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1. Introduction

This is an introduction to number theory at the undergraduate level. For most
of the course the only prerequisites are the basic facts of arithmetic learned in
elementary school (although these will have to be critically revisited) plus some
basic facts of logic and set theory. In this Introduction we discuss the plan of the
course and some of our prerequisites.

Plan of the course. We start by introducing the integers and the rationals. We
next present Euclid’s theory of divisibility and prime decomposition (3rd century
BC). The results of this theory are taught (without proof!) in elementary school and
are being used, of course, throughout mathematics and even in everyday life; most
of the students “believe” these results and few go back to question their validity
(which sometimes depends on rather subtle arguments). The most blatant example
of this is the uniqueness of prime factorization of integers which is usually perceived
as “obvious” but is indeed a delicate result (which fails, as we shall show, in more
general contexts.) With the exception of the work of Diophantus (3rd century AD)
little has been achieved in number theory in the interval between Euclid’s time and
the 17th century when Fermat revisited the subject. The main body of the course
will consist of presenting some of the classical number theoretic results obtained
in the 17th century (by Fermat), 18th century (by Euler and Lagrange), and early
19th century (by Gauss). In spite of the wide variety of these results they are all
concerned essentially with the following central problem in number theory: given
a polynomial f(x) with integer coefficients “understand” the prime divisors of the
numbers of the form f(c) where c are integers. This problem is still largely open
today in spite of the impressive work done on important special cases during the
19th and 20th century (by Dirichlet, Eisenstein, Kummer, Kronecker, Dedekind,
Hilbert, Artin, Hasse, Weil, Tate, Shimura, Deligne, Wiles, etc.) None of the work
done after Gauss will be presented here. We will include, however, a brief appendix
on the applications of classical number theory to modern cryptography; this can be
read right after the section on primitive roots. There is a multitude of exercises,
both numerical and theoretical; the theoretical exercises are an integral part of the
exposition so they should not be skipped. Some exercises have hints provided for
them; some of the hints are actually complete solutions. n what follows we review
logic and set theory.

Prerequisites. We assume familiarity with basic facts of logic. The logical
constructions we are interested in are theories. A theory is a sequence of sentences
labeled as definitions, axioms, and theorems. Definitions are sentences involving
both new concepts and already available concepts; they are used to introduce the
new concepts. Axioms are sentences involving available concepts. Both Definitions
and axioms are assumed to hold throughout the theory. Neither definitions nor
axioms require proofs but theorems do. Statements of theorems are usually in
the form “if H then C”; H is then called the hypothesis and C is the conclusion.
There are two basic strategies to prove such a theorem: direct proof and proof by
contradiction. In a direct proof we assume H is true and derive that C is true using
the laws of logic. In a proof by contradiction we assume H is true and C is false
and we seek a contradiction (i.e. we seek to show that some statement A is both
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true and false). Later we will use another strategy that works sometimes namely
induction.

We view Mathematics as identical to Set Theory. Set Theory operates with
symbols a, b, A,B, ... called “sets”. One also has a symbol ∈ which we translate
into English as “belongs to” or “is an element of”. So a ∈ A is translated as “a
belongs to A” (equivalently “a is an element of A”); b 6∈ A is translated as “b is
not an element of A”. “Meaning” here is not important: one could let a,A be
translated as “crocodiles” and one could let a ∈ A be translated as “crocodile a in
dreamt by crocodile A”. If a, b, c, ... ∈ A we write A = {a, b, c, ...}. If P is a property
expressible in terms of ∈ only and if A is a set we assume there is a set, denoted by
{x ∈ A | P (x)}, whose elements are exactly those elements x of A that have property
P . We assume there is a set (called the empty set) ∅ such that for all x, x 6∈ ∅. Sets
can be elements of other sets. E.g. {{a, b}, a, {{a}, b, c, ∅}} is a set. Also {∅} 6= ∅.
We say that A is a subset of B if x ∈ A implies x ∈ B; we write A ⊂ B. Given a
set A we assume there is a set P(A) (called the power set of A) whose elements are
exactly the subsets of A. We assume that A = B if and only if A ⊂ B and B ⊂ A.
For instance {a, b, c} = {b, c, a}. Given two sets A and B we assume there is a set
(called their union) A ∪B such that x ∈ A ∪B if and only if x ∈ A or x ∈ B. The
intersection of two sets A and B is defined as the set A∩B := {x ∈ A | x ∈ B}. The
difference is defined as the set A\B := {x ∈ A | x 6∈ B}. E.g. if A = {a, b, c} and
B = {c, d} with a, b, c, d distinct thenA∪B = {a, b, c, d}, A∩B = {c}, A\B = {a, b}.
A pair (a, b) is defined to be a set of the form {{a}, {a, b}}. The product A×B is
defined to be the set of pairs (a, b) with a ∈ A and b ∈ B. E.g., if A and B are in
the example above then A×B = {(a, c), (a, d), (b, c), (b, d), (c, c), (c, d)}.

A map of sets F : A → B (or a function) is, by definition, a subset F ⊂ A× B
such that for every a ∈ A there is a unique b ∈ B with (a, b) ∈ F ; we write
b = F (a) and a 7→ F (a). For instance if A and B are as in the example above
then F = {(a, c), (b, c), (c, d)} is a map and F (a) = c, F (b) = c, F (c) = d. Also
a 7→ c, b 7→ c, c 7→ d. On the other hand {(a, b), (a, c), (b, d)} is not a map. There
is a unique map 1A : A → A, called the identity map, such that 1A(a) = a for
all a ∈ A. A map F is injective (or is an injection) if F (a) = F (c) implies a = c.
A map F is surjective (or is a surjection) if for every b ∈ B there exists a ∈ A
such that F (a) = b. A map is bijective (or is a bijection) if it is both injective and
surjective. Two sets are in bijection if there exists a bijection from one to the other.
The composition F ◦G : A→ C of two maps G : A→ B and F : B → C is defined
by (F ◦G)(a) := F (G(a)). The composition of two injective maps is injective and
the composition of two surjective maps is surjective. If F : A→ B is bijective then
there exists a unique map F−1 : B → A (which is also bijective) called its inverse
such that F ◦ F−1 = 1B and F−1 ◦ F = 1A.

If A is a set then a relation on A is a subset R ⊂ A × A. If (a, b) ∈ R we
write aRb. A relation R is called an order if (writing a ≤ b instead of aRb) we
have, for all a, b, c ∈ A, that 1) a ≤ a (reflexivity), 2) a ≤ b and b ≤ c imply
a ≤ c (transitivity), 3) a ≤ b and b ≤ a imply a = b (antisymmetry). We write
a < b for a ≤ b and a 6= b. An order relation is called total if for every a, b ∈ A
either a ≤ b or b ≤ a. For instance if A = {a, b, c, d} with a, b, c, d distinct and
R = {(a, a), (b, b), (c, c), (d, d), (a, b), (b, c), (a, c)} is an order but not a total order.
If A is a set with order ≤ and S a subset of A (which can be the whole of A)
then an element m ∈ S is called a minimum of S if for all x ∈ S we have m ≤ x.
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If a minimum of S exists it is unique and one writes m = minS. A relation R
is called an equivalence relation if (writing a ∼ b instead of aRb) we have, for all
a, b, c ∈ A, that 1) a ∼ a (reflexivity), 2) a ∼ b and b ∼ c imply a ∼ c (transitivity),
3) a ∼ b implies b ∼ a (symmetry); we also say that ∼ is an equivalence relation.
Given an equivalence relation ∼ as above for every a ∈ A we may consider the set

â := {c ∈ A | c ∼ a} called the equivalence class of a. Note that we have â = b̂ if

and only if a ∼ b; moreover if â ∩ b̂ 6= ∅ then â = b̂. The set of equivalence classes
{â | a ∈ A} is denoted by A/ ∼ and is called the quotient of A by the relation ∼. For
instance if A = {a, b, c} with a, b, c distinct and R = {(a, a), (b, b), (c, c), (a, b), (b, a)}
then R is an equivalence relation, â = b̂ = {a, b}, ĉ = {c}, and A/ ∼= {{a, b}, {c}}.

A binary operation ? on a set A is a map ? : A × A → A, (a, b) 7→ ?(a, b).
We usually write a ? b instead of ?(a, b). Hence, for instance, we write (a ? b) ? c
instead of ?(?(a, b), c). Instead of ? we sometimes use notation like +,×, ◦, ... A
unary operation ′ on a set A is a map ′ : A→ A, a 7→ ′(a). We usually write a′ or
′a instead of ′(a). Instead of ′ we sometimes use notation like −, i, ...

What are the integers? A naive answer is: the integers are the elements of
the set

Z = {...,−4,−3,−2,−1, 0, 1, 2, 3, 4, ...}.
Also the natural numbers are the elements of the set

N = {1, 2, 3, 4, ...}.

Integers can be added and multiplied and these operations satisfy the “usual” rules
familiar from elementary school. We could proceed with such vague definitions but,
instead, we will revisit these matters below and make them more precise. There
are two ways to define mathematical objects: axiomatically or constructively. An
axiomatic definition assumes the objects are “given” together with a list of basic
properties that they satisfy. A constructive definition shows how to construct the
objects from more elementary objects. In this course we will define the integers
axiomatically. Later we will define rational numbers, real numbers, and complex
numbers constructively from the integers.

2. The integers

Throughout this course we assume we are given the following data:
a) A set Z (whose elements are called integers or integer numbers)
b) Two distinct elements 0 6= 1 of Z,
c) Two binary operations + and × on Z (called addition and multiplication)

and one unary operation − on Z (called negative); we usually write a × b = ab,
a− b = a+ (−b), −a = −(a),

d) A total order ≤ on Z; we let N := {x ∈ Z | x > 0} (the elements of N are
called natural numbers).

We assume that for all a, b, c ∈ Z the following conditions are satisfied:
Z1) a+ (b+ c) = (a+ b) + c, a+ 0 = a, a+ (−a) = 0, a+ b = b+ a;
Z2) a(bc) = (ab)c, 1a = a, ab = ba;
Z3) a(b+ c) = ab+ ac;
Z4) If a < b then a+ c < b+ c;
Z5) If c > 0 and a < b then ac < bc;
Z6) Every non-empty subset S ⊂ N has a minimum.
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Remark 2.1. The existence of data as above can be deduced from the so-called
Zermelo-Fraenkel axioms of Set Theory but here we will simply assume the existence
of such data (i.e., we take the existence of such data as an axiom).

Remark 2.2. The statement a+(b+c) = (a+b)+c in Z1 is called the associativity
of addition; we write a+ b+ c instead of (a+ b) + c. The statement (ab)c = a(bc) in
Z2 is called the associativity of multiplication and again we write abc for (ab)c. Z3
is called distributivity. The conditions Z1-Z3 are called the ring conditions. Z6 is
the Well Ordering condition. If S in condition Z6 is the set of all natural numbers
having a property P we also refer to minS as the minimum natural number with
property P . The above condition says that if there are natural numbers with
property P then there is minimum natural number with property P . Conditions
Z1-Z5 are satisfied by many other “number systems”; e.g. they are satisfied if one
replaces Z by the rational (or real) numbers and N by the positive rational (or
real) numbers (to be introduced later). Condition Z6 is, however, “specific” to the
integers (and is violated in the case of the rationals and the reals).

Exercise 2.3. Prove that 0 × a = 0. Hint (actually a complete proof): By Z1
we have 0 + 0 = 0. Multiplying by a to get a × (0 + 0) = a × 0. By Z3 we get
a× 0 + a× 0 = a× 0. Adding −(a× 0) to both terms we get by Z1 that a× 0 = 0.

Exercise 2.4. Prove that −(−a) = a, and −a = (−1)×a for all a ∈ Z. Prove that
(−1)× (−1) = 1.

Exercise 2.5. Prove that if a, b ∈ Z and ab = 0 then either a = 0 or b = 0.

Exercise 2.6. Prove that 1 ∈ N. Hint (actually a complete proof): we assume
1 6∈ N and we seek a contradiction. Since 1 6∈ N and 1 6= 0 it follows by condition
Z5 that −1 ∈ N. So by condition Z4 (−1) × (−1) ∈ N. But, by Exercise 2.3,
(−1)× (−1) = 1. Hence 1 ∈ N, a contradiction.

Definition 2.7. Define the natural numbers 2, 3, ..., 9 by

2 = 1 + 1
3 = 2 + 1

....
9 = 8 + 1

Define 10 = 2 × 5. Define 102 = 10 × 10, etc. Define symbols like 423 as being
4 × 102 + 2 × 10 + 3, etc. This is called a decimal representation. (We will later
prove that every natural number has a decimal representation.)

Exercise 2.8. Prove that 12 = 9 + 3. Hint (actually a complete proof): we have:

12 = 10 + 2
= 2× 5 + 2
= (1 + 1)× 5 + 2
= 1× 5 + 1× 5 + 2 = 5 + 5 + 2
= 5 + 5 + 1 + 1 = 5 + 6 + 1 = 5 + 7 = 4 + 1 + 7
= 4 + 8 = 3 + 1 + 8 = 3 + 9 = 9 + 3

Exercise 2.9. Prove that 48 + 76 = 124. Prove that 13× 4 = 52.

Remark 2.10. (for the philosophically minded) In Kant’s Critique of pure reason
statements like the ones in the previous exercise were viewed as synthetic a priori
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(in Kant’s sense); in contemporary mathematics, hence in the approach we follow,
all these statements are, on the contrary, analytic statements (in Kant’s sense).

Exercise 2.11. Prove that 9 ≤ 12.

Notation 2.12. For every integers a, b ∈ Z the set {x ∈ Z | a ≤ x ≤ b} will
be denoted, for simplicity, by {a, ..., b}. This set is clearly empty if a > b. If
other numbers in addition to a, b are specified then the meaning of our notation
will be clear from the context; for instance {0, 1, ..., n} means {0, ..., n} whereas
{2, 4, 6, ..., 2n} will mean {2x | 1 ≤ x ≤ n}, etc. A similar convention applies if
there are no numbers after the dots.

Example 2.13. {−2, ..., 11} = {−2,−1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}.

Example 2.14. {3, 7, 11, 15, 19, ...} = {4k + 3 | k ∈ Z, k ≥ 0}.

Exercise 2.15. Prove that if a ∈ Z then the set {x ∈ Z | a− 1 < x < a} is empty.
Hint (actually a complete proof): It is enough to show that S = {x ∈ Z | 0 < x < 1}
is empty. Assume S is non-empty and let m = minS. Then 0 < m2 < m, hence
0 < m2 < 1 and m2 < m, a contradiction.

Exercise 2.16. Prove that if a ∈ N then a = 1 or a − 1 ∈ N. Conclude that
minN = 1. Hint (actually a complete proof): Proceed by contradiction so assume
a ∈ N, a 6= 1, and a− 1 6∈ N. But then 1−a ∈ N so 0 < 1−a < 1. This contradicts
the previous exercise.

Definition 2.17. A subset A ⊂ N is bounded if there exists b ∈ N such that a ≤ b
for all a ∈ A; we say that A is bounded by b.

