Emergent topology from finite volume topological insulators

Terry A. Loring
Department of Mathematics and Statistics
University of New Mexico

October, 2021

The Haldane Chern insulator

In two-dimensional momentum space,

$$
\begin{gathered}
H(\boldsymbol{k})=\left(t_{1} \sum_{j} \cos \left(\boldsymbol{k} \cdot \mathbf{a}_{j}\right)\right) \sigma_{x}-\left(t_{1} \sum_{j} \sin \left(\boldsymbol{k} \cdot \mathbf{a}_{j}\right)\right) \sigma_{y}+\left(M+2 t_{2} \sum_{j} \sin \left(\boldsymbol{k} \cdot \boldsymbol{b}_{j}\right)\right) \sigma_{z}, \\
\sigma_{x}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \sigma_{y}=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right], \sigma_{z}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] .
\end{gathered}
$$

The Haldane Chern insulator

In two-dimensional momentum space,

$$
\begin{gathered}
H(\boldsymbol{k})=\left(t_{1} \sum_{j} \cos \left(\boldsymbol{k} \cdot \mathbf{a}_{j}\right)\right) \sigma_{x}-\left(t_{1} \sum_{j} \sin \left(\boldsymbol{k} \cdot \mathbf{a}_{j}\right)\right) \sigma_{y}+\left(M+2 t_{2} \sum_{j} \sin \left(\boldsymbol{k} \cdot \boldsymbol{b}_{j}\right)\right) \sigma_{z}, \\
\sigma_{x}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \sigma_{y}=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right], \sigma_{z}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] .
\end{gathered}
$$

This is essentially

$$
\mathbb{T}^{2} \rightarrow \operatorname{Ham}\left(1, \mathbb{C}^{2}\right)
$$

where $\operatorname{Ham}\left(1, \mathbb{C}^{2}\right)$ is the space of all two-by-two "insulating" Hamiltonians with one negative eigenvalue.

The Haldane Chern insulator

In two-dimensional momentum space,

$$
\begin{gathered}
H(\boldsymbol{k})=\left(t_{1} \sum_{j} \cos \left(\boldsymbol{k} \cdot \mathbf{a}_{j}\right)\right) \sigma_{x}-\left(t_{1} \sum_{j} \sin \left(\boldsymbol{k} \cdot \mathbf{a}_{j}\right)\right) \sigma_{y}+\left(M+2 t_{2} \sum_{j} \sin \left(\boldsymbol{k} \cdot \boldsymbol{b}_{j}\right)\right) \sigma_{z}, \\
\sigma_{x}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \sigma_{y}=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right], \sigma_{z}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] .
\end{gathered}
$$

This is essentially

$$
\mathbb{T}^{2} \rightarrow \operatorname{Ham}\left(1, \mathbb{C}^{2}\right)
$$

where $\operatorname{Ham}\left(1, \mathbb{C}^{2}\right)$ is the space of all two-by-two "insulating" Hamiltonians with one negative eigenvalue.

Mathematically, the torus is the Pontryagin dual of \mathbb{Z}^{2},

Momentum torus

Basic model of free fermions, H periodic on $\ell^{2}\left(\mathbb{Z}^{2}\right) \otimes \mathbb{C}^{2 k}$.

Momentum torus

Basic model of free fermions, H periodic on $\ell^{2}\left(\mathbb{Z}^{2}\right) \otimes \mathbb{C}^{2 k}$.
Fourier transformed H becomes

$$
\mathbb{T}^{2} \rightarrow \operatorname{Ham}\left(k, \mathbb{C}^{2 k}\right)
$$

$\operatorname{Ham}\left(k, \mathbb{C}^{2 k}\right)=\left\{A \in \boldsymbol{M}_{2 k}(\mathbb{C}) \mid A^{+}=A, 0 \notin \sigma(A), \operatorname{sig}(A)=0\right\}$

Momentum torus

Basic model of free fermions, H periodic on $\ell^{2}\left(\mathbb{Z}^{2}\right) \otimes \mathbb{C}^{2 k}$.
Fourier transformed H becomes

$$
\mathbb{T}^{2} \rightarrow \operatorname{Ham}\left(k, \mathbb{C}^{2 k}\right)
$$

