Math 563, Fall 2016

Assignment 5, due Wednesday, November 23

The exercises below do not use the triangle inequality for $L^{p}(X, \mu)$, so for any $0<p<\infty$ regard $L^{p}(X, \mu)$ to be the space of measurable functions f such that $\int_{X}|f|^{p} d \mu<\infty$ and $\|f\|_{p}=\left(\int_{X}|f|^{p} d \mu\right)^{1 / p}$. In particular, some exercises do not require $p \geq 1$.

1. Let (X, d) be a metric space and $f: X \rightarrow \mathbb{R}$. Define for $p \in X$,

$$
B_{r}^{*}(p)=\{q \in X: 0<d(p, q)<r\}
$$

as the deleted ball of radius r about p. Given a limit point p of X, define the limit superior and limit inferior at p as

$$
\begin{align*}
\liminf _{q \rightarrow p} f(q) & =\sup _{\delta>0} \inf _{q \in B_{\delta}^{*}(p)} f(q) \tag{0.1}\\
\limsup _{q \rightarrow p} f(q) & =\inf _{\delta>0} \sup _{q \in B_{\delta}^{*}(p)} f(q) \tag{0.2}
\end{align*}
$$

The function f is said to be lower (upper) semicontinuous at p if

$$
\liminf _{q \rightarrow p} f(q) \geq f(p) \quad\left(\limsup _{q \rightarrow p} f(q) \leq f(p)\right)
$$

respectively. Correspondingly, f is said to be lower (upper) semicontinuous on X if it is lower (upper) semicontinuous at all limit points of X.
(a) Explain why the $\inf _{\delta>0}, \sup _{\delta>0}$ on the right hand side of $(0.1),(0.2)$
respectively can be replaced by $\lim _{\delta \rightarrow 0+}$.
(b) Prove that $\lim _{q \rightarrow p} f(q)$ exists if and only if

$$
\limsup _{q \rightarrow p} f(q)=\liminf _{q \rightarrow p} f(q),
$$

in which case the limit is equal to this common value.
(c) Prove that f is lower semicontinuous on X if and only if

$$
\{p: f(p)>a\}
$$

is open in X for every $a \in \mathbb{R}$.
(d) Show that any lower semicontinuous function is Borel measurable.
2. Prove that if $0<p<q<r \leq \infty$, then $L^{q}(X, \mu) \subset L^{p}(X, \mu)+L^{r}(X, \mu)$; that is, each $f \in L^{q}(X, \mu)$ can be written as $f=g+h$, the sum of a function in $g \in L^{p}(X, \mu)$ and a function in $h \in L^{r}(X, \mu)$.
3. Fix p_{0}, p_{1} with $0<p_{0}<p_{1} \leq \infty$. Find examples of functions f on $(0, \infty)$ (with Lebesgue measure), such that $f \in L^{p}$ if and only if
(a) $p_{0}<p<p_{1}$
(b) $p_{0} \leq p \leq p_{1}$
(c) $p=p_{0}$

Hint: consider functions of the form $x^{-a}|\log x|^{-b}$, or possibly piecewise defined functions involving these expressions.
4. Suppose $\mu(X)<\infty$ and $0<p<q \leq \infty$. Show that $L^{q}(X, \mu) \subset L^{p}(X, \mu)$ and

$$
\|f\|_{p} \leq\|f\|_{q}(\mu(X))^{\frac{1}{p}-\frac{1}{q}} .
$$

5. (Generalized Hölder inequality) Suppose that

$$
\frac{1}{p_{1}}+\frac{1}{p_{2}}+\cdots+\frac{1}{p_{k}}=\frac{1}{r}
$$

with $1 \leq p_{j} \leq \infty$ for $j=1, \ldots, k$ and $1 \leq r \leq \infty$. If $f_{j} \in L^{p_{j}}(X, \mu)$ for $j=1, \ldots, k$, then $\Pi_{j=1}^{k} f_{j} \in L^{r}(X, \mu)$ and

$$
\left\|\Pi_{j=1}^{k} f_{j}\right\|_{r} \leq \Pi_{j=1}^{k}\left\|f_{j}\right\|_{p_{j}}
$$

(Hint: using induction, reduce to the case where $k=2$. Then derive this as a consequence of the usual Hölder inequality.)