Exercise 2.18. Prove that N is not bounded.

Exercise 2.19. Prove that if a subset A ⊂ N is bounded then there exists M ∈ A
such that for all x ∈ A, x ≤ M . Write M = maxA and call M the maximum (or
greatest) element of A. Hint (not a compete proof): If A is bounded by b consider
the set {b− x | x ∈ A}.

Sometimes the Well Ordering condition is used through the following Proposition
called the Induction Principle.

Proposition 2.20. (Induction Principle) Assume P = P (n) is a certain property
involving a letter n that stands for a natural number. Assume

1) P (1) is true.
2) For every natural number n > 1 if P (n− 1) is true then P (n) is true.

Then P (n) true for all n.

We refer to the above as induction on n.
Proof. Assume P (n) is false for some n and let n be the minimum natural number

for which P (n) is false. By 1) n 6= 1. By Exercise 2.16 n − 1 ∈ N. By minimality
of n, P (n− 1) is true. By 2) P (n) is true, a contradiction. �

Exercise 2.21. Define n2 = n × n and n3 = n2 × n for every integer n. Prove
that for every natural n there exists an integer m such that n3 − n = 3m. (Later
we will say that 3 divides n3 − n.) Hint: proceed by induction on n as follows.
Let P (n) be the sentence: for all natural n there exists an integer m such that
n3 − n = 3m. P (1) is true because 13 − 1 = 3 × 0. Assume now that P (n − 1) is
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true i.e. (n − 1)3 − (n − 1) = 3q for some integer q and let us check that P (n) is
true i.e. that n3−n = 3m for some integer m. The equality (n−1)3− (n−1) = 3q
reads n3 − 3n2 + 3n− 1− n+ 1 = 3q. Hence n3 − n = 3(n2 − n) and we are done.

Exercise 2.22. Define n5 = n3 × n2. Prove that for every natural n there exists
an integer m such that n5 − n = 5m.

Proposition 2.23. If there exists a bijection {1, ..., n} → {1, ...,m} then n = m.

Proof. We proceed by induction on n. Let P (n) be the statement of the Propo-
sition. Clearly P (1) is true; cf. the Exercise below. Assume now P (n − 1) is true
and let’s prove that P (n) is true. So consider a bijection F : {1, ..., n} → {1, ...,m};
we want to prove that n = m. Let i = F (n) and define the map G : {1, ..., n−1} →
{1, ...,m}\{i} by G(j) = F (j) for all 1 ≤ j ≤ n− 1. Then clearly G is a bijection.
Now consider the map H : {1, ...,m}\{i} → {1, ...,m− 1} defined by H(j) = j for
1 ≤ j ≤ i−1 and H(j) = j−1 for i+1 ≤ j ≤ m. (The definition is correct because
for every j ∈ {1, ...,m}\{i} either j ≤ i− 1 or j ≥ i+ 1; cf. Exercise 2.15.) Clearly
H is a bijection. We get a bijection

H ◦G : {1, ..., n− 1} → {1, ...,m− 1}.
Since P (n− 1) is true we get n− 1 = m− 1. Hence n = m and we are done. �

Exercise 2.24. Check that P (1) is true in the above Proposition.

Definition 2.25. A set A is finite if there exists an integer n ≥ 0 and a bijection
F : {1, ..., n} → A. (n is then unique by Proposition 2.23.) We write |A| = n and
we call this number the cardinality of A or the number of elements of A. (Note that
|∅| = 0.) If F (i) = ai we write A = {a1, ..., an}. A set is infinite if it is not finite.

Exercise 2.26. Prove that |{2, 4,−6, 9,−100}| = 5.

Exercise 2.27. For every finite sets A and B we have that A ∪B is finite and

|A ∪B|+ |A ∩B| = |A|+ |B|.
Hint: Reduce to the case A∩B = ∅. Then if F : {1, ..., a} → A and G : {1, ..., b} →
B are bijections prove that H : {1, ..., a + b} → A ∪ B defined by H(i) = F (i) for
1 ≤ i ≤ a and H(i) = G(i− a) for a+ 1 ≤ i ≤ a+ b is a bijection.

Exercise 2.28. Let F : {1, ..., n} → Z be an injective map and write F (i) = ai.
We refer to such a map as a (finite) family of integers indexed by {1, ..., n}. Prove
that there exists a unique map G : {1, ..., n} → Z such that G(1) = a1 and G(k) =
G(k − 1) + ak for 2 ≤ k ≤ n. Hint: induction on n.

Definition 2.29. In the notation of the above Exercise define the (finite) sum∑n
i=1 ai as the number G(n). We also write a1 + ...+ an for this sum. If a1 = ... =

an = a the sum a1 + ...+ an is written as a+ ...+ a (n times).

Exercise 2.30. Prove that for every a, b ∈ N we have

a× b = a+ ...+ a (b times) = b+ ...+ b (a times).

Exercise 2.31. Define in a similar way the (finite) product
∏n
i=1 ai (which is

also denoted by a1...an = a1 × ... × an). Prove the analogues of associativity and
distributivity for sums and products of families of numbers. Define ab for a, b ∈ N
and prove that ab+c = ab × ac and (ab)c = abc.
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Exercise 2.32. Prove that if a is an integer and n is a natural number then

an − 1 = (a− 1)(an−1 + an−2 + ...+ a+ 1).

Hint: induction on n.

Exercise 2.33. Prove that for all n ∈ N we have

2(1 + 2 + ...+ n) = n(n+ 1)

3. The rationals

The first results in the theory of integers (and indeed most results in this course)
can be proved using the integers only. But as we progress towards less and less
elementary levels more general numbers (rational, real, complex) will be required
to prove results about the integers. For now we shall introduce the rational numbers;
these will become helpful along the way. Towards the end of the course we will need
to introduce real and complex numbers.

Definition 3.1. For every a, b ∈ Z with b 6= 0 define the fraction a
b to be the set of

all pairs (c, d) with c, d ∈ Z, d 6= 0 such that ad = bc. Call a and b the numerator
and the denominator of the fraction a

b . Denote by Q the set of all fractions. So

a

b
= {(c, d) ∈ Z× Z | d 6= 0, ad = bc},

Q = {a
b
| a, b ∈ Z, b 6= 0}.

Example 3.2.
6

10
= {(6, 10), (−3,−5), (9, 15), ...} ∈ Q.

Remark 3.3. One is tempted to define a
b are the “unique real number” x with

the property that bx = a. Such a definition is fallacious because the concept of
real number has not been defined yet; the multiplication bx is also undefined for x
not an integer. (We will define real numbers later using the rationals as a stepping
stone.) Our definition of a rational number has to use (and does use) the concept
of integer only.

Exercise 3.4. Prove that a
b = c

d if and only if ad = bc. Hint: assume ad = bc and
let us prove that a

b = c
d . We need to show that a

b ⊂
c
d and that c

d ⊂
a
b . Now if

(x, y) ∈ a
b then xb = ay; hence xbd = ayd. Since ad = bc we get xbd = bcy. Hence

b(xd − cy) = 0. Since b 6= 0 we have xd − cy = 0 hence xd = cy hence (x, y) ∈ c
d .

We proved that a
b ⊂

c
d . The other inclusion is proved similarly. So the equality

a
b = c

d is proved. Conversely if one assumes a
b = c

d one needs to prove ad = bc; I
leave this to the reader.

Exercise 3.5. On the set A = Z× (Z\{0}) one can consider the relation: (a, b) ∼
(c, d) if and only if ad = bc. Prove that ∼ is an equivalence relation. Then observe
that a

b is the equivalence class of (a, b). Also observe that Q = A/ ∼ is the quotient
of A by the relation ∼.

Notation 3.6. Write a
1 = a; this identifies Z with a subset of Q

Definition 3.7. Define a
b + c

d = ad+bc
bd , a

b ×
c
d = ac

bd .
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Exercise 3.8. Show that the above definition is correct (i.e. if a
b = a′

b′ ,
c
d = c′

d′

then ad+bc
bd = a′d′+b′c′

b′d′ and similarly for the product.)

It is convenient to make the following:

Definition 3.9. A ring is a set R together with two elements 0, 1 ∈ R, two binary
operations +,× (write a × b = ab) and a unary operation − on R such that for
every u, v, w ∈ R the following hold:

1) u+ (v + w) = (u+ v) + w, u+ 0 = u, u+ (−u) = 0, u+ v = v + u;
2) u(vw) = (uv)w, 1u = u, uv = vu,
3) u(v + w) = uv + uw.

We sometimes say R is a commutative ring with identity. A ring R is called a field
if 0 6= 1 and for every u ∈ R such that u 6= 0 there exists u′ ∈ R such that uu′ = 1;
this u′ is then easily proved to be unique and is denoted by u−1.

Remark 3.10. Z is a ring but not a field. N is not a ring.

Exercise 3.11. Prove that Q is a field (with respect to the operations + and ×
defined above.)

Remark 3.12. Later we will define the fields R and C of real and complex numbers
respectively; we will have the inclusions

N ⊂ Z ⊂ Q ⊂ R ⊂ C.

Definition 3.13. For a
b ,

c
d with b, d > 0 write a

b ≤
c
d if ad − bc ≤ 0. Also write

a
b <

c
d if a

b ≤
c
d and a

b 6=
c
d .

Exercise 3.14. Let x = a
b be a rational number. Prove that there exists a unique

integer [x] such that
[x] ≤ x < [x] + 1.

Definition 3.15. [x] is called the integral part of x.

Example 3.16.
[
13
2

]
= 6;

[
− 13

2

]
= −7.

Exercise 3.17. Compute
[
− 4578

1999

]
.

4. Divisibility and Euclid division

Definition 4.1. For a, b ∈ Z we say b divides a (and write b|a) if there exists c ∈ Z
such that a = bc. Then b is called a divisor of a. We write b 6 |a if b does not divide
a.

Example 4.2. 3|15, −3|15, 7 6 |15.

Exercise 4.3. Prove that if a, b ∈ N and a|b then a ≤ b.

Proposition 4.4. Let a, b, c,m, n ∈ Z and assume a|b and a|c. Then a|mb+ nc.

Proof. By hypothesis b = ax, c = ay, with x, y ∈ Z. Then

mb+ nc = max+ nay = a(mx+ ny).

�

Exercise 4.5. Prove that if a|b and b|c then a|c.

Exercise 4.6. Prove that if n|m are natural numbers then an − 1 divides am − 1.
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Exercise 4.7. Let a
b be a rational number. Prove that a

b is an integer if and only
if b|a.

Proposition 4.8. (Euclid division) For every a ∈ Z and b ∈ N there exist unique
q, r ∈ Z such that a = bq + r and 0 ≤ r < b.

Notation 4.9. We write r = rb(a) and we call r the remainder when a is divided
by b or the reduction of a modulo b (or simply mod b); we call q the quotient when
a is divided by b. E.g. r7(23) = 2, r7(−23) = 5. The notation rb(a) is not classical
but will be adopted in these notes.

Proof. We prove the existence of q, r. The uniqueness is left to the reader. We
may assume a ∈ N. Fix b and assume there exists a ∈ N such that for all q, r ∈ Z
with 0 ≤ r < b we have a 6= qb + r. We may assume a is minimum with this
property. If a < b we can write a = 0 × b + a, a contradiction. If a = b we can
write a = 1 × a + 0, a contradiction. If a > b set a′ = a − b. Since a′ < a, there
exist q′, r ∈ Z such that 0 ≤ r < b and a′ = q′b + r. But then a = qb + r, where
q = q′ + 1, a contradiction. �

Exercise 4.10. Prove the uniqueness in the above Proposition.

Exercise 4.11. Give an alternative proof of Proposition 4.8 using rational numbers.
Hint: set q =

[
a
b

]
and r = a− bq.

Exercise 4.12. Prove that for every finite sets A and B the product set A×B is
finite and

|A×B| = |A| × |B|.
Hint. We may assume A = {0, ..., a − 1} and B = {0, ..., b − 1}. Then prove that
F : A×B → {0, ..., ab− 1} given by F (q, r) = bq + r is a bijection.

Exercise 4.13. Fix 1 6= b ∈ N. Prove that every a ∈ N can be uniquely written as

a = rnb
n + rn−1b

n−1 + ...+ r1b+ r0

where r0, ..., rn ∈ Z, 0 ≤ ri ≤ b− 1. Write

a = (rnrn−1...r1r0)b

and call this the (digital) representation of a to base b; the ri are called the digits
in this representation. Hint: assume this is not true, let a be the minimum number
for which this is not true, divide a by b with remainder, and derive a contradiction.

Example 4.14. 42 = (42)10 = 25 + 23 + 21 = (101010)2 = 52 + 3× 5 + 2 = (132)5.

Exercise 4.15. Let db(a) be the number of digits in the representation of a to base
b. Prove that bdb(a)−1 ≤ a < bdb(a). E.g., if b = 10, 102 ≤ 321 < 103.

Definition 4.16. Say that a number a ∈ Z is of the form bk + r if there exist
k, r ∈ Z such that a = bk + r.

Definition 4.17. Say that a number is odd if it is of the form 2k + 1 and even if
it is on the form 2k.

Example 4.18. 11 is of the form 4k + 3; −7 is of the form 4k + 1; 6 is even; 9 is
odd.
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Exercise 4.19. Prove that every integer is either even or odd and it cannot be
both even and odd.

Exercise 4.20. Prove that every integer is either of the form 3k or of the form
3k+ 1 or of the form 3k+ 2. And it cannot be simultaneously of two of these three
forms.

Exercise 4.21. Prove that every integer is either of the form 4k or of the form
4k+ 1 or of the form 4k+ 2 or of the form 4k+ 3. And it cannot be simultaneously
of two of these four forms.

Exercise 4.22. Prove that every integer is either of the form 4k or of the form
4k− 1 or of the form 4k− 2 or of the form 4k− 3. And it cannot be simultaneously
of two of these four forms.

Exercise 4.23. Prove that the product of two odd numbers is odd.

Exercise 4.24. Prove that if 3 divides the product of two integers then it divides
one of the integers. Prove the same thing for 3 replaced by 5 and then by 7.
Hint: for 3 write the two numbers in the form 3k + r and 3k + s and examine all
the possibilities for r, s. (Remark: later we will prove a general statement with 3
replaced by any prime.)

Exercise 4.25. Prove that every product of numbers of the form 4k + 1 is of the
form 4k + 1. Generalize this by replacing 4 with other numbers.

Exercise 4.26. Prove that there is no rational number x ∈ Q such that x2 = 2.
(This is the famous “irrationality of

√
2”; but we have not introduced yet the

concept of
√

2.) Hint: assume there exists a rational number x such that x2 = 2
and seek a contradiction. Let a ∈ N be minimal with the property that x = a

b for

some b. Now a2

b2 = 2 hence 2b2 = a2. Hence a2 is even. Hence a is even (because

if a were odd then a2 would be odd.) Hence a = 2c for some integer c. Hence
2b2 = (2c)2 = 4c2. Hence b2 = 2c2. Hence b2 is even. Hence b is even. Hence
b = 2d for some integer d. Hence x = 2c

2d = c
d and c < a. This contradicts the

minimality of a which ends the proof.