$\operatorname{Ham}\left(k, \mathbb{C}^{2 k}\right)=\left\{A \in \boldsymbol{M}_{2 k}(\mathbb{C}) \mid A^{+}=A, 0 \notin \sigma(A), \operatorname{sig}(A)=0\right\}$ $\operatorname{sig}(X)=\#$ (positive eigenvalues) $-\#$ (negative eigenvalues)

Momentum torus

Basic model of free fermions, H periodic on $\ell^{2}\left(\mathbb{Z}^{2}\right) \otimes \mathbb{C}^{2 k}$.
Fourier transformed H becomes

$$
\mathbb{T}^{2} \rightarrow \operatorname{Ham}\left(k, \mathbb{C}^{2 k}\right)
$$

$\operatorname{Ham}\left(k, \mathbb{C}^{2 k}\right)=\left\{A \in \boldsymbol{M}_{2 k}(\mathbb{C}) \mid A^{+}=A, 0 \notin \sigma(A), \operatorname{sig}(A)=0\right\}$ $\operatorname{sig}(X)=\#$ (positive eigenvalues) $-\#$ (negative eigenvalues)

$$
\left[\mathbb{T}^{2}, \operatorname{Ham}\left(k, \mathbb{C}^{2 k}\right)\right] \approx \widetilde{K}^{0}\left(\mathbb{T}^{2}\right) \cong \mathbb{Z}
$$

Momentum torus

Basic model of free fermions, H periodic on $\ell^{2}\left(\mathbb{Z}^{2}\right) \otimes \mathbb{C}^{2 k}$.
Fourier transformed H becomes

$$
\mathbb{T}^{2} \rightarrow \operatorname{Ham}\left(k, \mathbb{C}^{2 k}\right)
$$

Spectrally flattened, Fourier transformed

$$
\mathbb{T}^{2} \rightarrow \operatorname{Gr}\left(k, \mathbb{C}^{2 k}\right)
$$

$\operatorname{Ham}\left(k, \mathbb{C}^{2 k}\right)=\left\{A \in \boldsymbol{M}_{2 k}(\mathbb{C}) \mid A^{\dagger}=A, 0 \notin \sigma(A), \operatorname{sig}(A)=0\right\}$ $\operatorname{sig}(X)=\#$ (positive eigenvalues) $-\#$ (negative eigenvalues)

$$
\begin{gathered}
{\left[\mathbb{T}^{2}, \operatorname{Ham}\left(k, \mathbb{C}^{2 k}\right)\right] \approx \widetilde{K}^{0}\left(\mathbb{T}^{2}\right) \cong \mathbb{Z}} \\
\operatorname{Gr}\left(k, \mathbb{C}^{2 k}\right)=\left\{A \in \boldsymbol{M}_{2 k}(\mathbb{C}) \mid A^{+}=A, A^{2}=A, \operatorname{rank}(A)=k\right\}
\end{gathered}
$$

Breaking the momentum torus

(1) Finite area
(2) Open boundary conditions
(3) Boundary between two phases
(4) Quasicrystals

Breaking the momentum torus

(1) Finite area
(2) Open boundary conditions
(3) Boundary between two phases
(4) Quasicrystals
(5) Disorder
(6) Defects

Breaking the momentum torus

(1) Finite area
(2) Open boundary conditions
(3) Boundary between two phases

- Quasicrystals
- Disorder
- Defects

A few of these can be handled with periodic boundary conditions (flux torus/twisted boundary conditions, Bott index).

Quasicrystalline Chern insulator

Aperiodic Ammann-Beenker tiling.

" $p_{x}+i p_{y}$ " tight binding model

Quasicrystalline Chern insulator

Aperiodic Ammann-Beenker tiling.

" $p_{x}+i p_{y}$ " tight binding model

Quasicrystalline Chern insulator

Aperiodic Ammann-Beenker tiling.

For Chern number -1 :

$$
\mu=1, \quad t=1, \Delta=2
$$

For Chern number 0 :

$$
\mu=1, t=\frac{1}{3}, \Delta=2 .
$$

" $p_{x}+i p_{y}$ " tight binding model
H_{QC} :

$$
\begin{gathered}
H_{j}=-\mu \sigma_{z} \\
H_{j k}=-t \sigma_{z}-\frac{i}{2} \Delta \sigma_{x} \cos \left(\alpha_{j k}\right)-\frac{i}{2} \Delta \sigma_{y} \sin \left(\alpha_{j k}\right)
\end{gathered}
$$

Fulga, I. C., Pikulin, D. I. and TL. "Aperiodic Weak Topological Superconductors."
Physical Review Letters 116.25 (2016): 257002.

