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Quasicrystalline Chern insulator
Aperiodic Ammann-Beenker tiling.

For Chern number —1:
u=11t=1 pu=2.
For Chern number 0:

u=1, t:%, u=2.

“px +ip," tight binding model: Hgc

H; = —uo,

i i i
Hjx = —to, — EAO'X cos(aji) — EAU}, sin(ajx)

Fulga, lon Cosma, Dmitry I. Pikulin, and L. “Aperiodic Weak Topological Supercon-
ductors.” Physical Review Letters 116.25 (2016): 257002.
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Gapped and ungapped by location

Set constants for Chern number
-1 on the left (black vertices).
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Set constants for Chern number
0 on the right (red vertices).
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The units indicated define posi-

’.
1
0
1

N ..!;0.!;.’. tion operators X and Y. Us-
© Ve.\ ing Dirichlet boundary condi-

tions (just compress).

gapless How can we described gapped and
gapless using the same Hilbert space?

3/24



didV (a.u)

Gapped and ungapped by location
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At interface of graphene surface
and hexagonal boron nitride sur-
face, expect states approximately
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The right shows scanning tun-
neling spectroscopy demonstrat-
ing this (via a scanning tunneling
microscope).
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Nature Comm. 5, 5403, (2015), “Spatially resolved one-dimensional boundary states
in graphene—hexagonal boron nitride planar heterostructures” by Park et al.
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Gapped and ungapped by location
Clamp an STM probe over position (0,0), get a combined system with
no position to measure. The localizer abstracts this.Define

H X-iY
LO(X’Y’H>:<X—HY ~H >

acting on a doubled Hilbert space (electron on the surface at vertex or on
the probe above vertex). One can show

Gt ()

. . . 1 _ 1 . .
implies that either p = —H%Hgbl or 1 —szugbg will satisfy

Hyp~0, Xyp=0 Yyp=O0.

Our ability to solve Eq. 1 is limited by the size of
_1-1
gapo(X, Y, H) = [|Lo(X, Y, H) |

which is the smallest absolute eigenvalue of the localizer.
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Gapped and ungapped by location
Notice
kX +ixkY — —H

Lo(kX, kY H) = ( H kX —ikY )

is equally valid. Small x makes Hyp ~ 0 closer to zero at the cost of
making X4 and Y larger.
We can also “move the probe” and shift H, so

H—A k(X—=A1)—ix(Y—=A
LA(KX,KY,H):(K(X_Al)_’_;(Y_AZ) ( _1)(/./—)(\3) 2)>,

and now small
_1y-1
gap, (X, Y, H) = [[La(X, Y, H) 7|
leads to

Hl/] ~ )tll)b, Xl/) ~ )\21/], Yl/} ~ )\31/}

We need to tune this by adjusting x. Too large a x gives an abstraction

of microscopy, not spectroscopy.
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Gapped and ungapped by location

We now plot gap, (X, xY, H) = HLA(KX,KY, H)_1H71 with A3 =0 as

a function of (A1, A2).

Clifford spectrum of (kX,xY, H) means gap, (xX,xY,H) = 0.
Clifford e-pseudospectrum of (kX,xY, H) means gap, (kX,xY,H) <e.
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Gapped and ungapped by location
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Gapped and ungapped by location
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Gapped and ungapped by location

We now plot gap, (kX, kY, H) = ||Ly(kX, kY, H)_le1 with A3 =0 as
a function of (A1, A2).

Clifford spectrum of (xX,xY, H) means gap/\(KX,KY, H) =0.

Clifford e-pseudospectrum of (kX,xY, H) means gap, (X, xY,H) <.
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Gapped and ungapped by location
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Gapped and ungapped by location

We fix ¥ = 0.1 and varying the energy setting A3. All spectral data
respects the symmetry H — —H, so we need only look at A3 > 0.
Plotting

gap, (kX, kY, H) = ||Ly(kX, kY, H)*1||71

with A3 = 0 as a function of (A1, Ap):
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Gapped and ungapped by location

We fix ¥ = 0.1 and varying the energy setting A3. All spectral data
respects the symmetry H — —H, so we need only look at A3 > 0.
Plotting

gap, (kX, kY, H) = ||Ly(kX, kY, H)d”il

with A3 = 0 as a function of (A1, Ap):

0.05 ’\ \
10 +
0.04 d Vo .’.\“r‘biﬂ.\
’ 0.04 °
5 0.03 ¢
‘ 0.03 2
0 ‘ 0.02 0
2
‘ 0.02
4
5 0.01
‘ 6
0.01
8
0.00
10 + 10
. 0 10 5 0 5 10
10 5 0 5 10




