
ON THE EVALUATION OF ICE MODELS

D. Sulsky1, K. Peterson1, H. Schreyer1, R. Kwok2 and M. Coon3

1 University of New Mexico, Albuquerque NM 87131, USA
2 Jet Propulsion Laboratory, Pasadena, CA 91109, USA

3Northwest Research Associates, Seattle, WA 98009, USA

ABSTRACT

A method is presented for an evaluation of coupled dynamic and thermodynamic ice
models using the RADARSAT Geophysical Processor System (RGPS) data and prod-
ucts for validation. The technique has been applied to a standard viscous-plastic rhe-
ology with a simple two-level ice thickness model for three test regions of the Arctic
pack ice. High correlation is obtained between observed and predicted ice speeds. The
model predictions show reasonable correlation with the data when examining shear and
vorticity, but poorer correlation with divergence. The amount of opening is under pre-
dicted in these simulations.

INTRODUCTION

In recent years, the availability of large volumes of recorded ice motion data, de-
rived from high-resolution Synthetic Aperature Radar (SAR) imagery, has provided an
amazingly detailed look at the deformation of the ice cover. Three-day SAR observa-
tions of the western Arctic Ocean have been acquired since November, 1996, and data
acquisition continues. These observations are processed by the RADARSAT Geophys-
ical Processor System (RGPS), a data analysis system developed at JPL that assembles
the sequential SAR images into basinwide fields of ice motion and deformation, and
additionally estimates ice age and thickness. RGPS procedures track material elements
(cells) of sea ice in SAR imagery over time, allowing us to follow their location and
deformation history [Kwok et al., 1995; Kwok, 1998]. Thus, from the RGPS products,
we obtain repeated 3-day observations of the motion and deformation of each cell.



These remarkable data put us in a position to begin detailed evaluation of current
coupled mechanical and thermodynamic models of sea ice. These models are com-
posed of constitutive models that govern the mechanical behavior of ice, and thickness
distribution models that govern the thermodynamic aspects. Numerical simulations of
ice dynamics typically make use of a viscous-plastic constitutive model [Hibler, 1979]
or an elastic-viscous-plastic model [Hunke and Dukowicz, 1997]. (However, in the lat-
ter, the elastic properties are chosen for numerical purposes.) This constitutive model
is coupled to thermodynamic considerations through dependence of the ice strength on
ice thickness. The ice thickness distribution varies in time due to mechanical motion
and rearrangements of the ice, as well as growing and melting of ice.

Lindsay et al. [2003] compare RGPS data to model output, with and without data
assimilated from buoy and SSMI-derived ice motion. The Pacific half of the Arctic
Basin is analyzed for a 10 month period, November, 1997 to August, 1998. Both the
RGPS data and the model output are manipulated to produce matched pairs of RGPS and
model velocity and deformation values. These pairs are matched in location, time and in
spatial scale. Mean and standard deviation of the velocity and deformation are computed
and compared for the RGPS data and model output separately for the winter and summer
months. The correlation between model estimates and RGPS data for velocity on a 320
m scale is good, especially with data assimilation. The correlation with deformation is
worse. Several reasons are postulated for the relatively low deformation correlations.
The large-scale velocity field might be represented well by the averaging procedures,
but the smaller-scale spatial variations might not be so well represented. Errors may
also occur in the location of model deformation events, and may arise from errors due
to the data alignment process [Lindsay et al., 2003].

This paper attempts a simpler, more direct comparison between model output and
RGPS data. The model predictions are based on the viscous-plastic constitutive model
combined with a two-level ice thickness model. The next section reviews the mathemat-
ical model of sea ice. In order to evaluate the model, subregions of the Arctic have been
identified for study. Actual displacements obtained from the RGPS are used to obtain
boundary motion for the subregions. A boundary value problem is then solved to obtain
the predicted ice motion in the interior of the region. The final sections of the paper
describe the regions identified for study and the results of the numerical solution of the
boundary value problem. The boundary value problem is solved over a short time, and
the model output and RGPS data remain co-located in space and time. In this way, we
hope to isolate the effects of the constitutive model, and gauge its efficacy in modeling
deformation events and spatial variations in the velocity field.