Gapped and ungapped by location

Set constants for Chern number -1 on the left (black vertices).

Set constants for Chern number 0 on the right (red vertices).

The units indicated define position operators X and Y. Using Dirichlet boundary conditions (just compress).

Gapped and ungapped by location

Set constants for Chern number -1 on the left (black vertices).

Set constants for Chern number 0 on the right (red vertices).

The units indicated define position operators X and Y. Using Dirichlet boundary conditions (just compress).

Kitaev: How can we described gapped and gapless using the same Hilbert space?

Gapped and ungapped by location

Set constants for Chern number -1 on the left (black vertices).

Set constants for Chern number 0 on the right (red vertices).

The units indicated define position operators X and Y. Using Dirichlet boundary conditions (just compress).

Kitaev: How can we described gapped and gapless using the same Hilbert space?

Gapped and ungapped by location

Set constants for Chern number -1 on the left (black vertices).

Set constants for Chern number 0 on the right (red vertices).

The units indicated define position operators X and Y. Using Dirichlet boundary conditions (just compress).

Kitaev: How can we described gapped and gapless using the same Hilbert space?

Kitaev, A. "K-theoretic classification of free-fermion Hamiltonians." West Coast Operator Algebra Seminar, Albuquerque, 2011.

Topology from joint spectrum

Finite-area model summarized by three Hermitian matrices: X, Y, H.

Topology from joint spectrum

Finite-area model summarized by three Hermitian matrices: X, Y, H.
Need $\|X H-H X\|$ and $\|Y H-H Y\|$ both "small" so adjust units:

$$
X \rightsquigarrow \kappa X, \quad Y \rightsquigarrow \kappa Y
$$

Topology from joint spectrum

Finite-area model summarized by three Hermitian matrices: X, Y, H.
Need $\|X H-H X\|$ and $\|Y H-H Y\|$ both "small" so adjust units:

$$
X \rightsquigarrow \kappa X, Y \rightsquigarrow \kappa Y
$$

Joint approximate eigenvectors: $\|\boldsymbol{v}\|=1$ and $\lambda_{j} \in \mathbb{R}$ with

$$
\left(\left\|X \boldsymbol{v}-\lambda_{1} \boldsymbol{v}\right\|^{2}+\left\|Y \boldsymbol{v}-\lambda_{2} \boldsymbol{v}\right\|^{2}+\left\|H \boldsymbol{v}-\lambda_{3} \boldsymbol{v}\right\|^{2}\right)^{\frac{1}{2}}
$$

small. Look for local minima?

Topology from joint spectrum

If we set

$$
Q_{\lambda}(X, Y, H)=\left(X-\lambda_{1}\right)^{2}+\left(Y-\lambda_{2}\right)^{2}+\left(H-\lambda_{3}\right)^{2}
$$

then

$$
\min _{\|\boldsymbol{v}\|=1}\left(\left\|X \boldsymbol{v}-\lambda_{1} \boldsymbol{v}\right\|^{2}+\left\|Y \boldsymbol{v}-\lambda_{2} \boldsymbol{v}\right\|^{2}+\left\|H \boldsymbol{v}-\lambda_{3} \boldsymbol{v}\right\|^{2}\right)^{\frac{1}{2}}=\left(\sigma_{\min }\left(Q_{\lambda}(X, Y, H)\right)^{\frac{1}{2}} .\right.
$$

Notation: $\sigma_{\text {min }}(B)$ is the smallest singular value of a matrix.

Topology from joint spectrum

If we set

$$
Q_{\lambda}(X, Y, H)=\left(X-\lambda_{1}\right)^{2}+\left(Y-\lambda_{2}\right)^{2}+\left(H-\lambda_{3}\right)^{2}
$$

then

$$
\min _{\|\boldsymbol{v}\|=1}\left(\left\|X \boldsymbol{v}-\lambda_{1} \boldsymbol{v}\right\|^{2}+\left\|Y \boldsymbol{v}-\lambda_{2} \boldsymbol{v}\right\|^{2}+\left\|H \boldsymbol{v}-\lambda_{3} \boldsymbol{v}\right\|^{2}\right)^{\frac{1}{2}}=\left(\sigma_{\min }\left(Q_{\lambda}(X, Y, H)\right)^{\frac{1}{2}} .\right.
$$