Gapped and ungapped by location
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Gapped and ungapped by location
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Gapped and ungapped by location
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Gapped and ungapped by location

We fix ¥ = 0.1 and varying the energy setting A3. All spectral data
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Approximate eigenvectors

When gapA(KX,KY, H) = 0, say with A; = Ay = 0, we obtain unit
vector 1 with Hip = Azp, Xip = 0, Y =~ 0. Bigger x means more
localized in position.

k= 0.0002

All produced with A3 =
0.828 and with the
“ . Chern insulator settings
“ everywhere.
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Approximate eigenvectors

We examine four of these, for deviation of ¢ in the Hamiltonian Hp
(radius p here is 40) and radial position R, = v/ X2 4 Y2,

‘ K ‘ Deviation of 1 in H), ‘ Deviation of 1 in R, ‘
0.0002 0.0032 7.8981
0.0010 0.0032 4.1666
0.0020 0.0083 3.7527
0.0050 0.0227 3.001

Varying x and using large p, we calculated approximate eigenvectors for
various H, that could be tapered to produce approximate eigenvectors for
the infinite area Hamiltonian Hgc. The spectrum seems to be

[—6.227, —0.604] U [0.604, 6.227]

with error in Hausdorff distance less that 0.044. (A semi-rigorous result.)
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K-theory

For the infinite system, Bellissard, van Elst, and Schulz-Baldes showed
that the Chern number is the index of the Fredholm operator

. . X+iY
1nd(HQC, X, Y) = lnd (HV (W) HV + (/ — HV))
where IT, is the spectral projector of Hgc for to the valence band.

There is an index for a finite system, which can be centered at any point.
1
indy (Hp, kX, kY) = ESig (Lx (Hp kX, xY))
where Sig(X) is the number of positive eigenvalues minus the number of

negative eigenvalues.

Typically we take A3 in the center of the gap or at the Fermi level, so
here A3 = 0. For a round or square sample that is built with consistent
constants, best to use A1 =0, A, = 0.
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K-theory

Theorem(L-Schulz-Baldes). If p is large enough, and « is a certain range,

1. » X+iY
ESlg (Lx (Hp kX, xY)) = ind (Hv (X—I—/Y|> I, + (I — HV)>

Our proof depends on the nice formula, in complex, ungraded case, for
the boundary map 91 : K1(Q) — Ko(K)

(K the compact operators and Q the Caulkin algebra).

The usual picture starts with unitary v in B, lifts to ||a|| < 1in A and
then 91 ([u]) = [p] — [1] where

(e ) (3 8 (s )

_1 2aa* —1 a2y/1—a*a _'_1 10
T2\ a*2y/1—aa* 1-—2a%a 2\ 0 1

[§)
*
[§)
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K-theory from the spectrum of the localizer
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0.1, )\2 = )\3 = 0 and
varying Aj.

14/24



K-theory from the spectrum of the localizer
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10

-10

K-theory

-10

10

The Clifford spectrum
must appear between
the regions of different
K-theory.

The larger the gap of
the localizer in those
regions, the more ro-
bust the Clifford spec-
trum and approximate
eigenvectors.
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Dimension one, class BDI

Now one position observable X and Hamiltonian H, say on Zz(Z) ® C2.

Also finite systems using open boundary conditions (X,, Hp).

In class BDI have two symmetries, and M5, becomes real and graded:
a — a' giving the real structure and a — a7 the grading, so a* = a*

means real, a° = a means even.
The localizer is, at (0, 0),

0 kX—iH
LO(KX'H)_(KX—i—iH 0 )

We note that v = X — iH is invertible with symmetries

This defines directly a Ky class in the Trout picture of Kp.
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Dimension one, class BDI

To get an index from the infinite system, one can consider

W = PQP + (I — P)

where P is projection on the the space X > 0 and @ is the spectral
projection for H corresponding to [0, c0). If we take w as the image of
2W — I 'in the Caulkin algebra Q, then w will be unitary with symmetries

w’ = —w, wt =w".

This defines directly a Ki class in the Van Daele picture of Kj.

Claim: Using the Trout picture in even degrees and the Van Daele
picture in odd degrees gives the easiest formulas for the boundary maps
in K-theory of real, graded C*-algebras.

First, a look at the complex, graded case...
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K-theory for complex, graded C*-algebras

This is a current project with Hermann Shulz-Baldes. Here 0 : A — A'is
an order-2 *-automorphism.