THE SEA ICE MODEL

The mathematical model of sea ice is derived from considering the balance of linear
momentum which is expressed by the following equation [Hibler, 1979]

(1) m
dv

dt
= Fint + Fext.



In this equation, the time derivative is a material-time derivative, d/dt = ∂/∂t + v · ∇,
where v = v(x, t) is the velocity field associated with the point x at time t. The quantity
m is the ice mass per unit area, and Fint is the force due to variation in internal ice stress.
External forces are described by the vector Fext which includes Coriolis forces, air and
water drag, and effects of sea surface tilt.

The internal force is given by the stress divergence, Fint = ∇ ·σ, where the stress is
evaluated from a constitutive model. In this case the constitutive model is assumed to be
a viscous-plastic model [Hibler, 1979]. Under this assumption, the stress σ is computed
from the strain rate ε̇ according to the formula

(2) σ = 2ηε̇ + [ζ − η]tr(ε̇)I − 1

2
PI.

The second order identity tensor is denoted by I, and the trace of a tensor is indicated
by the notation tr(·).

The viscosity coefficients η and ζ in this formulation are nonlinear functions of
the strain rate and the ice strength P , η = η(ε̇, P ), and ζ = ζ(ε̇, P ). Specifically,
ζ = P/2∆, and η = ζ/e2 where e is the ratio of the principal axes of the elliptical yield
surface [Hibler, 1977], and ∆ depends on e and the strain rate

(3) ∆ = [(ε̇2
11 + ε̇2

11)(1 + 1/e2) + 4e−2ε̇2
12 + 2ε̇11ε̇22(1 − 1/e2)]1/2.

As currently defined, the viscosity coefficients can become arbitrarily large for small
strain rates. To avoid this difficulty, these coefficients are chosen to be the minimum of
the values specified above and some large limiting values that depend on the ice strength.
The limiting values are taken to be ζmax = (2.5 × 108s)P and then ηmax = ζmax/e

2.
The ice strength, P , is taken to be a function of the average ice thickness, h, and its

compactness, A, according to the formula P = P ∗h exp(−C(1 − A)) which includes
the fixed empirical constants P ∗ = 5 kPa and C = 20. As noted in the introduction,
the ice thickness and compactness evolve due to thermodynamics and ice dynamics.
Thermodynamics causes changes due to melting and freezing of ice. Dynamics cause
changes through the creation of leads during divergent flow and closing of open water
or ridging of ice during convergent flow. With these variables, one can keep track of
two ice categories, thin and thick ice.

A simple model [Hibler, 1979] for the evolution of h and A consists of

(4)
dh

dt
= −(∇ · v)h + Sh,

dA

dt
= −(∇ · v)A + SA.

These equations are simple continuity equations for h and A with thermodynamic source
terms Sh and SA. The source terms are given by

Sh = f(h/A)A + (1 − A)f(0)(5)

SA =

{
(f(0)/h0)(1 − A) if f(0) > 0,

0 if f(0) < 0
+

{
0 if Sh > 0

(A/2h)Sh if Sh < 0.
(6)



The function f(h) is the growth rate of ice of thickness h and h0 = 0.5 m is a fixed
thickness marking the cut-off between thin and thick ice.

ICE-MOTION TEST DATA

Three regions of the Arctic ice sheet have been identified for preliminary studies.
Each region is 50 km × 50 km, and each region is briefly described in this section. The
first region contains two leads. As the first region deforms, a small opening lead and
a large shearing lead appear. The second region is quiet, and the third region contains
the closing of the small lead in the first region, and the opening and shearing of the
large lead in the first region. Thus, the first and third regions are the same Lagrangian
points viewed at different times. Region one is day 135 of 2002, region three is on day
136. Region two is also day 136. A 5 km mesh is placed on each of these regions and
the displacement of the mesh points is tracked. Figure 1 shows the undeformed and
deformed meshes for each of the regions superimposed on the satellite images. The
deformation in Figure 1(a) takes place over 20 hours, in Figure 1(b) it is over 1.7 hours
and in Figure 1(c), the deformation takes place in 18.5 hours.