Notation: $\sigma_{\text {min }}(B)$ is the smallest singular value of a matrix.
Def. The quadratic spectrum of a triple (X, Y, H) of Hermitian matrices is the set

$$
\Lambda^{Q}(X, Y, H)=\left\{\lambda \in \mathbb{R}^{3} \mid \sigma_{\min }\left(Q_{\lambda}(X, Y, H)=0\right\}\right.
$$

Quadratic joint spectrum

Def. The quadratic spectrum of a triple (X, Y, H) of Hermitian matrices is the set

$$
\Lambda^{Q}(X, Y, H)=\left\{\lambda \in \mathbb{R}^{3} \mid \sigma_{\min }\left(Q_{\lambda}(X, Y, H)=0\right\}\right.
$$

Too often, this is the empty set.

Quadratic joint spectrum

Def. The quadratic spectrum of a triple (X, Y, H) of Hermitian matrices is the set

$$
\Lambda^{Q}(X, Y, H)=\left\{\lambda \in \mathbb{R}^{3} \mid \sigma_{\min }\left(Q_{\lambda}(X, Y, H)=0\right\}\right.
$$

Too often, this is the empty set.
A partial fix:
Def. The quadratic pseudospectrum of a triple (X, Y, H) of Hermitian matrices is based on the function

$$
\lambda \mapsto\left(\sigma_{\min }\left(Q_{\lambda}(X, Y, H)\right)\right)^{\frac{1}{2}}
$$

so

$$
\Lambda_{\epsilon}^{Q}(X, Y, H)=\left\{\lambda \in \mathbb{R}^{3} \left\lvert\,\left(\sigma_{\min }\left(Q_{\lambda}(X, Y, H)\right)\right)^{\frac{1}{2}} \leq \epsilon\right.\right\}
$$

Clifford joint spectrum

Define "the localizer"

$$
L_{\lambda}(X, Y, H)=\left(X-\lambda_{1}\right) \otimes \sigma_{x}+\left(Y-\lambda_{2}\right) \otimes \sigma_{y}+\left(H-\lambda_{3}\right) \otimes \sigma_{z}
$$

Clifford joint spectrum

Define "the localizer"

$$
L_{\lambda}(X, Y, H)=\left(X-\lambda_{1}\right) \otimes \sigma_{x}+\left(Y-\lambda_{2}\right) \otimes \sigma_{y}+\left(H-\lambda_{3}\right) \otimes \sigma_{z}
$$

Assuming $\|X H-H X\|$ and $\|Y H-H Y\|$ are small,

$$
\left(L_{\lambda}(X, Y, H)\right)^{2} \approx Q_{\lambda}(X, Y, H) \otimes I_{2}
$$

Clifford joint spectrum

Define "the localizer"

$$
L_{\lambda}(X, Y, H)=\left(X-\lambda_{1}\right) \otimes \sigma_{x}+\left(Y-\lambda_{2}\right) \otimes \sigma_{y}+\left(H-\lambda_{3}\right) \otimes \sigma_{z}
$$

Assuming $\|X H-H X\|$ and $\|Y H-H Y\|$ are small,

$$
\left(L_{\lambda}(X, Y, H)\right)^{2} \approx Q_{\lambda}(X, Y, H) \otimes I_{2}
$$

Def. (Kisil) The Clifford spectrum of a triple (X, Y, H) of Hermitian matrices is the set

$$
\Lambda(X, Y, H)=\left\{\lambda \in \mathbb{R}^{3} \mid \sigma_{\min }\left(L_{\lambda}(X, Y, H)\right)=0\right\}
$$

Clifford joint spectrum

Define "the localizer"

$$
L_{\lambda}(X, Y, H)=\left(X-\lambda_{1}\right) \otimes \sigma_{x}+\left(Y-\lambda_{2}\right) \otimes \sigma_{y}+\left(H-\lambda_{3}\right) \otimes \sigma_{z}
$$

Assuming $\|X H-H X\|$ and $\|Y H-H Y\|$ are small,

$$
\left(L_{\lambda}(X, Y, H)\right)^{2} \approx Q_{\lambda}(X, Y, H) \otimes I_{2}
$$

Def. (Kisil) The Clifford spectrum of a triple (X, Y, H) of Hermitian matrices is the set

$$
\Lambda(X, Y, H)=\left\{\lambda \in \mathbb{R}^{3} \mid \sigma_{\min }\left(L_{\lambda}(X, Y, H)\right)=0\right\}
$$