Remark 4.27. The above proof is probably one of the “first” proofs by contra-
diction in the history of mathematics; this proof appears, for instance, in Aristotle
(4th century BC), and it is believed to have been discovered by the Pythagoreans.

The irrationality of
√

2 was interpreted by the Greeks as evidence that arithmetic
is insufficient to control geometry (

√
2 is the length of the diagonal of a square with

side 1) and arguably created the first crisis in the history of mathematics, leading
to a separation of algebra and geometry that lasted until Descartes (17th century).

Exercise 4.28. Prove that there is no rational number x ∈ Q such that x2 = 3 or
x2 = 5 or x2 = 7. (Once we know what square roots are this will be equivalent to√

3,
√

5,
√

7 being irrational.) Hint: imitate the above proof using the fact (proved
in a previous exercise) that if one of the numbers 3, 5, 7 divides a2 for a ∈ Z then
that number divides a. (Later on in the course this will be revisited and proved in
a more general situation.)

5. Polynomial time algorithms

The following discussion does not meet the standards of mathematical rigor but
is nevertheless useful for the computational applications of number theory.
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Definition 5.1. Assume we are given a function F : A → B where A and B are
subsets of N (or N× N, etc.) By an algorithm that computes F we mean a “set of
instructions” (a “program”) that, once followed, leads to the computation of F (a)
if a ∈ A is given in digital representation to base 2. The computation, for each a,
involves a number of “elementary” operations (like add two digits and multiply two
digits). This number is denoted by T (a) and is called running time of the algorithm
for in the input a. We say that the algorithm runs in polynomial time if there exist
natural numbers C, n such that for every a ∈ A we have

T (a) ≤ C × d2(a)n

where d2(a) is the number of digits in the digital representation to base 2 of the
number a (or, in case A ⊂ N×N, d2(a) is the maximum of the number of digits in
the components of a, etc.) A computation in polynomial time is considered a fast
computation.

Exercise 5.2. Give an argument (but not necessarily a formal proof) showing that
the algorithm that computes addition and multiplication of numbers in decimal
form runs in polynomial time.

Exercise 5.3. Give an argument (but not necessarily a formal proof) showing
that 1) the long division algorithm learned in elementary school correctly gives the
quotient and the remainder when an integer is divided by another integer and 2)
that this algorithm runs in polynomial time.

6. Primes

Definition 6.1. A prime number is a number p ∈ Z, p ≥ 2, whose only positive
divisors are 1 and p. Equivalently p is prime if p ≥ 2 and whenever p = ab with
a, b ∈ N it follows that either a = 1 or b = 1.

Example 6.2. 2, 3, 5, 7, 11 are prime. 0, 1,−3, 15 are not prime.

Proposition 6.3. Every a ∈ N with a 6= 1 is a product of primes.

Here every prime is viewed as a product of primes (with only one prime involved
in the product).

Proof. Let S be the set of all a ∈ N, a 6= 1, which are not products of primes.
We want to show S = ∅. Assume not and let m = minS. Then m is not prime. So
m = ab with a, b positive and 6= 1. So a, b 6∈ S and hence a and b are products of
primes. Hence so is m, a contradiction. �

Theorem 6.4. (Euclid) There are infinitely many primes.

Proof. Assume there are only finitely many primes, i.e. the set of primes is finite,
{p1, ..., pn}. By Proposition 6.3

N := p1...pn + 1 = q1...qm

with qi primes. Since q1 = pj for some j we have q1|N and q1|N − 1 so

q1|N − (N − 1) = 1,

a contradiction. �
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Exercise 6.5. Prove that there are infinitely many primes of the form 4k + 3.
(Hint: assume there are only finitely many p1, ..., pn and consider the number N =
4p1...pn − 1.) Generalize this by proving that for every m ≥ 3 there are infinitely
many primes which are not of the form mk + 1.

Remark 6.6. We will be able to prove (later) that there are infinitely many primes
of the form 4k + 1.

Remark 6.7. An algorithm running in polynomial time was recently found to
compute the function f defined as follows: f(n) = 1 if n is prime and f(n) = 0 if
n is not prime. In other words one can decide in polynomial time if a given integer
is prime.

Exercise 6.8. Prove that if m is a natural number and 2m+1 is prime then m = 2n

for some natural number n.

Exercise 6.9. Prove that if m is a natural number and 2m − 1 is prime then m is
prime.

Definition 6.10. A Fermat prime is a prime of the form Fn = 22
n

+ 1. A Mersene
prime is a prime of the form Mp = 2p − 1, (where p is necessarily a prime).

Exercise 6.11. Prove that Fn is prime for n = 1, 2, 3, 4.

Remark 6.12. Fermat conjectured that Fn is prime for every n ≥ 1. Euler gave
a counterexample:

F5 = 641× 6700417.

There is no known n ≥ 5 with Fn prime.

Exercise 6.13. Prove that Fn|Fm − 2 for m > n.

Remark 6.14. Mp is prime for some p’s and non-prime for other p’s. It is conjec-
tured that Mp is prime for infinitely many p’s.

7. Greatest common divisor

Definition 7.1. If a, b ∈ Z then a common divisor of a, b is an integer that divides
both a and b. Let gcd(a, b) denote the greatest common divisor of a and b. (The
definition is correct because the set of common divisors of a and b is bounded so it
has a greatest element.)

The gcd(a, b) is sometimes denoted simply by (a, b) but we will avoid the latter
notation (to avoid confusion with the notation for pairs).

Example 7.2. The common divisors of 28 and 36 are 1, 2, 4 and their negatives.
So gcd(28, 36) = 4.

Definition 7.3. Two integers a and b are relatively prime (or coprime) if gcd(a, b) =
1.

Example 7.4. 10 and 77 are relatively prime.

Remark 7.5. According to a theorem of Dirichlet if a, b are coprime integers then
there exist infinitely many primes of the form ak+ b. Dirichlet’s proof uses analysis
and will not be included in our course.
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Definition 7.6. Let x, y be integers. An integer x is a Z-linear combination of y, z
if there exist integers m,n such that x = my + nz.

Exercise 7.7. Prove that if x is a Z-linear combination of y, z and each of y, z is
a Z-linear combination of u, v then x is a Z-linear combination of u, v.

Theorem 7.8. If c = gcd(a, b) then c is a Z-linear combination of a, b; in other
words there exist m,n ∈ Z such that c = ma+ nb. In particular if d|a and d|b then
d|c.

Remark 7.9. Even if a, b ≥ 0 one cannot choose m,n ≥ 0 in general. Also m,n
are not unique.

Proof of Theorem 7.8. We may assume b ≥ 1. Let J be the set of Z-linear
combinations of a and b. Let t be the smallest element in J ∩ N. We claim that a
and b are divisible by t. Indeed if a = tq + r with 0 ≤ r ≤ t − 1 and r 6= 0 then
r ∈ J ∩ N which contradicts the minimality of t. So r = 0 and hence t|a Similarly
t|b. But then t is a common divisor of a, b and being in J is divided by any other
common divisor. So t = gcd(a, b). �

Exercise 7.10. Compute c = gcd(86, 24) and find m,n such that c = m × 86 +
n× 24. Hint: We have

86 = 3× 24 + 14
24 = 1× 14 + 10
14 = 1× 10 + 4
10 = 2× 4 + 2
4 = 2× 2.

Hence:

gcd(86, 24) = gcd(24, 14) = gcd(14, 10) = gcd(10, 4) = gcd(4, 2) = 2.

To find m,n we express each of the numbers 86,24,14,10,4,2 as a linear com-
bination of the 2 preceding ones: 2 = 10 − 2 × 4 = 10 − 2 × (14 − 1 × 10) =
(−2)× 14 + 3× 10 = ... = (−5)× 86 + 18× 24.

Exercise 7.11. Prove that 691 and 1000 are relatively prime and find m,n such
that 1 = m× 691 + n× 1000.

Exercise 7.12. Prove that the algorithm behind Exercise 7.11 (computing gcd(a, b)
for given a, b) runs in polynomial time. Hint: The algorithm requires to perform
Euclidean divisions:

a = bq1 + r1
b = r1q2 + r2
r1 = r2q3 + r3
.. .. ..
rn−2 = rn−1qn + rn
rn−1 = rnqn+1 + rn+1

rn = rn+1qn+2.

with b =: r0 > r1 > r2 > ... > rn > rn+1 > 0; then gcd(a, b) = rn+1. For each k we
have rk−2 ≥ rk−1 + rk ≥ 2rk. So b =: r0 ≥ 2r2 ≥ 4r4 ≥ 8r6 ≥ ... ≥ 2mr2m ≥ 2m

if 2m = n or 2m = n + 1. So 2m ≤ b ≤ 2d2(b). So m ≤ d2(b). Now note that the
running time is a constant times m times d2(a).
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8. Unique factorization

Lemma 8.1. (Euclid’s Lemma). Let p be a prime and a, b two integers. If p|ab
then either p|a or p|b.

Proof Assume p|ab, p 6 |a, p 6 |b and seek a contradiction. Since p 6 |a it follows
that gdc(a, p) = 1 hence by Theorem 7.8

1 = ma+ np

for some m,n ∈ Z. Since p 6 |b it follows that gcd(b, p) = 1 hence by the same
Theorem

1 = xb+ yp

for some x, y ∈ Z. Multiplying the two equations above we get

1 = (ma+ np)(xb+ yp) = mxab+mayp+ npxb+ nyp2.

Since all terms in the right hand side of the latter equation are divisible by p we
get p|1, a contradiction. �

Corollary 8.2. Let p be a prime and a1, ..., an integers. If p|a1a2...an then either
p|a1 or p|a2,...,or p|an.

Proof. Assume this is false for some p and seek a contradiction. Let n be
minimum such that there exist a1, ..., an with p|a1a2...an and p 6 |a1, p 6 |a2,...,
p 6 |an. By Euclid’s Lemma either p|a1 or p|a2...an. Since p 6 |a1 we must have
p|a2...an. This contradicts the minimality of n. �

Theorem 8.3. (Fundamental Theorem of Arithmetic). Every integer a ∈ N, a 6= 1,
can be written uniquely as a product of (not necessarily distinct) primes

a = p1p2...pn

with p1 ≤ p2 ≤ ... ≤ pn.

Proof. The existence of this representation is Proposition 6.3. To prove the
uniqueness of the representation we must show that if

a = p1p2...pn = q1q2...qm

with p1 ≤ p2 ≤ ... ≤ pn primes and q1 ≤ q2 ≤ ... ≤ qm primes then n = m and
pi = qi for all i. Assume there exists a not having this property and take the
minimum such a. We seek a contradiction. Note that

p1|q1q2...qm.
By the Corollary above p1|qi for some i hence p1 = qi. Similarly we have

q1|p1p2...pn
so q1 = pj for some j. Hence

p1 = qi ≥ q1 = pj ≥ p1.
We get that p1 = q1. Then we get

p2...pn = q2...qm.

By the minimality of a we get n = m and pi = qi for all i ∈ {2, . . . , n}. This is a
contradiction. �

Exercise 8.4. Write 11 × 22 × 33 × 44 × ...× 2020 as a product of primes.
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Exercise 8.5. Without using Euclid’s Lemma (or the Fundamental Theorem of
Arithmetic) prove that if 11|ab then either 11|a or 11|b. Same for 13 instead of 11.

Exercise 8.6. Prove that if a and b are coprime and a|bc then a|c. Hint: assume
this is false and consider the minimum a for which this is false.

Remark 8.7. No algorithm running in polynomial time is known that computes
the prime factorization of an integer. Any such algorithm would compromise the
security of some important public key cryptography schemes that are in use today.

Remark 8.8. The following remark shows the non-triviality of the Fundamental
Theorem of Arithmetic: the analogue of this theorem in similar contexts may fail
as we shall see presently. Let S be the collection of all natural numbers of the form
4k + 1:

S = {1, 5, 9, 13, 17, 21, 25, 29, ...}.
Refer to the elements of S as mumbers. The product of any two mumbers is a
mumber. Say that a mumber p is brime if whenever p = ab with a, b mumbers it
follows that a = 1 or b = 1. For instance 9 is brime because it is not a product of
any two mumbers both unequal to 1. Also 21, 33, 77 are brimes. It is easy to prove
that every mumber is a product of brimes. But note that some mumbers, like 693,
have several distinct decompositions into products of brimes:

693 = 9× 77 = 21× 33.

Exercise 8.9. Prove that every mumber is a product of brimes; cf. the Remark
above.

Exercise 8.10. Note that S in Remark 8.8 is the set of natural numbers of the
form 4k + 1. Generalize Remark 8.8 by replacing 4 with an arbitrary number.

9. Applications of unique factorization

The Fundamental Theorem of Arithmetic has the following obvious:

Corollary 9.1. Every integer a ≥ 2 can be written uniquely as a product

a =
∏
p

pvp(a) = 2v2(a)3v3(a)....

where p runs through the set of primes and vp(a) are integers ≥ 0, all except finitely
many of them 0 (so the product above is finite).

Example 9.2. 56 = 23 × 7 so v2(56) = 3, v5(56) = 0, v7(56) = 1, v11(56) = 0,...

Definition 9.3. For every prime p and every integer n ≥ 2 we define the p-adic
valuation of a ≥ 2 at p as being the number vp(a) in the above Corollary. We also
set vp(1) = 0, vp(−a) = vp(a) for a ≥ 1.

Exercise 9.4. Prove that
1) vp(ab) = vp(a) + vp(b).
2) a|b if and only if vp(a) ≤ vp(b) for all p.
3) If a8|b5 then a|b.

Recall that n! = 1× 2× 3× ...× n for n ∈ N.
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Proposition 9.5. For every natural n we have:

vp(n!) =

[
n

p

]
+

[
n

p2

]
+

[
n

p3

]
+ ...

Proof. Let Ai = {a | 1 ≤ a ≤ n, vp(a) ≥ i}, ai = |Ai|, and let

Bi = Ai\Ai+1 = {a | 1 ≤ a ≤ n, vp(a) = i}, bi = |Bi|.

Note that ai =
[
n
pi

]
(because the map {1, ...,

[
n
pi

]
} → Ai, j 7→ pij is a bijection).

Let βi be the product of all numbers in Bi; so vp(βi) = ibi. We have

n! = β1 × β2 × β3 × ...

so we have

vp(n!) = vp(β1) + vp(β2) + vp(β3) + ...
= b1 + 2b2 + 3b3 + ...
= (a1 − a2) + 2(a2 − a3) + 3(a3 − a4) + ...
= a1 + a2 + a3 + ...

and we are done. �

Exercise 9.6. Give an alternative proof of Proposition 9.5 by induction on n.
Hint: Call P (n) the assertion of the Proposition. Clearly P (1) is true. Now assume
P (n− 1) is true, i.e.

vp((n− 1)!) =

[
n− 1

p

]
+

[
n− 1

p2

]
+

[
n− 1

p3

]
+ ...

