matrix is given by

$$
\boldsymbol{\Phi}(t)=\left(\begin{array}{rr}
\cos 2 t & \sin 2 t \\
2 \sin 2 t & -2 \cos 2 t
\end{array}\right) .
$$

4 Problem 9.6.13a

Find the solution to the IVP:

$$
\mathbf{x}^{\prime}=\left(\begin{array}{rr}
-3 & -1 \\
2 & -1
\end{array}\right) \mathbf{x}, \mathbf{x}(0)=\binom{-1}{0} \mathbf{x} .
$$

Solution:

Form the characteristic polynomial:

$$
\begin{aligned}
P(r) & :=\operatorname{det}(\mathbf{A}-r \mathbf{I})=\operatorname{det}\left(\begin{array}{ll}
-3-r & -1 \\
2 & -1-r
\end{array}\right) \\
& =(r+1)(r+3)+2=r^{2}+4 r+5=(r+2)^{2}+1=0
\end{aligned}
$$

so the problem has complex eigenvalues/vectors. We work with the eigenvalue $r_{1}=-2+i$; the eigenvector is found from

$$
\begin{aligned}
\left(\begin{array}{ll}
-3+2-i & -1 \\
2 & -1+2-i
\end{array}\right)\binom{x}{y} & =\binom{0}{0} \\
\binom{x}{y} & =\binom{1}{-1-i}=\binom{1}{-1}+i\binom{0}{-1}
\end{aligned}
$$

where the first equation was used to find the components of the eigenvector. Following problem (1), we find an independent set as (with $r=-2+i$):

$$
\mathbf{x}_{1}=e^{-2 t} \cos t\binom{1}{-1}-e^{-2 t} \sin t\binom{0}{-1}=e^{-2 t}\binom{\cos t}{\sin t-\cos t}
$$

and

$$
\mathbf{x}_{2}=e^{-2 t} \sin t\binom{1}{-1}+e^{-2 t} \cos t\binom{0}{-1}=e^{-2 t}\binom{\sin t}{-\cos t-\sin t}
$$

so that the general solution is given by

$$
\mathbf{x}_{g e n}(t)=C_{1} e^{-2 t}\binom{\cos t}{\sin t-\cos t}+C_{2} e^{-2 t}\binom{\sin t}{-\cos t-\sin t} .
$$

A fundamental matrix for the system is then

$$
\Phi(t)=e^{-2 t}\left(\begin{array}{rr}
\cos t & \sin t \\
\sin t-\cos t & -\cos t-\sin t
\end{array}\right)
$$

and the general solution is given in terms of the Fundamental matrix by the equivalent form

$$
\mathbf{x}_{g e n}(t)=\Phi(t)\binom{C_{1}}{C_{2}}
$$

Solving for the IC:

$$
\begin{aligned}
\Phi((0))\binom{C_{1}}{C_{2}} & =\binom{-1}{0} \\
\left(\begin{array}{rr}
1 & 0 \\
-1 & -1
\end{array}\right)\binom{C_{1}}{C_{2}} & =\binom{-1}{0} \\
\binom{C_{1}}{C_{2}} & =\frac{1}{-1}\left(\begin{array}{rr}
-1 & 0 \\
1 & 1
\end{array}\right)\binom{-1}{0}=\binom{-1}{1}
\end{aligned}
$$

Finally, the solution to the IVP is:

$$
\begin{aligned}
\mathbf{x}(t) & =\Phi(t)\binom{-1}{1} \\
& =\left(\mathbf{x}_{2}(t)-\mathbf{x}_{1}(t)\right) \\
& =e^{t}\binom{-\cos t+\sin t}{-2 \sin t}
\end{aligned}
$$

5 Problem 9.6.13d modified

Find the solution to the IVP:

$$
\mathbf{x}^{\prime}=\left(\begin{array}{ll}
3 & -1 \\
5 & -1
\end{array}\right) \mathbf{x}, \mathbf{x}(\pi / 2)=\binom{0}{1} .
$$

Solution:

Form the characteristic polynomial:

$$
\begin{aligned}
P(r) & :=\operatorname{det}(\mathbf{A}-r \mathbf{I})=\operatorname{det}\left(\begin{array}{ll}
3-r & -1 \\
5 & -1-r
\end{array}\right) \\
& =(r+1)(r-3)+3=r^{2}-2 r+2=(r-1)^{2}+1=0
\end{aligned}
$$

so the problem has complex eigenvalues/vectors. We work with the eigenvalue $r_{1}=1+i$; the eigenvector is found from

$$
\begin{aligned}
\left(\begin{array}{ll}
3-1-i & -1 \\
5 & -1-1-i
\end{array}\right)\binom{x}{y} & =\binom{0}{0} \\
\binom{x}{y} & =\binom{2+i}{5}=\binom{2}{5}+i\binom{1}{0}
\end{aligned}
$$

where the second equation was used to find the components of the eigenvector. Following problem (1), we find an independent set as (with $r=1+i$):

$$
\mathbf{x}_{1}=e^{t} \cos t\binom{2}{5}-e^{t} \sin t\binom{1}{0}=e^{t}\binom{2 \cos t-\sin t}{5 \cos t}
$$

and

$$
\mathbf{x}_{2}=e^{t} \sin t\binom{2}{5}+e^{t} \cos t\binom{1}{0}=e^{t}\binom{\cos t+2 \sin t}{5 \sin t}
$$

so that the general solution is given by

$$
\mathbf{x}_{g e n}(t)=C_{1} e^{t}\binom{2 \cos t-\sin t}{5 \cos t}+C_{2} e^{t}\binom{\cos t+2 \sin t}{5 \sin t}
$$

A fundamental matrix for the system is then

$$
\Phi(t)=e^{t}\left(\begin{array}{lr}
2 \cos t-\sin t & \cos t+2 \sin t \\
5 \cos t & 5 \sin t
\end{array}\right)
$$

and the general solution is given in terms of the Fundamental matrix by the equivalent form

$$
\mathbf{x}_{g e n}(t)=\Phi(t)\binom{C_{1}}{C_{2}}
$$

Solving for the IC:

$$
\begin{aligned}
\Phi((\pi / 2))\binom{C_{1}}{C_{2}} & =\binom{0}{1} \\
e^{\pi / 2}\left(\begin{array}{rr}
-1 & 2 \\
0 & 5
\end{array}\right)\binom{C_{1}}{C_{2}} & =\binom{0}{1} \\
\binom{C_{1}}{C_{2}} & =\frac{e^{-\pi / 2}}{-5}\left(\begin{array}{ll}
5 & -2 \\
0 & -1
\end{array}\right)\binom{0}{1}=\frac{e^{-\pi / 2}}{5}\binom{2}{1}
\end{aligned}
$$

Finally, the solution to the IVP is:

$$
\begin{aligned}
\mathbf{x}(t) & =\frac{e^{-\pi / 2}}{5} \Phi(t)\binom{2}{1} \\
& =\frac{e^{-\pi / 2}}{5}\left(2 \mathbf{x}_{1}(t)+\mathbf{x}_{2}(t)\right) \\
& =e^{t-\pi / 2}\binom{\cos t}{\sin t+2 \cos t}
\end{aligned}
$$