Def. The Clifford pseudospectrum of a triple (X, Y, H) of Hermitian matrices is based on the function

$$
\lambda \mapsto \sigma_{\min }\left(L_{\lambda}(X, Y, H)\right.
$$

SO

$$
\Lambda_{\epsilon}(X, Y, H)=\left\{\lambda \in \mathbb{R}^{3} \mid \sigma_{\min }\left(L_{\lambda}(X, Y, H)\right) \leq \epsilon\right\}
$$

A "sphere" emerges

Separate Hilbert space for bulk and boundary:

A "sphere" emerges

Separate Hilbert space for bulk and boundary:

Same Hilbert space, bulk and boundary (slice at fixed- y), $\Lambda_{\epsilon}(X, Y, H):$

A "sphere" emerges

Separate Hilbert space for bulk and boundary:

Bulk

 Boundary

Same Hilbert space, bulk and boundary (slice at fixed-y), $\Lambda_{\epsilon}(X, Y, H):$

A "sphere" emerges

Square sample with quasiperiodic Chern insulator everywhere.
$\Lambda_{\epsilon}(X, Y, H)$ for $\epsilon=0.02$

Chern insulator on the left, trivial insulator on the right.

K-theory

Consider this topological space

$$
M=\Lambda_{0.1}(X, Y, H)
$$

and the C^{*}-algebra $C(M)$.

K-theory

Consider this topological space

$$
M=\Lambda_{0.1}(X, Y, H)
$$

and the C^{*}-algebra $C(M)$. This has "the same" K-theory as a sphere, with the interesting element represented by

$$
L(x, y, z)=\left[\begin{array}{cc}
z & (x+5)-i y \\
(x+5)+i y & -z
\end{array}\right] \in \boldsymbol{M}_{2}(C(M))
$$

For conventional picture of K-theory: spectrally flatten; take a formal difference.

K-theory

Consider this topological space

$$
M=\Lambda_{0.1}(X, Y, H)
$$

and the C^{*}-algebra $C(M)$. This has "the same" K-theory as a sphere, with the interesting element represented by

$$
L(x, y, z)=\left[\begin{array}{cc}
z & (x+5)-i y \\
(x+5)+i y & -z
\end{array}\right] \in \boldsymbol{M}_{2}(C(M))
$$

For conventional picture of K-theory: spectrally flatten; take a formal difference.

Ugly math defines an approximate homomorphism $C(M) \rightharpoonup \boldsymbol{M}_{N}(\mathbb{C})$ with $x \mapsto X, y \mapsto Y, z \mapsto H$.

K-theory

Consider this topological space

$$
M=\Lambda_{0.1}(X, Y, H)
$$

and the C^{*}-algebra $C(M)$. This has "the same" K-theory as a sphere, with the interesting element represented by

$$
L(x, y, z)=\left[\begin{array}{cc}
z & (x+5)-i y \\
(x+5)+i y & -z
\end{array}\right] \in M_{2}(C(M))
$$

For conventional picture of K-theory: spectrally flatten; take a formal difference.

Ugly math defines an approximate homomorphism $C(M) \rightharpoonup M_{N}(\mathbb{C})$ with $x \mapsto X, y \mapsto Y, z \mapsto H$. Applying this to K-theory we get

$$
L_{(-5,0,0)}(X, Y, H)=\left[\begin{array}{cc}
H & (X+5)-i Y \\
(X+5)+i Y & -H
\end{array}\right] \in M_{2 N}(\mathbb{C})
$$

K-theory

Consider this topological space

$$
M=\Lambda_{0.1}(X, Y, H)
$$

and the C^{*}-algebra $C(M)$. This has "the same" K-theory as a sphere, with the interesting element represented by

$$
L(x, y, z)=\left[\begin{array}{cc}
z & (x+5)-i y \\
(x+5)+i y & -z
\end{array}\right] \in M_{2}(C(M))
$$

For conventional picture of K-theory: spectrally flatten; take a formal difference.