To prove P (n) note that vp(n!) = vp((n − 1)!) + vp(n). Write n = api with p 6 |a.

Then vp(n) = i. Now for j ≤ i we have
[
n
pj

]
= api−j , hence[

n− 1

pj

]
=

[
api−j − 1

pj

]
= api−j − 1 =

[
n

pj

]
− 1.

For each j > i divide a by pj−i with remainder: a = pj−iq + r and compute:[
n

pj

]
=

[
a

pj−i

]
=

[
q +

r

pj−i

]
= q,

hence: [
n− 1

pj

]
=

[
a

pj−i
− 1

pj

]
=

[
q +

r

pj−i
− 1

pj

]
= q =

[
n

pj

]
,

because

0 ≤ r

pj−i
− 1

pj
< 1.

Then P (n) follows.

Exercise 9.7. Prove that vp(n!) ≤ n
p−1 .

Exercise 9.8. Prove that if n = (ad...a0)p = adp
d + ...+ a0 is the expansion of n

to base p then[
n

p

]
+

[
n

p2

]
+

[
n

p3

]
+ ... =

1

p− 1
[n− (a0 + ...+ ad)].

This, of course, implies the statement in Exercise 9.7.
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Exercise 9.9. Use Exercise 9.8 to give an alternative proof to Proposition 9.5.
Hint: Induction on n; examine two cases: the case when the last digit of n − 1 is
p−1 and the case when the last digit of n−1 is not p−1. In the first case consider
the longest sequence of consecutive digits equal to p− 1 at the end of n− 1.

Exercise 9.10. For all integers n ≥ m ≥ 0 one defines the binomial coefficients(
n
m

)
=

n!

m!(n−m)!
.

Here 0! = 1. Prove that the binomial coefficients (which are a priori in Q) belong
to N. Hint: show that vp applied to the numerator is greater than or equal to the
value of vp applied to the denominator.

Exercise 9.11. Prove that if p is prime and 1 ≤ m ≤ p− 1 is an integer then

p|
(

p
m

)
.

Hint: p divides the binomial coefficient times its denominator; it does not divide
the denominator by Euclid’s Lemma. So by Euclid’s Lemma again, it divides the
binomial coefficient.

Exercise 9.12. Prove the binomial formula:

(a+ b)n =

n∑
m=0

(
n
m

)
ambn−m.

Hint: induction on n.

Definition 9.13. For every natural number n and every integer k ≥ 0 define

σk(n) =
∑
d|n

dk

where d runs through the set of all (positive!) divisors of n (including 1 and n).

Example 9.14. σ3(10) = 13 + 23 + 53 + 103; σ0(10) = 10 + 10 + 10 + 10 = 4.

Exercise 9.15. Prove that σk(pn) = 1 + pk + p2k + ...+ pnk if p is prime.

Exercise 9.16. Prove that if n = pe11 ...p
es
s with p1, ..., ps distinct then

σk(n) = (1 + pk1 + ...+ pe1k1 )...(1 + pks + ...+ pekss ).

Conclude that σk(nm) = σk(n)σk(m) if n and m are coprime.

Definition 9.17. A natural number n is perfect if σ1(n) = 2n.

Example 9.18. 6 is perfect because 1 + 2 + 3 + 6 = 2× 6. Also 28 is perfect.

Exercise 9.19. (Euclid) Let p be a prime. If Mp = 2p − 1 is prime then 2p−1Mp

is perfect.
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10. Congruences: generalities

Definition 10.1. (Gauss). For a, b ∈ Z, m ∈ N write

a ≡ b (mod m)

if and only if m|b− a. We say that a and b are congruent mod m. Write

a 6≡ b (mod m)

if and only if m 6 |b− a.

Example 10.2. 7 ≡ 13 (mod 3) because 3|13 − 7. But 7 6≡ 13 (mod 5) because
5 6 |13− 7.

Exercise 10.3. Prove that the following are equivalent:
1) a ≡ b (mod m);
2) rm(a) = rm(b), i.e. a and b have the same remainder when divided by m;
3) a is of the form mk + b, i.e. there exists k ∈ Z such that a = mk + b.

Proposition 10.4.
1) If a ≡ b (mod m) and c ≡ d (mod m) then a + c ≡ b + d (mod m) and

ac ≡ bd (mod m). In particular an ≡ bn (mod m) for every n ≥ 1.
2) If ca ≡ cb (mod m) and gcd(c,m) = 1 then a ≡ b (mod m).
3) If c 6= 0 we have that ca ≡ cb (mod cm) is equivalent to a ≡ b (mod m).

Proof. 1) Let’s show that a ≡ b (mod m) and c ≡ d (mod m) imply ac ≡
bd (mod m). (The other statement is proved similarly.) By hypothesis m|b−a and
m|d− c. It follows that

m| − d(b− a) + b(d− c) = da− bc.

2) If ca ≡ cb (mod m) then mx = cb − ca = c(b − a) for some x ∈ Z. So for
every prime p we have that

vp(m) ≤ vp(c) + vp(b− a)

so

vp(m) ≤ vp(b− a)

because vp(c) = 0 whenever vp(m) 6= 0. So m|b− a and hence a ≡ b (mod m).
3) is proved similarly. �

Exercise 10.5. State and prove a generalization of 1) in the above proposition
involving sums and products of more than two numbers.

Exercise 10.6. Compute the remainder when 31034 is divided by 7. Hint: write
1034 as a sum of powers of 2:

1034 = 1024 + 8 + 2 = 210 + 23 + 2,

compute
3 ≡ 3 (mod 7)
32 ≡ 9 ≡ 2 (mod 7)

32
2 ≡ (32)2 ≡ 22 ≡ 4 (mod 7)

32
3 ≡ (32

2

)2 ≡ 42 ≡ 16 ≡ 2 (mod 7)

32
4 ≡ (32

3

)2 ≡ 22 ≡ 4 (mod 7)

32
5 ≡ (32

4

)2 ≡ 42 ≡ 16 ≡ 2 (mod 7)
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It is clear (already from the 4th line) that we have a pattern: the remainders when

3, 32, 32
2

, 32
3

, 32
4

, 32
5

, ...

is divided by 7 are

3, 2, 4, 2, 4, 2, ...

(This is called eventual periodicity, i.e. periodicity from some point on, and this is

a general phenomenon.) In particular we will get 32
10 ≡ 4 (mod 7). We get

31034 ≡ 32
10+23+2 ≡ 32

10

× 32
3

× 32 ≡ 4× 2× 2 ≡ 8× 2 ≡ 1× 2 ≡ 2 (mod 7).

So r7(31034) = 2.

Exercise 10.7. Give an argument showing that the algorithm behind the previous
exercise (computing rm(an) when a, n,m are given) runs in polynomial time.

Exercise 10.8. Prove that if a number x is a sum of two squares (i.e. x = a2 + b2

with a, b ∈ Z) then x 6≡ 3 (mod 4). Hint: We have a, b ≡ 0, 1, 2, 3 (mod 4) so a2, b2 ≡
0, 1, 4, 9 (mod 4) i.e. a2, b2 ≡ 0, 1 (mod 4) so a2+b2 ≡ 0+0, 0+1, 1+0, 1+1 (mod 4).

Exercise 10.9. Prove the “Freshman’s Dream”: for p prime and a, b integers:

(a+ b)p ≡ ap + bp (mod p).

More generally prove

(a1 + ...+ an)p ≡ ap1 + ...+ apn (mod p)

for integers a1, ..., an.

11. Complete residue systems

Definition 11.1. Let m ∈ N. A complete residue system mod m is a subset S ⊂ Z
such that:

1) |S| = m and
2) for every two a, b ∈ S with a 6= b we have a 6≡ b (mod m).

Exercise 11.2. Prove that {0, ...,m− 1} is a complete residue system mod m.

Exercise 11.3. Prove that a set {a1, ..., am} of m integers is a complete residue
system if and only if the remainders rm(a1), ..., rm(am) are distinct. (Remark: If
this is the case then this set of remainders is the whole of {0, 1, ...,m− 1}.)

Exercise 11.4. Let a be any integer. Prove that

{a, a+ 1, ..., a+m− 1}

is a complete residue system mod m.

Exercise 11.5. Let a be an integer coprime to m (recall this means gcd(a,m) = 1).
Then prove that

{0, a, 2a, 3a, ..., (m− 1)a}
is a complete residue system mod m.

Proposition 11.6. If S is a complete residue system mod m then for every z ∈ Z
there exists a unique x ∈ S such that z ≡ x (mod m).
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Proof. Uniqueness is part of the definition. To prove the existence of x we
proceed as follows. Consider the map F : S → {0, ...,m− 1}, F (a) = rm(a). Then
F is injective. Since |S| = m = |{0, ...,m − 1}| it follows that F is surjective. So
rm(z) = rm(x) for some x ∈ S. But then z ≡ x (mod m). �

Exercise 11.7. Prove that if p is prime then 1 and p − 1 are the only numbers c
in the complete residue system {0, 1, ..., p − 1} such that c2 ≡ 1 (mod p). Hint: if
p|c2 − 1 = (c− 1)(c+ 1) then, by Euclid’s Lemma, either p|c+ 1 or p|c− 1.

12. Residue classes

Definition 12.1. A residue class mod m is a subset C ⊂ Z such that
1) For every a, b ∈ C we have a ≡ b (mod m);
2) If a ∈ C, c ∈ Z, and a ≡ c (mod m) then c ∈ C.

Example 12.2. The odd integers are a residue class mod 2. The set

C = {x ∈ Z | x ≡ 2 (mod 7)} = {...,−5, 2, 9, ...}

is a residue class mod 7.

Example 12.3. Fix m. For each a ∈ Z set

a := {km+ a | k ∈ Z} = {x ∈ Z | x ≡ a (mod m)}

is a residue class. The upper bar notation is standard but may introduce some
confusion in that it forgets about m; so, for instance, for m = 3,

2 = {...,−1, 2, 5, ...}

whereas for m = 7,

2 = {...,−5, 2, 9, ...}.
Other notations for ā are â or [a] or [a]m; the latter can be especially useful because
it remembers m. We will mostly use the notation ā.

Exercise 12.4. Let S be a complete residue system. Prove that every residue class
mod m is of the form a for some unique a ∈ S. Prove that a = b if and only if
a ≡ b (mod m). Prove that if a 6= b then a ∩ b = ∅.

Notation 12.5. We denote by Z/mZ the set of residue classes mod m; hence

Z/mZ = {0, 1, ...,m− 1}.

Example 12.6.

Z/3Z = {0, 1, 2}
= {{...,−6,−3, 0, 3, 6, ...}, {...,−5,−2, 1, 4, 7, ...}, {...,−4,−1, 2, 5, 8, ...}}.

Definition 12.7. For every two subsets A,B ⊂ Z define the subset A+B ⊂ Z by
A+B = {a+ b | a ∈ A, b ∈ B}.

Example 12.8.

{1, 10, 100, ...}+ {2, 4, 6, ...} = {3, 5, 7, ..., 12, 14, 16, ..., 102, 104, 106, ....}.

Example 12.9.

{...,−5, 2, 9, ...}+ {...,−4, 3, 10, ...} = {...,−9,−2, 5, 12, 19, ...}.
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Exercise 12.10. Prove that if A and B are residue classes mod m then:
1) A+B is a residue class mod m,
2) The set {ab | a ∈ A, b ∈ B} is contained in a unique residue class modm (which

we call AB or A · B). Give an example showing that the set {ab | a ∈ A, b ∈ B}
itself is not necessarily a residue class.

3) Prove that a+ b = a+ b and ab = a · b.

Exercise 12.11. Prove that Z/mZ with the operations + and · is a ring. Prove
that if m is not prime then Z/mZ is not a field. (In the next section we will see
that the converse is also true: if m is prime then Z/mZ is a field.)

Exercise 12.12. Fix m and consider the relation on Z defined by a ∼ b if and only
if a ≡ b (mod m). Prove that ∼ is an equivalence relation. Observe that ā is the
equivalence class of a with respect to this relation. Observe that Z/mZ = Z/ ∼ is
the quotient of Z by this relation..

13. Inverses mod m

Definition 13.1. An inverse of an integer a mod m is an integer a′ such that
aa′ ≡ 1 (mod m).

Example 13.2. 3 is an inverse of 7 mod 10 because 7 × 3 ≡ 1 (mod 10). On the
other hand 3 has no inverse mod 9.

Exercise 13.3. Prove that if an inverse of a mod m exists then there is only one
such inverse in any given complete residue system mod m.

Proposition 13.4. a has an inverse mod m if and only if gcd(a,m) = 1. (If this is
the case we denote by im(a) the unique inverse of a mod m in the complete residue
system {0, ...,m− 1}.)

Proof. If aa′ ≡ 1 (mod m) then aa′ − 1 = km for some k ∈ Z so any common
divisor of a and m must divide 1. Conversely if gcd(a,m) = 1 then, by Theorem
7.8, 1 = na+ km for some integers n, k and we can take a′ = n. �

Exercise 13.5. Show that 12 has an inverse mod 43 and find such an inverse.
Hint: as in Exercise 7.11 we get 1 = (−5)× 43 + 18× 12 hence 18 is an inverse of
12 mod 43; so i43(12) = 18 and hence also i43(18) = 12.

Theorem 13.6. (Wilson). If p is prime then (p− 1)! ≡ −1 (mod p).

Proof. We may assume p 6= 2. By Exercise 11.7 the only elements of the set

{1, 2, ..., p− 1}

which are equal to their own inverse mod p are 1 and p− 1. So one can write

{1, 2, ..., p− 1} = {1, p− 1, a1, a
′
1, a2, a

′
2, ...}

where a′1 = ip(a1) is the inverse of a1 mod p, etc. Then

(p− 1)! ≡ 1× (p− 1)× a1 × a′1 × a2 × a′2 × ... ≡ p− 1 ≡ −1 (mod p).

�

Exercise 13.7. Prove the converse of the above Theorem: if n ≥ 2 is an integer
such that (n− 1)! ≡ −1 (mod n) then n is prime.
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Exercise 13.8. Prove that is p is a prime then the ring Z/pZ is a field. (This field
is sometimes denoted by Fp and is called the prime field with p elements. In the
old literature this field was called a Galois field and was denoted by GF (p). Galois
(early 19th century) proved that for every n ≥ 1 there exists a field GF (pn) with
pn elements. In some modern algebra books Fp is denoted by Zp; in many other
books Zp stands for a different ring, the ring of p-adic integers.)

14. Groups

This section can be skipped: the concepts introduced next will not play an
essential role later (although some exercises later will involve these concepts). In
abstract algebra courses one introduces the concept of group (see below) which
generalizes some of the features of objects defined above; in its most abstract form
below this concept is due to Cayley, although it essentially originates, in the form
of various examples, in work of Lagrange, Gauss, and Galois.