The next group of figures, Fig. 2, provides plots for divergence, shear and vorticity
in each of the three regions. The divergence is ∂u/∂x + ∂v/∂y, shear is ((∂u/∂x −
∂v/∂y)2 + (∂u/∂y + ∂v/∂x)2)1/2, and the vorticity is ∂v/∂x − ∂u/∂y. In these for-
mulae, the velocity is (u, v) and derivatives are approximated with finite differences.
Each cell is colored by its value of divergence, vorticity or shear, using a fixed scale
for all three regions. There is almost no activity in region 2 compared with the other
two regions. Region 3 has a strong band of divergence, shear and vorticity running from
southwest to northeast, corresponding to the opening and shearing of the large lead. The
closing of the small lead is not visible in these fields. The deformation pattern for region
1 is the most complex of the three regions. The caption to Fig. 2 also contains statistics
about the deformation.

SOLUTION OF THE BOUNDARY VALUE PROBLEM

The displacement of each grid point in Fig. 1 is known from the satellite imagery.
In particular, the displacement of the boundary nodes of the initially square regions
shown in the figure are known. Thus, a well-defined mathematical problem can be
posed using these known boundary displacements in conjunction with the momentum
balance equation (1). Since we propose to examine the ice motion for small regions only
over approximately one day, and since the boundary motion includes effects from the
external forcing, we drop the term Fext from equation (1) and just consider the internal
forces. The internal forces come from the stress divergence and the stress is determined
from the viscous-plastic constitutive model. The mass m per unit area is given by the
density of the ice (per unit volume) times the average thickness of the ice h/A.

The regions under consideration are observed on days 135-6. In mid-May, the rate
of ice growth f(h) is nearly constant at about 0.165 cm/day for all thick ice. Ice forms



(a
)

(b
)

(c
)

Fi
gu

re
1:

U
nd

ef
or

m
ed

(t
op

)
an

d
de

fo
rm

ed
(b

ot
to

m
)

m
es

he
s

fo
r

th
e

th
re

e
re

gi
on

s.
T

he
de

fo
rm

at
io

n
oc

cu
rs

ov
er

(a
)

20
ho

ur
s,

(b
)

1.
7

ho
ur

s,
an

d
(c

)
18

.5
ho

ur
s.



(a
)

−
30

−
20

−
10

0
10

20
30

−
20

−
1001020

R
eg

io
n1

 d
iv

er
ge

nc
e

−
0.

2

−
0.

1

00.
1

0.
2

−
30

−
20

−
10

0
10

20
30

−
20

−
1001020

R
eg

io
n1

 s
he

ar

−
0.

5

00.
5

−
30

−
20

−
10

0
10

20
30

−
20

−
1001020

R
eg

io
n1

 v
or

tic
ity

−
0.

5

00.
5

(b
)

−
30

−
20

−
10

0
10

20
30

−
20

−
1001020

R
eg

io
n 

2 
di

ve
rg

en
ce

−
0.

2

−
0.

1

00.
1

0.
2

−
30

−
20

−
10

0
10

20
30

−
20

−
1001020

R
eg

io
n 

2 
sh

ea
r

−
0.

5

00.
5

−
30

−
20

−
10

0
10

20
30

−
20

−
1001020

R
eg

io
n 

2 
vo

rt
ic

ity

−
0.

5

00.
5

(c
)

−
30

−
20

−
10

0
10

20
30

−
20

−
15

−
10−
50510152025

R
eg

io
n 

3 
di

ve
rg

en
ce

−
0.

2

−
0.

1

00.
1

0.
2

−
30

−
20

−
10

0
10

20
30

−
20

−
15

−
10−
50510152025

R
eg

io
n 

3 
sh

ea
r

−
0.

5

00.
5

−
30

−
20

−
10

0
10

20
30

−
20

−
15

−
10−
50510152025

R
eg

io
n 

3 
vo

rt
ic

ity

−
0.

5

00.
5

Fi
gu

re
2:

Pl
ot

s
of

di
ve

rg
en

ce
,s

he
ar

an
d

vo
rt

ic
ity

in
(a

)r
eg

io
n

on
e

(b
)r

eg
io

n
tw

o
an

d
(c

)r
eg

io
n

th
re

e.
T

he
le

ft
co

lu
m

n
is

di
ve

rg
en

ce
,

th
e

ce
nt

er
co

lu
m

n
is

sh
ea

r
an

d
th

e
ri

gh
tc

ol
um

n
is

vo
rt

ic
ity

.
T

he
m

ea
n

an
d

st
an

da
rd

de
vi

at
io

n
fo

r
th

e
di

ve
rg

en
ce

is
(a

)
0.