Ugly math defines an approximate homomorphism $C(M) \rightharpoonup M_{N}(\mathbb{C})$ with $x \mapsto X, y \mapsto Y, z \mapsto H$. Applying this to K-theory we get

$$
L_{(-5,0,0)}(X, Y, H)=\left[\begin{array}{cc}
H & (X+5)-i Y \\
(X+5)+i Y & -H
\end{array}\right] \in M_{2 N}(\mathbb{C})
$$

Where this sits in $K_{0}\left(\boldsymbol{M}_{N}(\mathbb{C})\right) \cong \mathbb{Z}$ can be done on a computer,

$$
\left[L_{(-5,0,0)}(X, Y, H)\right] \mapsto \frac{1}{2} \operatorname{sig}\left(L_{(-5,0,0)}(X, Y, H)\right)
$$

A Local Index

We obtain a local index for a finite system, which can be centered at any point not in $\Lambda(X, Y, H)$,

$$
\operatorname{ind}_{\lambda}(X, Y, H)=\frac{1}{2} \operatorname{Sig}\left(L_{\lambda}(X, Y, H)\right)
$$

$\sigma_{\min }\left(L_{\lambda}(X, Y, H)\right)$ large means more protection by the local index.

A Local Index

We obtain a local index for a finite system, which can be centered at any point not in $\Lambda(X, Y, H)$,

$$
\operatorname{ind}_{\lambda}(X, Y, H)=\frac{1}{2} \operatorname{Sig}\left(L_{\lambda}(X, Y, H)\right)
$$

$\sigma_{\min }\left(L_{\lambda}(X, Y, H)\right)$ large means more protection by the local index.

A Local Index

We obtain a local index for a finite system, which can be centered at any point not in $\Lambda(X, Y, H)$,

$$
\operatorname{ind}_{\lambda}(X, Y, H)=\frac{1}{2} \operatorname{Sig}\left(L_{\lambda}(X, Y, H)\right)
$$

$\sigma_{\min }\left(L_{\lambda}(X, Y, H)\right)$ large means more protection by the local index.

Other local K -theory markers:
(1) Kitaev (2006)
(2) Bianco and Resta (2011)
(3) Li and Mong (2019)

Quantifying topological protection of bulk points

$$
\|\Delta H\|<\sigma_{\min }\left(L_{\lambda}(X, Y, H)\right) \Longrightarrow \operatorname{ind}_{\lambda}(X, Y, H)=\operatorname{ind}_{\lambda}(X, Y, H+\Delta H)
$$

Quantifying protection of boundary states

Assume ind ${ }_{\left(x_{0}, y_{0}, 0\right)}(X, Y, H)$ does not equal $\operatorname{ind}_{\left(x_{1}, y_{1}, 0\right)}(X, Y, H)$.

Quantifying protection of boundary states

Assume ind ${ }_{\left(x_{0}, y_{0}, 0\right)}(X, Y, H)$ does not equal $\operatorname{ind}_{\left(x_{1}, y_{1}, 0\right)}(X, Y, H)$.

Also assume

$$
\|\Delta H\|<\sigma_{\min }\left(L_{\left(x_{j}, y_{j}, 0\right)}(X, Y, H)\right)
$$

Quantifying protection of boundary states

Assume ind ${ }_{\left(x_{0}, y_{0}, 0\right)}(X, Y, H)$ does not equal $\operatorname{ind}_{\left(x_{1}, y_{1}, 0\right)}(X, Y, H)$.

Also assume

$$
\|\Delta H\|<\sigma_{\min }\left(L_{\left(x_{j}, y_{j}, 0\right)}(X, Y, H)\right) .
$$

This means

$$
L_{\left(x_{t}, y_{t}, 0\right)}(X, Y, H+\Delta H)
$$

has an eigenvalue cross from positive to negative.

Quantifying protection of boundary states

Assume ind ${ }_{\left(x_{0}, y_{0}, 0\right)}(X, Y, H)$ does not equal $\operatorname{ind}_{\left(x_{1}, y_{1}, 0\right)}(X, Y, H)$.

Also assume

$$
\|\Delta H\|<\sigma_{\min }\left(L_{\left(x_{j}, y_{j}, 0\right)}(X, Y, H)\right) .
$$

This means

$$
L_{\left(x_{t}, y_{t}, 0\right)}(X, Y, H+\Delta H)
$$

has an eigenvalue cross from positive to negative.

Thus there is a point μ on the line with $\mu \in \Lambda(X, Y, H)$.