Definition 14.1. Assume we are given a set G together with an element e ∈ G
and we are given a binary operation ? on G and a unary operation ′ on G (write
′(x) = x′) such that for every x, y, z ∈ G the following conditions are satisfied:

1) x ? (y ? z) = (x ? y) ? z;
2) x ? e = e ? x = x;
3) x ? x′ = x′ ? x = e.

If in addition x ? y = y ? x for all x, y ∈ G we say G is commutative (or Abelian in
honor of Abel).

Notation 14.2. Sometimes one writes e = 1, x ? y = xy, x′ = x−1, x ? ... ? x = xn

(n ≥ 1 times). In the Abelian case one sometimes writes e = 0, x ? y = x + y,
x′ = −x, x ? ... ? x = nx (n ≥ 1 times). These notations depend on the context and
are justified by the following examples.

Example 14.3. If R is a ring then R is an Abelian group with e = 0, x?y = x+y,
x′ = −x. Hence Z,Z/mZ,Q are groups “with respect to addition”.

Example 14.4. If R is a field then R× = R\{0} is an Abelian group with e = 1,
x ? y = xy, x′ = x−1. Hence Q×,F×p are groups “with respect to multiplication”.

Example 14.5. (Assumes linear algebra). If R is a field then the set GLn(R) of
n×n matrices with entries in R and with non-zero determinant is a (non Abelian)
group with e = In (the identity matrix), A ? B = AB (usual multiplication of
matrices), A−1 =inverse of A.

Example 14.6. The set S(X) of bijections σ : X → X from a set X into itself is
a (non-Abelian) group with e = 1X (the identity map), σ ?τ = σ ◦ τ (composition),
σ−1 =inverse map. If X = {1, ..., n} then one writes Sn = S(X) and call this group
the symmetric group.

Example 14.7. Let R be a field and consider the set

C(R) = {(x, y) ∈ R×R | x2 + y2 = 1};

one can refer to this set as the “circle over R”. Then C(R) is an Abelian group
with e = (1, 0), (x, y)′ = (x,−y),

(x1, y1) ? (x2, y2) = (x1x2 − y1y2, x1y2 + x2y1).
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Exercise 14.8. Consider the circle C(F17). Show that (3̄, 3̄), (1̄, 0̄) ∈ C(F17) and
compute (3̄, 3̄) ? (1̄, 0̄) and 2(1̄, 0̄) (where the latter is of course (1̄, 0̄) ? (1̄, 0̄)).

Example 14.9. Let R be a field in which 2 := 1 + 1 6= 0, 3 := 1 + 1 + 1 6= 0, let
a, b ∈ R be such that 4a3 +27b2 6= 0, and consider what is called an “elliptic curve”
over R:

E(R) = {(x, y) ∈ R×R | y2 = x3 + ax+ b} ∪ {∞},
where ∞ here is just a symbol. We call E(R) the elliptic curve over R defined by
the equation y2 = x3 + ax + b. If (x, y) ∈ E(R) define (x, y)′ = (x,−y). Also
define ∞′ = ∞. Define (x, y) ? (x,−y) = ∞, ∞ ? (x, y) = (x, y) ?∞ = (x, y), and
∞ ?∞ = ∞. Finally, for (x1, y1), (x2, y2) ∈ E(R) with (x2, y2) 6= (x1,−y1) we
define

(x1, y1) ? (x2, y2) = (x3,−y3)

where (x3, y3) is the “third point of intersection of E(R) with the line L12 passing
through (x1, y1) and (x2, y2)”. The latter needs an explanation/definitions. If
(x1, y1) 6= (x2, y2) then L12 is by definition the set

L12 = {(x, y) ∈ R×R | y − y1 = m(x− x1)}
where

m = (y2 − y1)(x2 − x1)−1

which looks like the usual expression for the line passing through the two points in
analytic geometry (and m plays the role of slope). If (x1, y1) = (x2, y2) and y1 6= 0
one needs to replace m in the above definition of L12 by

m = (3x21 + a)(2y1)−1

which looks like the slope of the tangent to the curve in analytic geometry. Once
we defined L12 we define (x3, y3) by solving the system consisting of the equations
defining E(R) and L12: replacing y in y2 = x3 + ax+ b by y1 +m(x− x1) we get
a cubic equation in x:

(y1 +m(x− x1))2 = x3 + ax+ b

which can be rewritten as

x3 −m2x2 + ... = 0.

x1, x2 are known to be roots of this equation. We define x3 to be the third root
which is then

x3 = m2 − x1 − x2;

so we define

y3 = y1 +m(x3 − x1).

Then E(R) with above definitions is an Abelian group; it is one of the most inter-
esting groups encountered in number theory. Note that if R = Fp then E(R) is a
finite group. Its cardinality |E(Fp)| is an extremely interesting number depending
on p, a, b.

Exercise 14.10. Check that in all of the examples above the conditions for a group
are satisfied. N.B. This is rather intricate in the last example.

Exercise 14.11. Consider the group E(F13) defined by the equation y2 = x3 + 8̄.
Show that (1̄, 3̄), (2̄, 4̄) ∈ E(F13) and compute (1̄, 3̄) ? (2̄, 4̄) and 2(2̄, 4̄) (where the
latter is of course (2̄, 4̄) ? (2̄, 4̄)).
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15. Linear congruences

Definition 15.1. A linear congruence is an expression of the form ax ≡ b (mod m).
A solution x = c to this congruence is an integer c such that ac ≡ b (mod m). Two
linear congruences are equivalent if they have the same solutions.

Proposition 15.2. Let ax ≡ b (mod m) be a linear congruence. Let d = gcd(a,m)
and let S be a complete residue system mod m.

1) If d 6 |b the congruence has no solution in S.
2) If d|b the congruence has d solutions in S.

Proof. 1) Assume there is a solution x = c. Then m|ac − b. Since d|a and d|m
we get d|b, a contradiction.

2) Let a = da1, b = db1, m = dm1. Then our congruence is equivalent to
a1x ≡ b1 (mod m1). Since gcd(a1,m1) = 1 a1 has an inverse a′1 mod m1 so the
latter congruence is equivalent to a′1a1x ≡ a′1 (mod m1) hence to x ≡ a′1b (mod m1).
The latter has a unique solution c in {0, ...,m1 − 1} and hence the solutions

c, c+m1, c+ 2m1, ..., c+ (d− 1)m1

in {0, ...,m − 1}. Hence there are d solutions in {0, ...,m − 1}. Hence there are d
solutions in S. �

Exercise 15.3. Solve the congruence 33x ≡ 27 (mod 51).

Exercise 15.4. Find the remainder when 26! is divided by 29. Hint: By Wilson
26! × (29 − 2) × (29 − 1) ≡ −1 (mod 29). So 26! ≡ −2′ (mod 29) where 2′ is an
inverse of 2 mod 29.

16. Systems of linear congruences

Theorem 16.1. (Chinese Remainder Theorem). Assume one is given a system of
linear congruences

x ≡ b1 (mod m1)
x ≡ b2 (mod m2)
.. .. ..
x ≡ bn (mod mn)

such that gcd(mi,mj) = 1 for all i 6= j and let S be a complete residue system
modulo M = m1m2...mn. Then the system has a unique solution in S.

Proof. To prove existence of the solution let Mi = M/mi and let M ′i be an
inverse of Mi mod mi i.e. MiM

′
i ≡ 1 (mod mi). Then it is easy to check that

c = b1M1M
′
1 + ...+bnMnM

′
n is a solution of the system. Uniqueness of the solution

is easy. �

Exercise 16.2. Why does M ′i in the above proof exist? Why is c a solution? Prove
uniqueness.

Exercise 16.3. Find a solution to the system:

x ≡ 23 (mod 56)
x ≡ 11 (mod 27)
x ≡ 10 (mod 65)
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Exercise 16.4. A famous battle is known to have taken place not more than 3000
years ago. It is known that it took place 2 years after a solar eclipse and 7 years
after a Moon eclipse. Assume (this is definitely not the case in our world) that
solar eclipses take place every 41 years and Moon eclipses take place every 53 years.
Assume moreover that a solar eclipse took place in 2009 and a Moon eclipse took
place in 1999. Find the year when the battle took place. Note: although this
exercise is not realistic, the method suggested by this exercise (to date historical
events based on eclipses) is one of the main methods originally used by astronomers
(e.g. by Scaliger and Petavius in the 17th century) to establish the chronology of
world history accepted today.

17. Fermat’s little theorem

Theorem 17.1. (Fermat’s Little Theorem). If a is an integer and p is a prime
then ap ≡ a (mod p) (i.e. p|ap − a).

We will give two proofs.
Euler’s Proof. If p|a we are done so we may assume p 6 |a. Consider the complete

residue system mod p, {0, 1, 2, 3, ..., p− 1}. Then

{0, a, 2a, 3a, ..., (p− 1)a}
is also a complete residue system mod p because if ia ≡ ja (mod p) for some i 6= j
then (since gcd(a, p) = 1) we get i ≡ j (mod p) hence i = j, a contradiction. So we
have

{rp(0), rp(a), rp(2a), ..., rp((p− 1)a)} = {0, 1, 2, ..., p− 1}.
Since rp(0) = 0 and rp(ia) ≡ ia mod p we have

(p− 1)! = 1× 2× 3× ...× (p− 1)

= rp(a)× rp(2a)× rp(3a)× ...× rp((p− 1)a)

≡ (a)× (2a)× (3a)× ...× ((p− 1)a) (mod p)

≡ (p− 1)!× ap−1 (mod p).

By Euclid’s Lemma gcd((p− 1)!, p) = 1 so we may divide by (p− 1)! to get

1 ≡ ap−1 (mod p).

Multiplying by a we get a ≡ ap (mod p). �

Leibniz’s Proof. It is enough to prove the theorem for a ∈ N. We proceed by
induction on a. The statement is clear for a = 1. Now assume the statement is
true for b = a− 1, i.e. bp ≡ b (mod p). By “Freshman’s Dream” (Exercise 9.10, 4))
we get

ap ≡ (b+ 1)p ≡ bp + 1 ≡ b+ 1 ≡ a (mod p),

a contradiction. �

Remark 17.2. There are examples of primes p such that p2|2p − 2 and examples
of primes p such that p2 6 |2p − 2. It is conjectured that there are infinitely many
primes p such that p2 6 |2p − 2.

Exercise 17.3. Prove that for every integers a, b and every prime p we have p|apb−
bpa.
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Exercise 17.4. Prove that if p is prime and a ≡ b (mod pn) then ap ≡ bp (mod pn+1).

18. Euler’s theorem

Recall that two integers are called coprime if their gcd is 1.

Definition 18.1. For every integer n ≥ 2 let φ(n) be the number of positive
integers less than n and coprime to n. Equivalently, if

Un = {x ∈ N | 1 ≤ x ≤ n− 1, gcd(x, n) = 1}

then φ(n) = |Un|. We also set φ(1) = 1.

Proposition 18.2. If p is prime and n ≥ 1 then φ(pn) = pn − pn−1.

Proof. Upn is obtained from S = {0, 1, 2, ..., pn − 1} by removing the set T of all
the numbers divisible by p. The number of elements of S is pn. Now the set T is in
bijection with S′ = {0, ..., pn−1} (the bijection is given by F : S′ → T , F (x) = px,
cf. the Exercise below). So T has pn−1 elements and we are done. �

Exercise 18.3. Check that F in the proof above is bijective.

Proposition 18.4. φ(mn) = φ(m)φ(n) for m and n coprime.

Proof. The map F : Umn → Um × Un defined by

F (x) = (rm(x), rn(x))

is bijective by the Chinese Remainder Theorem (cf. the Exercise below). So |Umn| =
|Um × Un| = |Um| × |Un| and we are done. �

Exercise 18.5. Check that F in the proof above is bijective.

Corollary 18.6. If n = pe11 ...p
es
s with p1, ..., ps distinct primes and e1, ..., es ≥ 1

then

φ(n) = (pe11 − p
e1−1
1 )...(pess − pes−1s ).

Exercise 18.7. Compute φ(7200).

Exercise 18.8. Prove that for each integer c the set {n | φ(n) = c} is finite.

Theorem 18.9. (Euler). For every integer a coprime to an integer m ≥ 1 we have
aφ(m) ≡ 1 (mod m)

Proof. Entirely analogous to the proof given above (due to Euler) of Fermat’s
Little Theorem; cf. the Exercise below. �

Exercise 18.10. Provide the proof for the above Theorem. More generally prove
that if G is an Abelian group with n elements then an = e for all a ∈ G; here
an = a ? a ? ... ? a (n times). (This statement is also true if G in not Abelian but
the proof is harder.)

Exercise 18.11. Find the last 2 digits in the decimal expansion of 1340,000,000,002.
Hint: we need the remainder when this number is divided by 100; use the fact that
φ(100) = 40 and 340 ≡ 1 (mod 100).
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Exercise 18.12. Prove that if m is square free (i.e. not divisible by any square of
a prime) and if a is any integer (not necessarily coprime to m) then

aφ(m)+1 ≡ a (mod m).

Hint: it is enough to prove the above congruence mod p for every prime p|m. For
each such p apply then Fermat’s Little Theorem 17.1. (So Euler’s theorem is not
necessary for this Exercise.)

19. Polynomial congruences

Definition 19.1. A polynomial with integer coefficients is an expression of the
form

f = f(x) = anx
n + an−1x

n−1 + ...+ a1x+ a0

where a0, ..., an ∈ Z. (A more rigorous way to define a polynomial would be to
identify it with a map a : {0, 1, ..., n} → Z with a(k) = ak.) The number ak is
called the coefficient of xk in f(x). If an 6= 0 we say that f has degree n and write
deg(f) = n; an is then called the top coefficient of f(x). For an integer c ∈ Z we
set

f(c) = anc
n + an−1c

n−1 + ...+ a1c+ a0.

If the top coefficient is 1 we say that f(x) is monic. We denote by Z[x] the set of
all polynomials with integer coefficients.

Example 19.2. f(x) = 5x3− 4x2− 17 is a polynomial of degree 3 and f(2) = 5×
23−4×22−17. This polynomial is not monic. The polynomial g(x) = x8−3x5+x−7
is monic. The polynomial f(x) = 0 is taken to be of degree zero.

Definition 19.3. The sum and the product of two polynomials

f(x) = anx
n + an−1x

n−1 + ...+ a1x+ a0,

g(x) = bmx
m + bm−1x

m−1 + ...+ b1x+ b0

are the polynomials denoted by f(x) + g(x) and f(x)× g(x) = f(x)g(x) defined by
asking that the coefficient of xk in f(x) + g(x) be ak + bk and the coefficient of xk

in f(x)g(x) be

a0bk + a1bk−1 + a2bk−2 + ...+ akb0.

Example 19.4.

(3x2 + 5x+ 1)(8x3 + 7x2 − 2x− 1) =

= (3× 8)x5 + (3× 7 + 5× 8)x4 + (3× (−2) + 5× 7 + 1× 8)x3 + ...

Exercise 19.5. Prove that Z[x] is a ring with respect to the operations + and ×
defined above.