04
3,

0.
08

(b
)

-0
.0

13
,0

.0
96

(c
)

0.
01

3,
0.

08
6;

th
e

m
ea

n
an

d
st

an
da

rd
de

vi
at

io
n

fo
r

th
e

sh
ea

r
is

(a
)

0.
15

,0
.1

6
(b

)
0.

14
,0

.1
3

(c
)

0.
12

,0
.2

0;
an

d
th

e
m

ea
n

an
d

st
an

da
rd

de
vi

at
io

n
fo

r
th

e
vo

rt
ic

ity
is

(a
)

0.
11

,0
.1

7
(b

)
0.

14
,0

.1
6

(c
)

0.
12

,0
.2

0;
in

un
its

of
da

y
−1

.



at a rate f(0) = 0.65 cm/day by freezing open water [Thorndike et al., 1975]. These
values are used in the thickness model (6). Since f(0) > 0 and Sh > 0 for these growth
rates, the source term for A reduces to SA = (f(0)/h0)(1 − A), indicating the rate at
which open water is converted to ice. Now, given the value of ∇ · v for a time step, the
value of h and A can be obtained by exactly integrating equations (4) over the step.

The boundary value problem is solved using the material-point method (MPM) [Sul-
sky et al., 1994, 1995; Sulsky and Schreyer, 1996]. In this implementation, the compu-
tational grid is Lagrangian with the initial size of the elements the same as the RGPS
grid and with one material point per element. This form makes the method essentially
the same as a Lagrangian finite element method with one-point integration. The time
step, ∆t, is chosen for numerical stability of an explicit update so that, for all elements,
∆t < mΩ/(2η), where Ω is the area of the computational element.

Results of the simulations are shown in Fig. 3 where the observed and computed
velocity of the nodes are compared. An error measure is obtained by computing, for
each grid point i, the quantity εi which is the magnitude of the vector difference of
the observed and computed velocity. A single, dimensionless measure is obtained by
the RMS error,

√∑
i ε

2
i , scaled by the RMS magnitude of the observed speed. The

result is an error of 0.35, 0.51 and 0.30, for regions one, two and three; respectively. A
correlation coefficient is also computed for the velocity field (with the velocity vector
treated as a complex number) and reported in the figure caption.

Further comparison can be made by examining the computed divergence, shear and
vorticity for regions one and three. (Region two is omitted since there is no discernible
divergence, vorticity or shear in the observations or simulations.) Fig. 4 shows plots
of these quantities for the numerical simulations that can be compared to the observed
values displayed in Fig. 2. For region three, the computed solution picks up a reasonable
representation of the shear and vorticity, but underestimates the divergence. Specifically,
much less opening is predicted. The deformation pattern in region one is much harder
to capture, aspects of the shear and vorticity in the upper right corner of the region
appear in the simulations but not those in the lower right corner. Again, less opening is
predicted. A dimensionless measure of the differences is computed by taking the RMS
difference in the computed and predicted values divided by the RMS magnitude of the
observed data. For region one, the divergence error is 0.85, the shear error is 0.58 and
the vorticity error is 0.65. For region three, the divergence error is 0.86, the shear error
is 0.46 and the vorticity error is 0.43.

The strength of the ice was reduced by an order of magnitude and the model results
recomputed. The statistics changed insignificantly. The methods described can be used
to test the model predictions, but apparently the boundary value problem constrains the
motion too much to test the rheology.

CONCLUSIONS

High correlation between ice speeds determined from RGPS observations and model
output is observed. However, the RMS error is more sensitive to outlying data, and for
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the speed, the relative RMS error is found to be 30-50%. As in [Lindsay et al., 2003],
high correlation of the speed does not imply accuracy of the derived deformation. The
correlation between observed and computed shear and vorticity are lower than that for
the speed, but still reasonable. The correlation for the divergence is relatively lower.
The discrepancy in the divergence is highlighted by the large RMS error of 84-86%.
It is evident from contour plots that the amount of opening is under predicted in the
numerical simulations. If systematic, under-estimation of opening would lead to under
estimation of the amount of ice production in climatological studies.
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