Quantifying protection of boundary states

Assume

$$
\operatorname{ind}_{\left(x_{0}, y_{0}, 0\right)}(X, Y, H) \neq \operatorname{ind}_{\left(x_{1}, y_{1}, 0\right)}(X, Y, H) .
$$

Also assume, for $j=0,1$,

$$
\|\Delta H\|<\sigma_{\min }\left(L_{\left(x_{j}, y_{j}, 0\right)}(X, Y, H)\right) .
$$

We have proven there is a unit vector v with

$$
\left(\left\|X \boldsymbol{v}-x_{t} \boldsymbol{v}\right\|^{2}+\left\|Y \boldsymbol{v}-y_{t} \boldsymbol{v}\right\|^{2}+\|H \boldsymbol{v}-0 \boldsymbol{v}\|^{2}\right)^{\frac{1}{2}}
$$

less than some specific bound.

Other places localizer has been used

Other places localizer has been used

- 1D systems, class BDI.

Other places localizer has been used

- 1D systems, class BDI.
- Weak topological insulators in 2D, class D.

Other places localizer has been used

- 1D systems, class BDI.
- Weak topological insulators in 2D, class D.
- Disordered semimetals.

Math on almost commuting matrices

- Loring, Terry A. "K-theory and asymptotically commuting matrices." Canadian J. of Mathematics 40.1 (1988): 197-216.
- Choi, Man Duen. "Almost commuting matrices need not be nearly commuting." Proc. of the American Math. Society 102.3 (1988): 529-533.
- Connes, Alain, and Nigel Higson. "Déformations, morphismes asymptotiques et K-théorie bivariante." CR Acad. Sci. Paris Sér. I Math 311.2 (1990): 101-106.
- Exel, Ruy, and Terry A. Loring. "Invariants of almost commuting unitaries." J. Functional Analysis 95.2 (1991): 364-376.
- Kisil, Vladimir. "Möbius transformations and monogenic functional calculus." Electronic Research Announcements of the American Mathematical Society 2.1 (1996): 26-33.

Almost commuting matrices and operators in physics

- von Neumann, J. "Beweis des Ergodensatzes und des H-Theorems in der neuen Mechanik." Zeitschrift für Physik 57.1 (1929): 30-70.
- Hastings, M. B. "Topology and phases in fermionic systems." J. Statistical Mechanics: Theory and Experiment 2008.01 (2008): L01001.
- Loring, Terry A., and Matthew B. Hastings. "Disordered topological insulators via C*-algebras." EPL 92.6 (2011): 67004.

The localizer in physics

- Hastings, Matthew B., and Terry A. Loring. "Almost commuting matrices, localized Wannier functions, and the quantum Hall effect." Journal of mathematical physics 51.1 (2010): 015214.
- Berenstein, David, and Eric Dzienkowski. "Matrix embeddings on flat \mathbb{R}^{3} and the geometry of membranes." Physical Review D 86.8 (2012): 086001.
- Loring, Terry A. "K-theory and pseudospectra for topological insulators." Annals of Physics 356 (2015): 383-416.
- Fulga, Ion C., Dmitry I. Pikulin, and Terry A. Loring. "Aperiodic weak topological superconductors." Physical review letters 116.25 (2016): 257002.
- Liu, Dillon T., Javad Shabani, and Aditi Mitra. "Long-range Kitaev chains via planar Josephson junctions." Physical Review B 97.23 (2018): 235114.
- Schulz-Baldes, Hermann, and Tom Stoiber. "Invariants of disordered semimetals via the spectral localizer." EPL (Europhysics Letters) (2021).

The localizer in physics

- Hastings, Matthew B., and Terry A. Loring. "Almost commuting matrices, localized Wannier functions, and the quantum Hall effect." Journal of mathematical physics 51.1 (2010): 015214.
- Berenstein, David, and Eric Dzienkowski. "Matrix embeddings on flat \mathbb{R}^{3} and the geometry of membranes." Physical Review D 86.8 (2012): 086001.
- Loring, Terry A. "K-theory and pseudospectra for topological insulators." Annals of Physics 356 (2015): 383-416.
- Fulga, Ion C., Dmitry I. Pikulin, and Terry A. Loring. "Aperiodic weak topological superconductors." Physical review letters 116.25 (2016): 257002.
- Liu, Dillon T., Javad Shabani, and Aditi Mitra. "Long-range Kitaev chains via planar Josephson junctions." Physical Review B 97.23 (2018): 235114.
- Schulz-Baldes, Hermann, and Tom Stoiber. "Invariants of disordered semimetals via the spectral localizer." EPL (Europhysics Letters) (2021).

Thank you