Proposition 19.6. (Long division). Let f(x), g(x) ∈ Z[x] with g(x) monic of
degree ≥ 1. Then there exist unique q(x), r(x) ∈ Z[x] such that

f(x) = g(x)q(x) + r(x)

and deg(r) < deg(g).
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Proof. Fix g (of degree m) and let us prove by induction on n that the statement
above is true if deg(f) ≤ n. The case deg(f) = 0 is clear because we can then take
q(x) = 0 and r(x) = f(x). For the induction step we may take f of degree n and let
an be the top coefficient of f . We may assume n ≥ m. Then deg(f − anxn−mg) ≤
n − 1 so by the induction hypothesis f(x) − anxn−mg(x) = g(x)q(x) + r(x) with
deg(r) < m. So f(x) = g(x)(anx

n−m + q(x)) + r(x), and we are done. �

Definition 19.7. Let f(x) ∈ Z[x] be a polynomial and p a prime. An integer c ∈ Z
is called a root of f(x) mod p (or a solution to the congruence f(x) ≡ 0 (mod p))
if f(c) ≡ 0 (mod p), in other words if p|f(c). We denote by Np(f) the number
of roots of f(x) mod p contained in a fixed complete residue system. If f, g are
polynomials we write Np(f = g) for Np(f −g). If Zp(f) is the set of roots of f mod
p in the compete residue system {0, 1, ..., p− 1} then of course Np(f) = |Zp(f)|.

Example 19.8.
1) 3 is a root of x3 + x− 13 mod 17.
2) Every integer a is a root of xp− x mod p; this is Fermat’s Little Theorem. In

particular Np(x
p − x) = p, Np(x

p−1 = 1) = p− 1.
3) Every solution to a linear congruence ax ≡ b (mod p) is a root of ax− b mod

p hence a solution to ax− b ≡ 0 (mod p). So Np(ax− b) = 1 if p 6 |a.
4) Np(x

2 = 1) = 2 if p 6= 2.

Proposition 19.9. For every two polynomials f, g ∈ Z[x] we have

Np(fg) ≤ Np(f) +Np(g).

Proof. Clearly Zp(fg) ⊂ Zp(f) ∪ Zp(g). Hence

|Zp(fg)| = |Zp(f) ∪ Zp(g)| ≤ |Zp(f)|+ |Zp(g)|.
�

Remark 19.10. Fix a polynomial f(x) ∈ Z[x]. Some of the deepest problems and
theorems in number theory can be formulated as special cases of the following two
problems:

1) Understand the set of primes p such that the congruence f(x) ≡ 0 (mod p)
has a solution or, equivalently, such that p|f(c) for some c ∈ Z.

2) Understand the set of primes p such that p = f(c) for some c ∈ Z.

In regards to problem 1) one would like more generally to understand the function
whose value at a prime p is the number Np(f). In particular one would like to
understand the set of all primes p such that Np(f) = k for a given k (equivalently
such that the congruence f(x) ≡ 0 (mod p) has k solutions in a complete residue
system mod p.) We note that if deg(f) = 1 the problem is trivial. For deg(f) = 2
the problem is already highly non-trivial although a complete answer was given
by Gauss in his Quadratic Reciprocity Law. For the quadratic polynomial f(x) =
x2 + 1, for instance one can prove (without using quadratic reciprocity) that p|f(c)
for some c if and only if p is of the form 4k+1. For deg(f) arbitrary the problem (and
its generalizations for polynomials f(x, y, z, ...) of several variables) is essentially
open and part of an array of tantalizing conjectures (called the Langlands program)
that link the function Np(f) to Fourier analysis and the theory of complex analytic
functions. This is beyond the scope of our course.
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In regards to problem 2) note that the statement that there are infinitely many
primes of the form 4k + 3 can be restated as saying that there are infinitely many
primes p such that p = f(c) for some c where f(x) = 4x+ 3. This was generalized
by Dirichlet to any linear polynomial f(x) = ax+ b for which a and b are coprime.
But it is not known, for instance, if there are infinitely many primes p such that
p = f(c) for some c when f(x) is a quadratic polynomial such as f(x) = x2 + 1.
Problem 2) has an obvious analogue for polynomials in several variables. The result
(which will be proved later) stating that the primes p with p ≡ 1 (mod 4) are exactly
the primes such that p = a2 + b2 for some a, b ∈ Z fits then into the pattern of 2):
one needs only to take f(x, y) = x2 + y2.

20. Langrange’s theorem

Theorem 20.1. (Lagrange). Assume f ∈ Z[x] is a polynomial of degree d and p is
a prime not dividing all the coefficients of f . Then the congruence f(x) ≡ 0 (mod p)
has at most d solutions in every complete residue system mod p. In other words
Np(f) ≤ d.

Proof. Assume there exists a polynomial f of degree d such that p does not
divide all the coefficients of f and such that Np(f) > d. Choose f such that d is
minimal and seek a contradiction. Let a1, ..., ad+1 ∈ Z be distinct roots of f mod
p in a complete residue system mod p. By Long Division we can write

f(x) = (x− ad+1)g(x) + r(x)

with deg(r) < deg(x − ad+1) = 1. So deg(r) = 0 i.e. r(x) = c ∈ Z. Since
f(ad+1) ≡ 0 (mod p) we get p|f(ad+1) = c. Since p|f(ak) = (ak − ad+1)g(ak) + c
for k = 1, ..., d it follows that p|(ak−ad+1)g(ak). Since p is prime and p 6 |ak−ad+1

for k = 1, ..., d it follows that p|g(ak) for k = 1, ..., d. By the minimality of d this
implies that p divides all the coefficients of g(x). Since p|c this implies that p divides
all the coefficients of f(x), a contradiction. �

Corollary 20.2. Assume p ≡ 1 (mod d). Then Np(x
d − 1) = d.

Proof. By Lagrange’s Theorem Np(x
d − 1) ≤ d. Assume Np(x

d − 1) < d and
seek a contradiction. If p− 1 = kd then xp−1 − 1 = (xd − 1)g(x) where

g(x) = xd(k−1) + xd(k−2) + ...+ xd + 1.

Since by Lagrange’s Theorem Np(g) ≤ d(k − 1) we get

p−1 = Np(x
p−1−1) = Np((x

d−1)g) ≤ Np(xd−1)+Np(g) < d+d(k−1) = dk = p−1,

a contradiction. �

Corollary 20.3.
1) If p ≡ 1 (mod 4) then Np(x

2 = −1) = 2. Equivalently every prime p of the
form 4k + 1 divides some number of the form c2 + 1.

2) If p ≡ 3 (mod 4) then Np(x
2 = −1) = 0. Equivalently no prime p of the form

4k + 3 can divide a number of the form c2 + 1.

Proof. 1) By Corollary 20.2 if p ≡ 1 (mod 4) then Np(x
4 − 1) = 4. But

4 = Np(x
4− 1) ≤ Np((x2− 1)(x2 + 1)) ≤ Np(x2− 1) +Np(x

2 + 1) ≤ Np(x2 + 1) + 2

hence Np(x
2 + 1) ≥ 2 and we are done.
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2) Assume p ≡ 3 (mod 4) so p = 4k + 3 and assume Np(x
2 = −1) > 0 so

there exists c ∈ Z such that c2 ≡ −1 (mod p); we want to derive a contradiction.
We have (by Fermat’s Little Theorem) that cp ≡ c (mod p). Since p 6 |c we get
cp−1 ≡ 1 (mod p). But

cp−1 ≡ c4k+2 ≡ (c2)2k+1 ≡ (−1)2k+1 ≡ −1 (mod p),

a contradiction. �

Exercise 20.4. Consider the polynomials

f(x) = xp−1 − 1 and g(x) = (x− 1)(x− 2)...(x− p+ 1) ∈ Z[x].

Prove that all the coefficients of the polynomial f(x) − g(x) are divisible by p.
Conclude that p divides the sums

p−1∑
a=1

a = 1 + 2 + 3 + ...+ (p− 1)

and∑
1≤a<b≤p−1

ab = 1×2+1×3×...1×(p−1)+2×3+...+2×(p−1)+...+(p−2)×(p−1).

Exercise 20.5. Assume p ≥ 5 is a prime. Prove that the numerator of every
fraction that is equal to

1 +
1

2
+

1

3
+ ...+

1

p− 1

is divisible by p2.

Exercise 20.6. Prove that there are infinitely many primes of the form 4k + 1.
Hint: Assume this is false and let p1, ..., pn be all the primes of the form 4k+ 1. By
Corollary part 2) in 20.3 all the primes dividing the number

N = (2p1...pn)2 + 1

are of the form 4k + 1 and derive a contradiction.

Exercise 20.7. Prove that:
1) If p ≡ 1 (mod 3) then Np(x

2 + x+ 1) = 2. Equivalently every prime p of the
form 3k + 1 divides some number of the form c2 + c+ 1.

2) If p ≡ 2 (mod 3) then Np(x
2 + x + 1) = 0. Equivalently no prime p of the

form 3k + 2 can divide a number of the form c2 + c+ 1.

21. Order

Definition 21.1. Let a and m be coprime integers. The order of a mod m is the
smallest positive integer k such that ak ≡ 1 (mod m). We write k = om(a).

In other words:
1) ak ≡ 1 (mod m),
2) an ≡ 1 (mod m) for n ≥ 1 implies k ≤ n.

The definition makes sense because the set of positive integers n such that

an ≡ 1 (mod m)

is non-empty (it contains φ(m) by Euler’s Theorem).
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Exercise 21.2. Prove that o31(2) = 5.

Proposition 21.3. om(a) = k if and only if
1) ak ≡ 1 (mod m),
2) aN ≡ 1 (mod m) for N ≥ 1 implies k|N .

Proof. The if part is clear because k|N implies k ≤ N . To prove the only if part
assume om(a) = k. Then 1) is clear. To check 2) write N = kq+ r with 0 ≤ r < k.
Then

1 ≡ aN ≡ (ak)q × ar ≡ ar (mod m)

so r = 0 by 2) in Definition 21.1. �

Corollary 21.4. om(a)|φ(m).

Proposition 21.5. Assume om(a) and om(b) are coprime. Then

om(ab) = om(a)om(b).

Proof. Set k = om(a), l = om(b). We use Proposition 21.3. Clearly

(ab)kl ≡ (ak)l(bl)k ≡ 1 (mod m).

Now assume (ab)N ≡ 1 (mod m). Raising to power l we get aNlbNl ≡ 1 (mod m)
hence aNl ≡ 1 (mod m) hence k|Nl. Since k and l are coprime k|N . In a similar
way rasing (ab)N ≡ 1 (mod m) to power k we get aNkbNk ≡ 1 (mod m) hence
bNk ≡ 1 (mod m) hence l|Nk hence l|N . Again since k and l are coprime l|N and
k|N imply kl|N and we are done. �

Exercise 21.6. Prove that if om(a) = kl then om(ak) = l.

Exercise 21.7. Let G be a finite group and let |G| denote the number of elements
of G (the number |G| is called the order of G). Prove that for every x ∈ G there
exists an integer n ≥ 1 such that xn = e. Define the order of an element x ∈ G as
the smallest integer n ≥ 1 such that xn = e. Denote by |x| the order of x. Prove
that for G Abelian |x| divides |G|. (This statement is also true for G non-Abelian
but the proof is harder.)

Remark 21.8. If a ∈ Z is not divisible by a prime p and a ∈ Fp = Z/pZ is the
residue class of a then op(a) is equal to the order |a| of a in the group F×p .

22. Primitive roots

Definition 22.1. An integer g is a primitive root mod m if it is coprime to m and
om(g) = φ(m).

Exercise 22.2. Prove that g is a primitive root mod m if and only if it is coprime
to m and

gφ(m)/q 6≡ 1 (mod m)

for all prime q|φ(m).

Exercise 22.3. Prove that there is no primitive root mod 8

Exercise 22.4. Prove that 3 is a primitive root mod 7.
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Exercise 22.5. Let g be a primitive root mod m and let a, b be integers. Prove
that

ga ≡ gb (mod m)

if and only if

a ≡ b (mod φ(m)).

Exercise 22.6. Prove that if g is a primitive root mod a prime p then

{0, 1, g, g2, g3, ..., gp−2}

is a complete residue system mod p.

Exercise 22.7. Solve the congruence 35x+2 ≡ 33 (mod 7).

The following Theorem was proved by Gauss:

Theorem 22.8. (Existence of primitive roots). If p is a prime there exists a
primitive root mod p.

Proof. Let p− 1 = pe11 ...p
es
s with p1, ..., ps distinct primes and e1, ..., es ≥ 1. Let

i ∈ {1, ..., s}. By Corollary 20.2 Np(x
p
ei
i − 1) = peii and Np(x

p
ei−1

i − 1) = pei−1i . So

xp
ei
i − 1 has a root ci mod p which is not a root mod p of xp

ei−1

i − 1. So

c
p
ei
i
i ≡ 1 (mod p),

c
p
ei−1

i
i 6≡ 1 (mod p).

It follows that the order of ci is a divisor of peii but not a divisor of pei−1i . Hence

op(ci) = peii .

By Proposition 21.5

op(c1...cs) = pe11 ...p
es
s = p− 1

so c1...cs is a primitive root mod p. �

Exercise 22.9. Prove that if p and n is a natural number not divisible by p − 1
then p divides the sum

p−1∑
a=1

an = 1n + 2n + 3n + ...+ (p− 1)n.

Hint: If g is a primitive root mod p then the above sum is congruent mod p to
S =

∑p−2
i=0 g

in; also

(gn − 1)S = gn(p−1) − 1 ≡ 0 (mod p).

23. Discrete logarithm

Definition 23.1. Assume g is a primitive root mod a prine p and consider the
map

expg : {0, 1, ..., p− 2} → {1, ..., p− 1}
defined by expg a = rp(g

a). Since op(g) = p − 1 this map is injective and hence
surjective. Its inverse is called the discrete logarithm and is denoted by

logg : {1, ..., p− 1} → {0, 1, ..., p− 2}.
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So if b ≡ ga (mod p) for a ∈ {0, 1, ..., p − 2} then a = logg b. More generally we
define

logg : {b ∈ Z | b 6≡ 0 (mod p)} → {0, 1, ..., p− 2}
by setting

logg b = logg(rp(b)).

Exercise 23.2. Prove that

logg(bc) ≡ logg b+ logg c (mod p− 1)

for all b, c not divisible by p.

Remark 23.3. No algorithm running in polynomial time is known that computes
logg b for given b. Any such algorithm would compromise the security of some
important public key crytographic schemes that are in use today.

Exercise 23.4. Prove that for every integer a coprime to a prime p 6= 2 we have
that

a
p−1
2 ≡ 1 or − 1 (mod p)

Hint: (a
p−1
2 )2 ≡ 1 (mod p).

Proposition 23.5. Assume p 6= 2. Let g be a primitive root mod p and a an
integer not divisible by p. Then the following are equivalent:

1) The congruence x2 ≡ a (mod p) has a solution;
2) Np(x

2 = a) = 2,
3) logg a is even,

4) a
p−1
2 ≡ 1 (mod p).