’ H with unitaries H with invertibles ‘ due to ‘
’ Ki(A, o) H W=—u vt =uu®=1 H W=—uut=u ‘ Van Daele ‘
’ Ko(A, o) H u’ = u H u’ = u ‘ Trout ‘

From 0 — | — A — B — 0 we get a natural six-term exact sequence

Ko(I) — Ko(A) — Ko(B)

q Jo

Kl(B) -~ Kl(A) -~ Kl(/)

Theorem (Kubota). Given 1’ = —u, u* = u, u’> = 1 in B lift to
—1<a<1inAwith 8% = —3a and then

91 ([u]) = [ exp (—7ia)]

This works only if A2 Ay®C¥?, small modifications needed in general.

Kubata also proved this in the real and graded case. 18/ 2



K-theory for complex, graded C*-algebras

Theorem(L-Schulz-Baldes). Given u* = u~! = v in B lift to ||a]| < 1
in A with a® = a* and then

ool = [w (L3 =h B W]

where W is a scalar unitary chosen to give this the correct symmetry for
the desired grading on My (/).

In the real, graded case, one needs to replace Ma(A) with AQC/%0.

Also, if A= Ay&ClL1 is not true then one starts with u in B&CL1 and
ends up in T&CA31, but always the formula uses 2aa* — 1 and

a2v/1— a*a.
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Dimension one, class BDI
In class BDI, the grading comes from a self-adjoint grading operator T,
so A =TAI. The class in Ko(M2,(C), 0, T) determined by

kX —iH.
Under the isomotphism Ky(M2,(C), o, T) =2 Z this works out to be

1
ESig (kXT + H)
which was one of the formulas guessed in 2015.

Note: Both kXTI + H and

0 kX—iH
Lo(kX, H) = ( kX +iH 0 )

are hermitian, and fiddling with singular value decomposition shows

A€o (Lo(kX, H)) <= A eco(kXT+H).

L. "K-theory and pseudospectra for topological insulators." Annals of Physics 356
(2015): 383-416
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Dimension one, class BDI
Liu, Shabani, and Mitra were able to map a 2D system to a 1D, class
BDI system in a study of Majorana Fermions.

S-wave leads

“A 2DEG with strong spin-orbit coupling is contacted with
s-wave superconducting leads that have a phase difference
¢ and The top gate can be used an in-plane longitudinal

magnetic field, ? The top gate can be used to tune the
chemical potential. Majorana edge modes appear at either
end of the 1D normal channel” from Liu, Shabani, and
Mitra (2018).

Liu, Shabani, and Mitra. "Long-range Kitaev chains via planar Josephson junctions."
Physical Review B 97.23 (2018): 235114.
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Dimension one, class BDI

4 :
Ip-0-0--0,
5l

1

‘@ |

W fo--0--0-0-a 1
» 0-0-4
06 —001 —00z 0.00 002 001
o
0.3 . ‘
© @
pn=—0.01 o =0.04
0.2
||
0.1
0.0

010 20 300 10 20 300 10 20 30
xX x X

(top) “Comparison of the topo-
logical invariant computed via a
winding number in 2D system
(dashed line) and via the real-
space invariant in the 1D model
(circles) defined in Eq. (15)”
(bottom) “The amplitude of four
positive energy modes closest to
zero [...] in the three topologi-
cal phases shown.” “The ampli-
tudes are averaged over disorder
realizations [...] that there are as
many edge modes as the invari-
ant predicts.” from Liu, Shabani,
and Mitra (2018).
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Dimension one, class BDI

@

1.0

— Energy Spectrum
- = Pseudospectrum

Again from Liu, Shabani,
and Mitra (2018).

0.5}

0.0

0.5pmmmmmmmmn s

On the bottom is a plot of the spectrum of H (blue dots) and the
spectrum of xXT 4 H red squares as a parameter y moves the system
from an topological insulator (3 < 2) to an ordinary insulator.

On top is a plot of the finite index 3Sig (kXT + H).
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The Localizer

@ Defined in any dimension, any Atland Zirnbauer symmetry class

@ Defines the Clifford (pseudo)spectrum — emergent topology from
tuples of hermitian matrices

© Enables numerical algorithm to find spectrum of infinite area,
quasiperiodic Hamiltonians.

Defines a local K-theory index — use x = C

C

Defines a global K-theory index — use k¥ = System radius

Gradually the indices are getting proven correct

©0 00

Not clear how to modify localizer for interacting fermions