Proof. 1) implies 2) because ic c is a solution then p − c is also a solution and
c 6≡ p−c (mod p). 2) implies 1) trivially. Now write a ≡ gb (mod p), x ≡ gy (mod p).
The congruence

x2 ≡ a (mod p)

is equivalent to

g2y ≡ gb (mod p)

and hence equivalent to the congruence

2y ≡ b (mod p− 1).

The latter has a solution if and only if gcd(2, p− 1)|b hence if and only if b is even.
This proves that 1) and 3) are equivalent. Finally 4) is equivalent to

g
b(p−1)

2 ≡ g0 (mod p)

which is equivalent to

b(p− 1)

2
≡ 0 (mod p− 1)

hence to

b(p− 1) ≡ 0 (mod 2(p− 1))

hence to 2(p−1)|b(p−1) hence to 2|b. This proves the equivalence of 3) and 4). �
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Exercise 23.6. Let p be a prime such that p ≡ 1 (mod m). Let g be a primitive root
mod p and a an integer not divisible by p. Prove that the following are equivalent:

1) The congruence xm ≡ a (mod p) has a solution;
2) m| logg a,

3) a
p−1
m ≡ 1 (mod p).

Exercise 23.7. Let p be a prime, let m ≥ 1 be an integer coprime to p − 1, and
let a be any integer. Prove that the congruence xm ≡ a (mod p). has a solution.

Exercise 23.8. Let p be a prime and c be an integer. Prove that there exist
integers a, b such that c ≡ a2 + b2 (mod p). Hint: The set

A = {rp(a2) | a ∈ Z} ⊂ S = {0, ..., p− 1}

has p+1
2 elements. Hence the set

B = {rp(c− x) | x ∈ A} ⊂ S

also has p+1
2 elements. Since |A|+ |B| > |S| we must have A ∩B 6= ∅, so c− b2 ≡

a2 (mod p) for some a and b.

24. Legendre symbol

Let p be a prime 6= 2.

Definition 24.1. If a is any integer define the Legendre symbol(
a

p

)
= Np(x

2 = a)− 1,

i.e. the Legendre symbol is −1, 0, 1 according as x2 ≡ a (mod p) has 2 solutions,
one solution (this is the case if and only if p|a), or no solution respectively.

Exercise 24.2. Prove that (
ab

p

)
=

(
a

p

)(
b

p

)
.

Lemma 24.3. (Euler). (
a

p

)
≡ a

p−1
2 (mod p).

Proof. This is a reformulation of Proposition 23.5, the equivalence of 2) and 4).
(Cf. also Exercise 23.4.) �

Corollary 24.4. (Euler).
(
−1
p

)
= 1 if and only if p ≡ 1 (mod 4).

Lemma 24.5. (Euler)
(

2
p

)
= 1 if and only if p ≡ 1, 7 (mod 8).

Proof. First we claim that
(

2
p

)
= (−1)µ where µ is the number of integers in

the set {2, 4, 6, ..., p− 1} congruent mod p to a negative integer between −p2 and p
2 .

Indeed let r1, ..., r p−1
2

be the integers between −p2 and p
2 that are congruent mod p

to 2, 4, 6, ..., p− 1. Then it is easy to check that

{|r1|, ..., |r p−1
2
|} = {1, 2, 3, ..., p− 1

2
},
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where |r| is the absolute value of r i.e. r or −r according as r is positive or negative.
Taking products we get

1× 2× 3× ...× p− 1

2
≡ (−1)µ × 2

p−1
2 × 1× 2× 3× ...× p− 1

2
(mod p)

which proves our claim.
Now note that if an integer a between −p2 and 0 is congruent mod p to one of

the numbers 2, 4, 6, ..., p − 1 then 2x ≡ a (mod p) for some x ∈ {1, 2, 3, ..., p−12 }.
Writing a = 2x+mp we get −p2 < 2x+mp < 0 hence p

2 < 2x+ (m+ 1)p < p which
forces m = −1 hence p

2 < 2x < p. Conversely if the latter holds then a = 2x− p is
between −p2 and 0. So if p = 8k + r, 0 ≤ r < 7, we have

µ = |{x ∈ Z | p2 < 2x < p}|

= |{x ∈ Z | p4 < x < p
2}|

= |{x ∈ Z | 2k + r
4 < x < 4k + r

2}|

= |{x ∈ Z | r4 < x < 2k + r
2}|

.

and we conclude by inspecting the values r = 1, 3, 5, 7. �

Exercise 24.6.
p−1∑
a=1

(
a

p

)
= 0.

Hint. The terms equal to 1 in the sum correspond to those a’s whose discrete
logarithm is even (cf. Proposition 23.5) while the terms equal to −1 correspond
to those a’s whose logarithm is odd. But the number of odd numbers between
0, ..., p− 2 is equal to that of even numbers.

Exercise 24.7. Let E(Fp) be the elliptic curve over Fp attached to the cubic

equation y2 = x3 + ax+ b where a, b ∈ Z. Prove that the cardinality (order) of the
group E(Fp) is given by

|E(Fp)| = p+ 1 +

p−1∑
x=0

(
x3 + ax+ b

p

)
.

Prove that if in addition p|a and p ≡ 2 (mod 3) then |E(Fp)| = p+ 1. Hint: for the

last statement use Exercise 23.7 to show that the map f(x) = x3 + b is a bijection
Fp → Fp. Then use Exercise 24.6.

The main result pertaining to the Legendre symbol is the following theorem of
Gauss:

Theorem 24.8. (Quadratic Reciprocity Law). For every two distinct primes p and
q different from 2 we have (

p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 .

This can be proved using integers only but we postpone the proof (and do not
use the result) until we introduce algebraic integers.

Theorem 24.8 plus Lemma 24.5 imply:
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Corollary 24.9. If a ∈ N and p1, p2 are primes such that

p1 ≡ p2 (mod 4a)

then
Np1(x2 = a) = Np2(x2 = a).

In other words if we fix the polynomial f(x) = x2 − a then the value of Np(f)
only depends on rN (p) for an integer N depending on f (in our case N = 4a). Such
a statement fails, in general, for polynomials f of arbitrary degree (although there
are examples of polynomials of higher degree for which such a statement holds).

25. Gaussian integers

Some results about the integers appear as “shadows” of the arithmetic of more
complicated types of (real or even complex) numbers. The first example of this phe-
nomenon is the consideration of Gaussian integers below which leads, in particular,
to an elegant proof of the characterization of primes (in Z) which are sums of two
squares (of elements of Z). This example does not require us to know what real or
complex numbers are. Another example to be discussed later involves more general
complex numbers called algebraic integers. (For this it really helps to introduce
real and complex numbers in full generality.) As a consequence of the introduction
of algebraic numbers we will prove the quadratic reciprocity of Gauss (which is,
again, a statement about integers in Z).

Definition 25.1. (Gauss) A Gaussian integer is a pair (a, b) with a, b ∈ Z. If
u = (a, b) and v = (c, d) then define the Gaussian integers u+ v and uv = u× v by

u+ v = (a+ c, b+ d)
u× v = (ac− bd, ad+ bc)

Remark 25.2. One checks that

(a, b) = (a, 0) + (b, 0)× (0, 1)

for all a, b ∈ Z. So if we set (a, 0) = a for every integer a and we set i = (0, 1) then
i2 = −1 and (a, b) = a+ bi for all a, b ∈ Z. From now on we use the representation
a+ bi instead of (a, b). We denote Z[i] the set of Gaussian integers; then Z ⊂ Z[i].

Exercise 25.3. Prove that Z[i] is a ring with respect to the operations + and ×.

Definition 25.4. For every u = a+ bi the conjugate of u is defined as u = a− bi
and the norm of u is defined as

N(u) = uu = a2 + b2.

Exercise 25.5. Prove that for every u, v ∈ Z[i] we have:
1) u+ v = u+ v, u× v = u× v;
2) N(uv) = N(u)N(v).
Hint: 1) is an easy computation. 2) follows from 1).

Definition 25.6. u ∈ Z[i] is called invertible if there exists v ∈ Z[i] such that
uv = 1.

Proposition 25.7. The invertible elements in Z[i] are 1,−1, i,−i.
Proof. Clearly 1,−1, i,−i are invertible; in fact i(−i) = 1. Conversely if u is

invertible, hence uv = 1 it follows that N(uv) = N(1) = 1 hence N(u)N(v) = 1
hence N(u) = 1 which immediately implies u is one of 1,−1, i,−i. �
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26. Fundamental Theorem of Arithmetic for Gaussian integers

The following is an analogue of Euclid division:

Proposition 26.1. For every u, v ∈ Z[i] with v 6= 0 there exist w, z ∈ Z[i] with
u = vw + z and N(z) < N(v). (N.B. w, z are not unique.)

Proof. Define Q(i) as Q×Q with addition and multiplication given by the same
formulae as in the case of Z[i]. Embed Z[i] into Q(i). Let uv = a + bi and let
t = a

N(v) + b
N(v) i ∈ Q(i); so tv = u in Q(i). View the points of Q(i) = Q × Q

as points in the “Euclidean plane”. (The argument that follows can be made, of
course, rigorous.) Then Z[i] can be viewed as the set of points in the plane with
integer coordinates. So t will lie inside at least one square of side 1 whose vertices
are in Z[i]. There is at least one vertex of this square at distance less than 1 from
t. (Any point in a square of side 1 is at distance less than 1 to one of the vertices.)
We take that vertex to be w and define z = uv − w. Then it follows immediately
that N(z) < N(v). �

Exercise 26.2. Make the above argument rigorous. Hint: the vertices of the square
can be defined using integral parts of rational numbers.

Definition 26.3. For u, v ∈ Z[i] we say that v divides u if there exists w ∈ Z[i]
such that u = vw. A prime element in Z[i] is an element π ∈ Z[i] which is non-zero,
non-invertible, and whenever π = uv for u, v ∈ Z[i] it follows that either u or v is
invertible.

The following is an analogue of Euclid’s Lemma:

Proposition 26.4. If π is a prime element in Z[i] and π|uv with u, v ∈ Z[i] then
either π|u or π|v.

Proof. As in the proof of Euclid’s Lemma assume π|uv, π 6 |u, π 6 |v, and seek a
contradiction. Consider the set

J = {xu+ yπ | x, y,∈ Z[i]}
and take an element t 6= 0 in J it whose norm is minimal. We claim that both u
and π are divisible by t. This follows by dividing u and π by t with remainders as in
Proposition 26.1 and realizing the remainders belong to J hence by the minimality
of the norm of t the remainders must be 0. Now since π is prime either t is invertible
or t is an invertible element times π. The second case does not occur because it
would imply that π divides u. So we conclude that t is invertible. We may assume
t = 1. Then we can write 1 = xu + py with x, y ∈ Z[i]. In exactly the same way
(using v instead of u) we may write 1 = zv + wπ with z, w ∈ Z[i]. We get

1 = (xu+ yπ)(zv + wπ)

and we conclude exactly as in the proof of Euclid’s Lemma. �

Exercise 26.5. Prove that every element in Z[i] which is not zero and non-
invertible can be written as a product of prime elements in Z[i]. Hint: Assume
there are elements that don’t have this property. Pick one of minimal norm and
derive a contradiction.

Putting together Proposition 26.4 and Exercise 26.5 we get the following ana-
logue of the Fundamental Theorem of Arithmetic:
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Theorem 26.6. Every element u in Z[i] which is non-zero and non-invertible can
be written as a product of prime elements in Z[i] such that if

u = π1...πn = π′1...π
′
m

are two such representations then n = m and (after a permutation of the indices)
we have π′i = εiπi for some invertble elements εi.

Exercise 26.7. Write the details of the proof.

27. Factoring prime integers in the Gaussian integers

Proposition 27.1. Every prime p in Z with p ≡ 3 (mod 4) is prime in Z[i].

Proof. If p = uv then p2 = N(p) = N(u)N(v) so either N(u) = p or N(u) = 1
or N(v) = 1. In the last 2 cases we get u or v invertible. The case N(u) = p does
not occur because N(u) = a2 + b2 for integers a, b and we know that a sum of 2
squares in Z is never ≡ 3 (mod 4). �

Proposition 27.2. If p is a prime in Z with p ≡ 1 (mod 4) then p is not prime
in Z[i] and in fact can be written as p = ππ = N(π) with π a prime in Z[i].

Proof. Recall that since p ≡ 1 (mod 4) it follows that p|c2 + 1 for some c ∈ Z.
Assume p is prime in Z[i] and seek a contradiction. Since c2 + 1 = (c+ i)(c− i) it
follows by Proposition 26.4 that either p|c+ i or p|c− i in Z[i]. But if p|c+ i then
c + i = p(a + bi) hence c − i = c+ i = p(a − bi) so adding the last two equalities
we get 2c = 2ap hence p|c, hence p|1 a contradiction. In a similar way we get a
contradiction assuming p|c − i. We proved that p is not prime in Z[i]. Then, by
Exerrcise 26.5 we can write

p = π1...πs

with s ≥ 2 and πi prime. Taking norms we get

p2 = N(p) = N(π1)...N(πs).

Since the left hand side has only 2 primes in its prime decomposition and none of
the factors in the right hand side is 1 it follows that s = 2 and N(π1) = N(π2) = p.
So p = N(π1) = π1π1. So π2 = π1 and we are done. �

Example 27.3. 5 is not prime in Z[i] because 5 = (2 + i)(2− i). 7 is prime in Z[i].

Exercise 27.4. Find the prime factorization in Z[i] of 295 × 373 × 237.

Exercise 27.5. Prove that 2 + 3i is prime in Z[i].

Exercise 27.6. Find the prime factorization in Z[i] of the number 12 + 13i.

Since in Proposition 27.2 N(π) is a sum of squares in Z we obtain a proof of the
following:

Theorem 27.7. (Fermat). If p is a prime in Z with p ≡ 1 (mod 4) then p = a2+b2

for some integers a, b ∈ Z.
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28. Real and complex numbers

Definition 28.1. (Dedekind). A real number is a subset u ⊂ Q of the set of
rational numbers with the following properties:

1) u 6= ∅,Q;
2) u has no minimum;
3) if x ∈ u, y ∈ Q, and x ≤ y then y ∈ u.
Denote by R the set of real numbers.

Example 28.2.
1) Every rational number x ∈ Q can be identified with the real number ux =

{y ∈ Q | x < y}. (It is clear that ux = ux′ for x, x′ ∈ Q implies x = x′.) We simply
write x = ux. So Q ⊂ R.

2) One defines, for instance, for every n ∈ N,
√
n = {x ∈ Q;x ≥ 0, x2 > n}.

Definition 28.3. If u and v are real numbers we write u ≤ v if and only if v ⊂ u.
For u, v ≥ 0 define

u+ v = {x+ y | x ∈ u, y ∈ v}
u× v = uv = {xy | x ∈ u, y ∈ v}.

Note that this extends addition and multiplication on the non-negative rationals.

Exercise 28.4. Naturally extend the definition of addition + and multiplication
× of real numbers to the case when the numbers are not necessarily ≥ 0. Prove
that R is a field with respect to + and ×.

Exercise 28.5. Define complex numbers as pairs of real numbers. Define addition
+ and multiplication × as in Definition 25.1. Define i = (0, 1) and show one can
write every pair of real numbers (a, b) as a+ bi where real numbers a are identified
with complex numbers (a, 0). Denote by C the set of complex numbers and prove
that C is a field with respect to + and ×.

Exercise 28.6. Define the sum and the product of a family of real (or complex)
numbers indexed by a finite set. Hint: use the already defined concept for integers
(and hence for the rationals). Define the value of a polynomial in Z[x] at a complex
number.

Exercise 28.7.
1) Prove that (

√
n)2 = n.

2) Prove that if n is not the square of an integer then
√
n 6∈ Q. Hint: Assume

the contrary. By 1) we have n = a2

b2 so b2n = a2 so vp(n)+2vp(b) = 2vp(a) so vp(n)
is even for all p so n is a square, a contradiction.

29. Algebraic integers

Definition 29.1. A complex number u ∈ C is called an algebraic integer if there
exists a monic polynomial F ∈ Z[x] such that F (u) = 0.

Example 29.2.
√
−7 :=

√
7i ∈ C is an algebraic integer because it is a root

of F (x) = x2 + 7. N.B. Not all algebraic integers can be obtained from rational
numbers by iterating the operations of addition, multiplication, and taking radicals
of various orders; in order to prove the existence of algebriac integers that cannot
be obtained in this way one needs “Galois theory”.
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Definition 29.3. A subset O ⊂ C is called an order if:
1) 1 ∈ O

2) u, v ∈ O implies u+ v, uv,−u ∈ O;
3) There exist u1, ..., un ∈ O such that

O = {m1u1 + ...+mnun | m1, ...,mn ∈ Z}.

Remark 29.4. Conditions 1 and 2 imply that O is a ring with respect to + and
×.

Exercise 29.5. Prove that the sets

Z[i], {a+ 2b
√
−7 | a, b,∈ Z}, {a+ 2b

√
7 | a, b,∈ Z}

are orders. Draw pictures of these sets.

Proposition 29.6. A complex number is an algebraic integer if and only if it is
contained in an order.

Proof. (Uses matrices and their determinants !). If u is an algebraic integer, root
of a monic polynomial in Z[x] of degree n then u is contained in the order

O := {c0 + c1u+ ...+ cn−1u
n−1 | c0, ..., cn−1 ∈ Z}.

Conversely assume u is contained in the order

O = {m1u1 + ...+mnun | m1, ...,mn ∈ Z}.
Then for all i = 1, ..., n we can write

uui =

n∑
j=1

mijuj

with mij ∈ Z. Set aij = δiju − mij where δij is 1 or 0 according as i = j or
i 6= j. Let A = (aij) be the matrix with entries aij and let U be the column vector
with entries ui. Since AU = 0 and U 6= 0 it follows that A is not invertible hence
det(A) = 0. But det(A) is easily seen to have the form

det(A) = un + a1u
n−1 + ...+ an−1u+ an

with ak ∈ Z so u is an algebraic integer and we are done. �

Proposition 29.7. If u and u are algebraic integers then u + v, uv,−u are also
algebraic integers.

Proof. Assume u belongs to the order

{a1u1 + ...+ anun | a1, ..., an ∈ Z}
and v belongs to the order

{b1v1 + ...+ bmvm | b1, ..., bm ∈ Z}.
Then u+ v, uv,−u belong to the set

n∑
i=1

m∑
j=1

cijuivj | cij ∈ Z

 ;

but this latter is set is clearly an order. �

Definition 29.8. Denote by Z ⊂ C be the set of all algebraic integers.
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Remark 29.9. By Proposition 29.7 Z is a ring with respect to + and ×.

Proposition 29.10. A rational number which is also an algebraic integer must be
an integer. In other words Z ∩Q = Z.

Proof. Assume a
b ∈ Q is an algebraic integer,(a

b

)n
+ a1

(a
b

)n−1
+ ...+ an = 0

with a1, ..., an ∈ Z. Hence

an + a1a
n−1b+ ...+ anb

n = 0.

Assume a
b 6∈ Z. Then there exists a prime p ∈ Z with p|b and p 6 |a. But by the last

equation if p|b then p|an hence p|a, a contradiction. �

Exercise 29.11. Find an order containing
√

3 +
√

7. Find a similar example
involving cubic roots.

Exercise 29.12. Find a monic polynomial f(x) in Z[x] such that f(
√

3+
√

7) = 0.
Find a similar example involving cubic roots.

30. Non-unique factorization in Kummer integers

The arithmetic of general orders is much more complicated than that of Z. This
was realized in the 19th century by Kummer, Dedekind, and others. In particular
the fundamental theorem of arithmetic may fail in certain orders, as we will see
here.

Definition 30.1. An element u in an order O is called invertible if there exists
v ∈ O such that uv = 1. An element u ∈ O is called irreducible if whenever u = vw
with v, w ∈ O it follows that either v or w is invertible. Two irreducible elements u
and v in O are called associated in divisibility if u = vw with w invertible.

One is tempted to use the word prime instead of irreducible; but in view of
pathologies to be put forward soon one prefers the work irreducible.

Exercise 30.2. Prove that in the order Z[
√
−5] = {a+b

√
−5 | a, b ∈ Z} (called the

ring of Kummer integers) the following hold. (Morally the Fundamental Theorem
of Arithmetic fails in this order.)

1) The only invertible elements in Z[
√
−5] are 1 and −1;

2) The elements 2, 3, 1 +
√
−5, 1 −

√
−5 are irreducible and no two of them are

associated in divisibility;
3) The element 6 has the following 2 decompositions:

6 = 2× 3 = (1 +
√
−5)(1−

√
−5).

Hint: Define a+ b
√
−5 = a −

√
−5 and the norm N(u) = uu = a2 + 5b2 for

u = a+ b
√
−5. Prove that u is invertible if and only if it has norm 1 which proves

1). To prove 2) assume one of these elements u can be written as u = vw with v, w
non-invertible, take norms to get N(v)N(w) is 4, 6, or 9, conclude that N(v) is 2
or 3, and derive a contradiction. 3) is clear.
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31. Proof of Quadratic Reciprocity

We prove Theorem 24.8. First we recall its statement:

For every two distinct primes p and q different from 2 we have:(
p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 .

Remark 31.1. We will need to know in what follows that there exists a complex
number 1 6= ζp ∈ C such that ζpp = 1. Note that ζp is then an algebraic integer,

ζp ∈ Z. Also ζkp 6= 1 for all 1 ≤ k ≤ p − 1. If the complex exponential function ez

is assumed to be known then one can take

ζp = e
2πi
p .

Alternatively, if we assume the Fundamental Theorem of Algebra (saying that every
non-constant polynomial with complex coefficients has a complex root) then one
can take ζp to be any root of the polynomial xp−1 + xp−2 + ...+ x+ 1.

Exercise 31.2. Prove that if c is an integer then

p−1∑
b=1

(ζcp)b

equals p− 1 or −1 according as p|c or p 6 |c.

Definition 31.3. Define the Gauss sum

G =

p−1∑
a=1

(
a

p

)
ζap ∈ Z.

Lemma 31.4. (Gauss).

G2 = (−1)
p−1
2 p.

Proof. We have

G2 =

p−1∑
a=1

p−1∑
b=1

(
ab

p

)
ζa+bp .

If (a, b) runs through the set of indices of the above sum then clearly (rp(ab), b)
runs through the same set of indices so substituting a by ab and noting that

ζabp = ζrp(ab)p

we get that the above sum equals

p−1∑
a=1

p−1∑
b=1

(
ab2

p

)
ζab+bp =

p−1∑
a=1

(
a

p

) p−1∑
b=1

(ζa+1
p )b.

In view of Exercises 31.2 and 24.6 the above sum equals(
−1

p

)
(p− 1)−

p−2∑
a=1

(
a

p

)
=

(
−1

p

)
p

and we are done by Lemma 24.3. �
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Definition 31.5. For u, v ∈ Z and q a prime in Z let us write u ≡ v (mod q) in Z
if there exists w ∈ Z such that qw = v − u.

Exercise 31.6. Prove that if u ≡ v (mod q) in Z and u, v ∈ Z then u ≡ v (mod q)
in Z. Hint: this follows directly from Proposition 29.10.

Exercise 31.7. (Freshman’s Dream) Prove that

(u1 + ...+ un)p ≡ up1 + ...+ upn (mod p) in Z

for u1, ..., un ∈ Z and p a prime in Z.

Proof of Theorem 24.8. By Lemma 31.4 and then Lemma 24.3

Gq = G(G2)
q−1
2 = G(−1)

p−1
2

q−1
2 p

q−1
2 ≡ G(−1)

p−1
2

q−1
2

(
p

q

)
(mod q) in Z.

On the other hand by “Freshman’s Dream” we get

Gq =

(
p−1∑
a=1

(
a

p

)
ζap

)q
≡

p−1∑
a=1

(
a

p

)q
ζaqp =

p−1∑
a=1

(
a

p

)
ζaqp

=

(
q

p

) p−1∑
a=1

(
aq

p

)
ζaqp =

(
q

p

)
G (mod q) in Z.

The two expressions of Gq above give

G(−1)
p−1
2

q−1
2

(
p

q

)
≡
(
q

p

)
G (mod q) in Z

Assume

(−1)
p−1
2

q−1
2

(
p

q

)
6=
(
q

p

)
,

and let us derive a contradiction. Since the two numbers above are ±1 we get that
one is 1 and the other is −1 so we get

G ≡ −G (mod q) in Z

hence

2G ≡ 0 (mod q) in Z

Squaring we get

4p ≡ 0 (mod q) in Z

and hence, by Exercise 31.6,

4p ≡ 0 (mod q) in Z

which is a contradiction. �
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32. Appendix: Cryptography

Generalities. The aim of cryptography is to devise secure schemes for transfer
of information. The simplest setting and general procedure are as follows. One
has 3 users A,B,C. The users A and B want to exchange information; they also
want to keep this information secret from C. The information is called plaintext.
A plaintext is a sequence of letters x from an alphabet X and can be understood
by anybody who reads it. A ciphertext is a sequence of letters y from an alphabet
Y and cannot be directly understood by any of the users. X and Y are finite sets
usually identified with subsets of Z (or sometimes with subsets of Z×Z, etc.). These
subsets are usually (subsets of) complete residue systems modulo some modulus.

Secret key (classical) cryptography. In secret key cryptography A and B
choose two (tuples of) numbers d and e called the decryption and encryption keys,
satisfying certain properties; these numbers are known to A and B but they are kept
secret from C. The exchange of these numbers between A and B, if unprotected,
is the most vulnerable step in the procedure. Here are some examples.

Affine code. A and B choose a prime p and pairs e = (e1, e2) and d = (d1, d2)
such that the functions E(x) = e1x+ e2 and D(y) = d1y + d2 satisfy D(E(x)) ≡ x
mod p. All these are kept secret. Then A sends the ciphertext y to B where
y ≡ E(x) mod p. To decrypt B computes x ≡ D(y) mod p.

Pohlig-Hellman. A and B choose a prime p and integers e, d such that ed ≡ 1
mod p − 1. All these are kept secret. Then A sends the ciphertext y to B where
y ≡ xe mod p. To decrypt B computes x ≡ yd mod p.

Public key cryptography. In public key cryptography each of A and B
chooses a number dA and dB . The number dA is only known to A (but not to
B or C) and the number dB is only known to B (but not to A or C). B computes
a number eB from dB and posts (makes public) eB . Also A computes eA from dA
and posts eA. Also the ciphertexts y created by both A and B are made public.
The striking feature of public key cryptography is that the encryption keys and the
ciphertexts are available to C and indeed to anybody! But since the encryption
keys are public one needs a signature scheme. Here are some examples.

RSA. A chooses two primes pA, qA that she keeps secret from B,C, .... Similarly
B chooses two primes pB , qB that he keeps secret from A,C, .... Then A posts the
encryption key (mA, εA) where mA = pAqA and εA is coprime to

φ(mA) = (pA − 1)(qA − 1).

Similarly B posts the encryption key (mB , εB) where mB = pBqB and εB is coprime
to

φ(mB) = (pB − 1)(qB − 1).

A wants to send a message to B. To do this A posts the ciphertext

y = EB(x) ≡ xεB mod mB .

Then B is the only person able to decrypt y; he does this by computing δB such
that εBδB ≡ 1 mod φ(mB) and then computing

x = DB(y) ≡ yδB mod mB ;
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B is the only one who can compute φ(mB) in polynomial time because only B
knows pB , qB .

For the transfer of information from A to B the signature scheme works as
follows. A posts her nickname nA and signs the cyphertext with

cA = DA(EB(nA)).

Note that the signature involves δA which only A knows. To ascertain that A is
indeed the sender of the message B checks whether DB(EA(cA)) equals nA. Indeed,
if A is the sender then

DB(EA(cA)) = DB(EA(DA(EB(nA)))) = nA.

El Gamal. A prime p and a primitive root g mod p are publicly available (avail-
able to all users A,B,C, ...). A chooses a number dA that she keeps secret from
B,C, ... and posts eA ≡ gdA mod p; B chooses a number dB that he keeps secret
from A,C, ... and posts eB ≡ gdB mod p; etc. A wants to send a message to B. To
do this A posts the ciphertext y = (y1, y2) where y1 ≡ gi mod p, y2 ≡ xeiB mod
p, and i is some random number. Then B is the only person able to decrypt y; he
does this by computing y′1 with y′1y1 ≡ 1 mod p and then computing x ≡ y2(y′1)dB

mod p; indeed B is the only one who can compute x because only B knows dB .
For the transfer of information from A to B the signature scheme works as

follows. A posts her nickname nA and signs the cyphertext with (zA, sA) where

za ≡ gr mod p

and
sA ≡ (nA − dAgr)r′ mod p− 1

where r is arbitrary coprime to p− 1 and r′ is an inverse of r mod p− 1. Note that
the signature involves dA which only A knows. To ascertain that A is indeed the
sender of the message B checks whether

gnA ≡ zsAA ezAA mod p.

Indeed if A is the sender then

zsAA ezAA ≡ z
sA
A gdAzA ≡ (gr)r

′(nA−dAgr)gdAg
r

≡ gnA−dAg
r+dAg

r

≡ gnA mod p.

Diffie-Hellman. A prime p and a primitive root g mod p are publicly available
(available to all users A,B,C, ...). A chooses a number dA that she keeps secret
from everybody else; then A posts eA ≡ gdA mod p. Similarly B chooses a number
dB that he keeps secret from everybody else; then B posts eB ≡ gdB mod p. Now
if A and B want to exchange messages they both compute d ≡ edBA ≡ edAB mod p.
This is a number that only A and B can compute in polynomial time. Using this
d they can implement any of the secret key cryptography schemes.


